Toxicology and Environmental Health Sciences

, Volume 4, Issue 3, pp 186–193

The protective effect of laver extract against the UVA- and UVB-induced damage in HaCaT cells

Research Article

Abstract

We investigated the protective effect of aqueous-methanol extract of laver (Porphyra yezoensis) against UV-induced damage in HaCaT cells. The laver extract exhibited strong UV absorbance at 300–360 nm. The cells irradiated with UVA or UVB in the presence of the extract exhibited higher viability than those irradiated without the extract. The protective effect was more prominent against UVA probably due to stronger absorption and screening of the UVA. The laver extract also exerted cell-protective effect in the postirradiation period. The extract increased steady-state glutathione content of HaCaT cells. The cells irradiated with UVA in the presence of the laver extract exhibited less severe depletion of glutathione than those irradiated without the extract. The extract also stimulated recovery from UVA-induced glutathione depletion in the post-irradiation period, which supports a critical role of oxidative stress in the UVA-induced cell damage and also a role of the laver extract in the antioxidative defense.

Keywords

UVA UVB HaCaT cells Laver extract Glutathione Mycosporine-like amino acid (MAA) Porphyra-334 (P-334) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cho, J. W. et al. Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp. Mol. Med. 37, 186–192 (2005).PubMedGoogle Scholar
  2. 2.
    Rundhaug, J. E. & Fischer, S. M. Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochem. Photobiol. 84, 322–329 (2008).PubMedCrossRefGoogle Scholar
  3. 3.
    Yaar, M. & Gilchrest, B. A. Photoageing: mechanism, prevention and therapy. Br. J. Dermatol. 157, 874–887 (2007).PubMedCrossRefGoogle Scholar
  4. 4.
    Armstrong, B. K. & Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B. 63, 8–18 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    Diffey, B. L. Ultraviolet radiation and human health. Clin. Dermatol. 16, 83–89 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    Besaratinia, A. et al. DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proc. Natl. Acad. Sci. USA 102, 10058–10063 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    Pfeifer, G. P., You, Y. H. & Besaratinia, A. Mutations induced by ultraviolet light. Mutat. Res. 571, 19–31 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    Setlow, R. B. & Carrier, W. L. Pyrimidine dimers in ultraviolet-irradiated DNA’s. J. Mol. Biol. 17, 237–254 (1966).PubMedCrossRefGoogle Scholar
  9. 9.
    Ehrhart, J. C., Gosselet, F. P., Culerrier, R. M. & Sarasin, A. UVB-induced mutations in human key gatekeeper genes governing signalling pathways and consequences for skin tumourigenesis. Photochem. Photobiol. Sci. 2, 825–834 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    Shorrocks, J., Paul, N. D. & McMillan, T. J. The dose rate of UVA treatment influences the cellular response of HaCaT keratinocytes. J. Invest. Dermatol. 128, 685–693 (2008).PubMedGoogle Scholar
  11. 11.
    Assefa, Z., Van Laethem, A., Garmyn, M. & Agostinis, P. Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim. Biophys. Acta 1755, 90–106 (2005).PubMedGoogle Scholar
  12. 12.
    Bickers, D. R. & Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126, 2565–2575 (2006).PubMedCrossRefGoogle Scholar
  13. 13.
    Stern, R. S., Weinstein, M. C. & Baker, S. G. Risk reduction for nonmelanoma skin cancer with childhood sunscreen use. Arch. Dermatol. 122, 537–545 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    Thompson, S. C., Jolley, D. & Marks, R. Reduction of solar keratoses by regular sunscreen use. N. Engl. J. Med. 329, 1147–1151 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    Kulms, D. & Schwarz, T. Molecular mechanisms of UV-induced apoptosis. Photodermatol. Photoimmunol. Photomed. 16, 195–201 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    Moan, J., Porojnicu, A. C. & Dahlback, A. Ultraviolet radiation and malignant melanoma. Adv. Exp. Med. Biol. 624, 104–116 (2008).PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang, L., Li, L. & Wu, Q. Protective effects of mycosporine-like amino acids of Synechocystis sp. PCC 6803 and their partial characterization. J. Photochem. Photobiol. B. 86, 240–245 (2007).PubMedCrossRefGoogle Scholar
  18. 18.
    Sinha, R. P., Klisch, M., Gröniger, A. & Häder, D.-P. Ultraviolet-absorbing/screening substances in cyanobacteris, phytoplankton and macroalgae. J. Photochem. Photobiol. B. 47, 83–94 (1998).CrossRefGoogle Scholar
  19. 19.
    Conde, F. R., Churio, M. S. & Previtali, C. M. The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J. Photochem. Photobiol. B. 56, 139–144 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    Whitehead, K. & Hedges, J. I. Photodegradation and photosensitization of mycosporine-like amino acids. J. Photochem. Photobiol. B. 80, 115–121 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    Helbling, E. W., Menchi, C. F. & Villafane, V. E. Bioaccumulation and role of UV-absorbing compounds in two marine crustacean species from Patagonia, Argentina. Photochem. Photobiol. Sci. 1, 820–825 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    Yuan, Y. V. & Walsh, N. A. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 44, 1144–1150 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    de la Coba, F, Aguilera, J., Figueroa, F. L., de Gálvez, M. V. & Herrera, E. Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. J. Appl. Phycol. 21, 161–169 (2009).CrossRefGoogle Scholar
  24. 24.
    Groniger, A., Sinha, R. P., Klisch, M. & Hader, D. P. Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae-a database. J. Photochem. Photobiol. B. 58, 115–122 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    Yildiza, G., Vatana, Ö., Çeliklera, S. & Derea,. Determination of the phenolic compounds and antioxidative capacity in red algae Gracilaria bursa-pastoris. Int. J. Food Prop. 14, 496–502 (2011).CrossRefGoogle Scholar
  26. 26.
    Cornich, M. L. & Garbary, D. J. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25, 155–171 (2010).CrossRefGoogle Scholar
  27. 27.
    Klisch, M. & Hader, D. P. Wavelength dependence of mycosporine-like amino acid synthesis in Gyrodinium dorsum. J. Photochem. Photobiol. B. 66, 60–66 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    Torres, A., Enk, C. D., Hochberg, M. & Srebnik, M. Porphyra-334, a potential natural source for UVA protective sunscreens. Photochem. Photobiol. Sci. 5, 432–435 (2006).PubMedCrossRefGoogle Scholar
  29. 29.
    Reed, D. J. et al. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal. Biochem. 106, 55–62 (1980).PubMedCrossRefGoogle Scholar
  30. 30.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of IncheonIncheonKorea
  2. 2.Department of Ocean SciencesUniversity of IncheonIncheonKorea
  3. 3.University of Incheon Marine Regional Innovative System Development AgencyIncheonKorea
  4. 4.Pharmicell Co., Ltd.Seongnam-siKorea

Personalised recommendations