, Volume 55, Issue 4, pp 1245–1267 | Cite as

Father Absence and Accelerated Reproductive Development in Non-Hispanic White Women in the United States

  • Lauren GaydoshEmail author
  • Daniel W. Belsky
  • Benjamin W. Domingue
  • Jason D. Boardman
  • Kathleen Mullan Harris


Girls who experience father absence in childhood also experience accelerated reproductive development in comparison with peers with present fathers. One hypothesis advanced to explain this empirical pattern is genetic confounding, wherein gene-environment correlation (rGE) causes a spurious relationship between father absence and reproductive timing. We test this hypothesis by constructing polygenic scores for age at menarche and first birth using recently available genome-wide association study results and molecular genetic data on a sample of non-Hispanic white females from the National Longitudinal Study of Adolescent to Adult Health. We find that young women’s accelerated menarche polygenic scores are unrelated to their exposure to father absence. In contrast, polygenic scores for earlier age at first birth tend to be higher in young women raised in homes with absent fathers. Nevertheless, father absence and the polygenic scores independently and additively predict reproductive timing. We find no evidence in support of the rGE hypothesis for accelerated menarche and only limited evidence in support of the rGE hypothesis for earlier age at first birth.


Father absence Reproductive timing Genetics Add Health 



This research benefitted from GWAS results made publicly available by the ReproGen Consoritum, Sociogenome, and the Social Science Genetic Association Consortium. This research uses Add Health GWAS data funded by Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Grants R01 HD073342 to Kathleen Mullan Harris and R01 HD060726 to Kathleen Mullan Harris, Jason D. Boardman, and Matthew B. McQueen. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at University of North Carolina at Chapel Hill, and funded by Grant P01-HD31921 from the NICHD, with cooperative funding from 23 other federal agencies and foundations. This research was supported in part by NICHD P2C-HD050924. Lauren Gaydosh was supported by NICHD F32 HD084117. Daniel W. Belsky is an Early Career Fellow of the Jacobs Foundation and is supported by NIA Grants R01 AG032282 and P30 AG028716.


  1. Alvergne, A., Faurie, C., & Raymond, M. (2008). Developmental plasticity of human reproductive development: Effects of early family environment in modern-day France. Physiology & Behavior, 95, 625–632.CrossRefGoogle Scholar
  2. Anderson, K. G. (2015). Father absence, childhood stress, and reproductive maturation in South Africa. Human Nature, 26, 401–425.CrossRefGoogle Scholar
  3. Anderson, S. E., & Must, A. (2005). Interpreting the continued decline in the average age at menarche: Results from two nationally representative surveys of US girls studied 10 years apart. Journal of Pediatrics, 147, 753–760.CrossRefGoogle Scholar
  4. Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J. J., Tropf, F. C., . . . Mills, M. C. (2016). Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature: Genetics, 48, 1462–1472.Google Scholar
  5. Barbaro, N., Boutwell, B. B., Barnes, J. C., & Shackelford, T. K. (2017). Genetic confounding of the relationship between father absence and age at menarche. Evolution and Human Behavior, 38, 357–365.CrossRefGoogle Scholar
  6. Belsky, D. W., & Israel, S. (2014). Integrating genetics and social science: Genetic risk scores. Biodemography and Social Biology, 60, 137–155.CrossRefGoogle Scholar
  7. Belsky, D. W., Moffitt, T. E., Sugden, K., Williams, B., Houts, R., McCarthy, J., & Caspi, A. (2013). Development and evaluation of a genetic risk score for obesity. Biodemography and Social Biology, 59, 85–100.CrossRefGoogle Scholar
  8. Belsky, J., Steinberg, L. D., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647–670.CrossRefGoogle Scholar
  9. Belsky, J., Steinberg, L. D., Houts, R. M., Friedman, S. L., DeHart, G., Cauffman, E., . . . NICHD Early Child Care Research Network. (2007). Family rearing antecedents of pubertal timing. Child Development, 78, 1302–1321.Google Scholar
  10. Benjamin, D. J., Cesarini, D., Chabris, C. F., Glaeser, E. L., Laibson, D. I., Guðnason, V., . . . Lichtenstein, P. (2012). The promises and pitfalls of genoeconomics. Annual Review of Economics, 4, 627–662.Google Scholar
  11. Boardman, J. D., Barnes, L., Wilson, R., & Evans, D. (2012). Social disorder, APOE-E4 genotype, and change in cognitive function among older adults living in Chicago. Social Science & Medicine, 74, 1584–1590.CrossRefGoogle Scholar
  12. Boardman, J. D., Wedow, R., Goode, J. A., Domingue, B. W., & Harris, K. M. (2018). A social explanation for observed differences in genetic associations for years of completed education among black and white adults: The role of discrimination. Paper presented at the annual meeting of the Population Association of America, Denver, CO.Google Scholar
  13. Bogaert, A. F. (2008). Menarche and father absence in a national probability sample. Journal of Biosocial Science, 40, 623–636.CrossRefGoogle Scholar
  14. Booth, A., & Edwards, J. (1985). Age at marriage and marital instability. Journal of Marriage and the Family, 47, 67–75.CrossRefGoogle Scholar
  15. Box-Steffensmeier, J. M., & Jones, B. S. (2004). Event history modeling: A guide for social scientists. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  16. Browning, C., Leventhal, T., & Brooks-Gunn, J. (2004). Neighborhood context and racial differences in early adolescent sexual activity. Demography, 41, 697–720.CrossRefGoogle Scholar
  17. Bumpass, L. L., & Sweet, J. (1972). Differentials in marital instability: 1970. American Sociological Review, 37, 754–766.CrossRefGoogle Scholar
  18. Burt, S. A., McGue, M., DeMarte, J. A., Krueger, R. F., & Iacono, W. G. (2006). Timing of menarche and the origins of conduct disorder. Archives of General Psychiatry, 63, 890–896.CrossRefGoogle Scholar
  19. Bush, W. S., Moore, J. H., Li, J., McDonnell, S., & Rabe, K. (2012). Chapter 11: Genome-wide association studies. PLoS Computational Biology, 8(12), e1002822. CrossRefGoogle Scholar
  20. Campbell, B., & Udry, J. (1995). Stress and age at menarche of mothers and daughters. Journal of Biosocial Science, 27, 127–134.CrossRefGoogle Scholar
  21. Campbell, C. D., Ogburn, E. L., Lunetta, K. L., Lyon, H. N., Freedman, M. L., Groop, L. C., . . . Hirschhorn, J. N. (2005). Demonstrating stratification in a European American population. Nature: Genetics, 37, 868–872.Google Scholar
  22. Cardon, L., & Palmer, L. (2003). Population stratification and spurious allelic association. Lancet, 361, 598–604.CrossRefGoogle Scholar
  23. Carlson, C. S., Matise, T. C., North, K. E., Haiman, C. A., Fesinmeyer, M. D., Buyske, S., . . . Kooperberg, C. L. (2013). Generalization and dilution of association results from European GWAS in populations of non-European ancestry: The PAGE Study. PLoS Biology, 11(9), e1001661.
  24. Chandra, A., Martinez, G., Mosher, W., Abma, J., & Jones, J. (2005). Fertility, family planning, and reproductive health of U.S. women: Data from the 2002 National Survey of Family Growth (Vital and Health Statistics Report, Series 23, No. 25). Washington, DC: National Center for Health Statistics.Google Scholar
  25. Charalampopoulos, D., McLoughlin, A., Elks, C. E., & Ong, K. K. (2014). Age at menarche and risks of all-cause and cardiovascular death: A systematic review and meta-analysis. American Journal of Epidemiology, 180, 29–40.CrossRefGoogle Scholar
  26. Chen, P., & Chantala, K. (2014). Guidelines for analyzing Add Health data. Chapel Hill: Carolina Population Center, University of North Carolina at Chapel Hill.Google Scholar
  27. Chisholm, J. S., Ellison, P. T., Evans, J., Lee, P. C., Lieberman, L. S., Pavlik, Z., . . . Worthman, C. M. (1993). Death, hope, and sex: Life-history theory and the development of reproductive strategies. Current Anthropology, 34, 1–24.Google Scholar
  28. Conley, D., Domingue, B. W., Cesarini, D., Dawes, C., Rietveld, C. A., & Boardman, J. D. (2015). Is the effect of parental education on offspring biased or moderated by genotype? Sociological Science, 2, 82–105.CrossRefGoogle Scholar
  29. Conley, D., & Fletcher, J. (2017). The genome factor. Princeton, NJ: Princeton University Press.Google Scholar
  30. Conley, D., Laidley, T., Belsky, D. W., Fletcher, J. M., Boardman, J. D., & Domingue, B. W. (2016a). Assortative mating and differential fertility by phenotype and genotype across the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 113, 6647–6652.CrossRefGoogle Scholar
  31. Conley, D., Laidley, T. M., Boardman, J. D., & Domingue, B. W. (2016b). Changing polygenic penetrance on phenotypes in the 20th century among adults in the US population. Scientific Reports, 6, 30348. CrossRefGoogle Scholar
  32. Culpin, I., Heron, J., Araya, R., Melotti, R., Lewis, G., & Joinson, C. (2014). Father absence and timing of menarche in adolescent girls from a UK cohort: The mediating role of maternal depression and major financial problems. Journal of Adolescence, 37, 291–301.CrossRefGoogle Scholar
  33. Day, F. R., Perry, J. R. B., & Ong, K. K. (2015). Genetic regulation of puberty timing in humans. Neuroendocrinology, 102, 247–255.CrossRefGoogle Scholar
  34. Day, F. R., Thompson, D. J., Helgason, H., Chasman, D. I., Finucane, H., Sulem, P., . . . Perry, J. R. B. (2017). Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature: Genetics, 49, 834–841.Google Scholar
  35. Del Giudice, M., Gangestad, S. W., & Kaplan, H. S. (2015). Life history theory and evolutionary psychology. In D. M. Buss (Ed.), The handbook of evolutionary psychology (Vol. 1, 2nd ed., pp. 88–114). Hoboken, NJ: John Wiley & Sons.Google Scholar
  36. Demerath, E. W., Choh, A. C., Johnson, W., Curran, J. E., Lee, M., Bellis, C., . . . Towne, B. (2013). The positive association of obesity variants with adulthood adiposity strengthens over an 80-year period: A gene-by-birth year interaction. Human Heredity, 75, 175–185.Google Scholar
  37. Domingue, B. W., Belsky, D. W., Fletcher, J. M., Conley, D., Boardman, J. B., & Harris, K. M. (2018). The social genome of friends and schoolmates in the National Longitudinal Study of Adolescent to Adult Health. Proceedings of the National Academy of Sciences. Advance online publication. doi:
  38. Domingue, B. W., Belsky, D. W., Conley, D., Harris, K. M., & Boardman, J. D. (2015). Polygenic influence on educational attainment: New evidence from the National Longitudinal Study of Adolescent to Adult Health. AERA Open, 1(3), 1–13. CrossRefGoogle Scholar
  39. Domingue, B. W., Belsky, D. W., Harris, K. M., Smolen, A., McQueen, M. B., & Boardman, J. D. (2014). Polygenic risk predicts obesity in both white and black young adults. PLoS One, 9(7), e101596. CrossRefGoogle Scholar
  40. Draper, P., & Harpending, H. (1982). Father absence and reproductive strategy: An evolutionary perspective. Journal of Anthropological Research, 31, 255–273.CrossRefGoogle Scholar
  41. Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9, e1003348. CrossRefGoogle Scholar
  42. Elks, C. E., Perry, J. R. B., Sulem, P., Chasman, D. I., Franceschini, N., He, C., . . . Murray, A. (2010). Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nature: Genetics, 42, 1077–1085.Google Scholar
  43. Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920–958.CrossRefGoogle Scholar
  44. Ellis, B. J., Bates, J. E., Dodge, K. A., Fergusson, D. M., Horwood, L. J., Pettit, G. S., & Woodward, L. (2003). Does father absence place daughters at special risk for early sexual activity and teenage pregnancy? Child Development, 74, 801–821.CrossRefGoogle Scholar
  45. Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental dimensions of environmental risk. Human Nature, 20, 204–268.CrossRefGoogle Scholar
  46. Ellis, B. J., & Garber, J. (2000). Psychosocial antecedents of variation in girls’ pubertal timing: Maternal depression, stepfather presence, and marital and family stress. Child Development, 71, 485–501.CrossRefGoogle Scholar
  47. Ellis, B. J., McFadyen-Ketchum, S., Dodge, K. A., Pettit, G. S., & Bates, J. E. (1999). Quality of early family relationships and individual differences in the timing of pubertal maturation in girls: A longitudinal test of an evolutionary model. Journal of Personality and Social Psychology, 77, 387–401.CrossRefGoogle Scholar
  48. Ellis, B. J., Shirtcliff, E. A., Boyce, W. T., Deardorff, J., & Essex, M. J. (2011). Quality of early family relationships and the timing and tempo of puberty: Effects depend on biological sensitivity to context. Development and Psychopathology, 23, 85–99.CrossRefGoogle Scholar
  49. Feng, Y., Hong, X., Wilker, E., Li, Z., Zhang, W., Jin, D., . . . Xu, X. (2008). Effects of age at menarche, reproductive years, and menopause on metabolic risk factors for cardiovascular diseases. Atherosclerosis, 196, 590–597.Google Scholar
  50. Foster, H., Hagan, J., & Brooks-Gunn, J. (2008). Growing up fast: Stress exposure and subjective “weathering” in emerging adulthood. Journal of Health and Social Behavior, 49, 162–177.CrossRefGoogle Scholar
  51. Gaydosh, L., & Harris, K. M. (Forthcoming). Childhood family instability and young adult health. Journal of Health and Social Behavior.Google Scholar
  52. Graber, J. A., Brooks-Gunn, J., & Warren, M. P. (1995). The antecedents of menarcheal age: Heredity, family environment, and stressful life events. Child Development, 66, 346–359.CrossRefGoogle Scholar
  53. Hamer, D., & Sirota, L. (2000). Beware the chopsticks gene. Molecular Psychiatry, 5, 11–13.CrossRefGoogle Scholar
  54. Hardy, J. B., Astone, N. M., Brooks-Gunn, J., Shapiro, S., & Miller, T. L. (1998). Like mother, like child: Intergenerational patterns of age at first birth and associations with childhood and adolescent characteristics and adult outcomes in the second generation. Developmental Psychology, 34, 1220–1232.CrossRefGoogle Scholar
  55. Harris, K. M. (2010). An integrative approach to health. Demography, 47, 1–22.CrossRefGoogle Scholar
  56. Harris, K. M., Halpern, C. T., Hussey, J., Whitsel, E. A., Killeya-Jones, L., Tabor, J., . . . Smolen, A. (2013). Social, behavioral, and genetic linkages from adolescence into adulthood. American Journal of Public Health, 103(S1), S25–S32.Google Scholar
  57. He, C., Kraft, P., Chen, C., Buring, J. E., Paré, G., Hankinson, S. E., . . . Chasman, D. I. (2009). Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nature: Genetics, 41, 724–728.Google Scholar
  58. He, C., Zhang, C., Hunter, D. J., Hankinson, S. E., Buck Louis, G. M., Hediger, M. L., & Hu, F. B. (2010). Age at menarche and risk of Type 2 diabetes: Results from 2 large prospective cohort studies. American Journal of Epidemiology, 171, 334–344.CrossRefGoogle Scholar
  59. Highland, H., Avery, C., Duan, Q., Li, Y., & Harris, K. M. (2018). Quality control analysis of Add Health GWAS data (Report). Retrieved from
  60. Hoier, S. (2003). Father absence and age at menarche. Human Nature, 14, 209–233.CrossRefGoogle Scholar
  61. Igra, V., & Irwin, C., Jr. (1996). Theories of adolescent risk-taking behavior. In R. J. DiClemente, W. B. Hansen, & L. E. Ponton (Eds.), Handbook of adolescent health risk behavior (pp. 35–51). New York, NY: Springer Science+Business Media.CrossRefGoogle Scholar
  62. Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
  63. Karapanou, O., & Papadimitriou, A. (2010). Determinants of menarche. Reproductive Biology and Endocrinology, 8, 115. CrossRefGoogle Scholar
  64. Kiernan, K. E. (1977). Age at puberty in relation to age at marriage and parenthood: A national longitudinal study. Annals of Human Biology, 4, 301–308.CrossRefGoogle Scholar
  65. Kiernan, K. E., & Hobcraft, J. (1997). Parental divorce during childhood: Age at first intercourse, partnership and parenthood. Population Studies, 51, 41–55.CrossRefGoogle Scholar
  66. Kyweluk, M. A., Georgiev, A. V., Borja, J. B., Gettler, L. T., & Kuzawa, C. W. (2018). Menarcheal timing is accelerated by favorable nutrition but unrelated to developmental cues of mortality or familial instability in Cebu, Philippines. Evolution and Human Behavior, 39, 76–81.CrossRefGoogle Scholar
  67. Lakshman, R., Forouhi, N. G., Sharp, S. J., Luben, R., Bingham, S. A., Khaw, K.-T., . . . Ong, K. K. (2009). Early age at menarche associated with cardiovascular disease and mortality. Journal of Clinical Endocrinology & Metabolism, 94, 4953–4960.Google Scholar
  68. Liu, H., & Guo, G. (2015). Lifetime socioeconomic status, historical context, and genetic inheritance in shaping body mass in middle and late adulthood. American Sociological Review, 80, 705–737.CrossRefGoogle Scholar
  69. Manski, C. F. (2011). Genes, eyeglasses, and social policy. Journal of Economic Perspectives, 25(4), 83–93.CrossRefGoogle Scholar
  70. Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., . . . Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. American Journal of Human Genetics, 100, 635–649.Google Scholar
  71. Mathews, T. J., & Hamilton, B. E. (2016). Mean age of mothers is on the rise: United States 2000–2014 (NCHS data brief). Hyattsville, MD: National Center for Health Statistics.Google Scholar
  72. McEwen, B. S. (2012). Brain on stress: How the social environment gets under the skin. Proceedings of the National Academy of Sciences, 109, 17180–17185.Google Scholar
  73. McQueen, M. B., Boardman, J. D., Domingue, B. W., Smolen, A., Tabor, J. W., Killeya-Jones, L., . . . Mullen Harris, K. (2015). The National Longitudinal Study of Adolescent to Adult Health (Add Health) sibling pairs genome-wide data. Behavior Genetics, 45, 12–23.Google Scholar
  74. Mendle, J., Harden, K. P., Turkheimer, E., Van Hulle, C. A., D’Onofrio, B. M., Brooks-Gunn, J., . . . Lahey, B. B. (2009). Associations between father absence and age of first sexual intercourse. Child Development, 80, 1463–1480.Google Scholar
  75. Mendle, J., Ryan, R. M., & McKone, K. M. (2015). Early childhood maltreatment and pubertal development: Replication in a population-based sample. Journal of Research on Adolescence, 26, 595–602.CrossRefGoogle Scholar
  76. Mendle, J., Turkheimer, E., D’Onofrio, B. M., Lynch, S. K., Emery, R. E., Slutske, W. S., & Martin, N. G. (2006). Family structure and age at menarche: A children-of-twins approach. Developmental Psychology, 42, 533–542.CrossRefGoogle Scholar
  77. Moffitt, T. E., Caspi, A., Belsky, J., & Silva, P. A. (1992). Childhood experience and the onset of menarche: A test of a sociobiological model. Child Development, 63, 47–58.CrossRefGoogle Scholar
  78. Moore, S. R., Harden, K. P., & Mendle, J. (2014). Pubertal timing and adolescent sexual behavior in girls. Developmental Psychology, 50, 1734–1745.CrossRefGoogle Scholar
  79. Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., . . . Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539–542.Google Scholar
  80. Patton, G. C., McMorris, B. J., Toumbourou, J. W., Hemphill, S. A., Donath, S., & Catalano, R. F. (2004). Puberty and the onset of substance use and abuse. Pediatrics, 114, 300–306.CrossRefGoogle Scholar
  81. Perry, J. R., Day, F., Elks, C. E., Sulem, P., Thompson, D. J., Ferreira, T., . . . Ong, K. K. (2014). Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 514(7520), 92–97.Google Scholar
  82. Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderheiser, J. M. (2013). Behavioral genetics. Basingstoke, UK: Palgrave Macmillan.Google Scholar
  83. Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature: Genetics, 47, 702–709.Google Scholar
  84. Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature: Genetics, 38, 904–909.Google Scholar
  85. Price, A. L., Zaitlen, N. A., Reich, D., & Patterson, N. (2010). New approaches to population stratification in genome-wide association studies. Nature Reviews: Genetics, 11, 459–463.CrossRefGoogle Scholar
  86. Quinlan, R. J. (2003). Father absence, parental care, and female reproductive development. Evolution and Human Behavior, 24, 376–390.CrossRefGoogle Scholar
  87. Remsberg, K. E., Demerath, E. W., Schubert, C. M., Chumlea, W. C., Sun, S. S., & Siervogel, R. M. (2005). Early menarche and the development of cardiovascular disease risk factors in adolescent girls: The Fels Longitudinal Study. Journal of Clinical Endocrinology & Metabolism, 90, 2718–2724.CrossRefGoogle Scholar
  88. Rowe, D. C. (2000). Environmental and genetic influences on pubertal development: Evolutionary life history traits? In J. L. Rodgers, D. C. Rowe, & W. B. Miller (Eds.), Genetic influences on human fertility and sexuality (pp. 147–168). Boston, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
  89. Rowe, D. C. (2002). On genetic variation in menarche and age at first sexual intercourse: A critique of the Belsky-Draper hypotheses. Evolution and Human Behavior, 23, 365–372.CrossRefGoogle Scholar
  90. Ryan, R. M. (2015). Nonresident fatherhood and adolescent sexual behavior: A comparison of siblings approach. Developmental Psychology, 51, 211–223.CrossRefGoogle Scholar
  91. Sandler, D. P., Wilcox, A. J., & Horney, L. F. (1984). Age at menarche and subsequent reproductive events. American Journal of Epidemiology, 119, 765–774.CrossRefGoogle Scholar
  92. Shifman, S., Kuypers, J., Kokoris, M., Yakir, B., & Darvasi, A. (2003). Linkage disequilibrium patterns of the human genome across populations. Human Molecular Genetics, 12, 771–776.CrossRefGoogle Scholar
  93. StataCorp. (2015). Stata Statistical Software (Release 14) [Software]. College Station, TX: StataCorp LP.Google Scholar
  94. Stearns, S. C. (1992). The evolution of life histories. London, UK: Oxford University Press.Google Scholar
  95. Stoll, B. A., Vatten, L. J., & Kvinnsland, S. (1994). Does early physical maturity influence breast cancer risk? Acta Oncologica, 33, 171–176.CrossRefGoogle Scholar
  96. Tamakoshi, K., Yatsuya, H., Tamakoshi, A., & JACC Study Group. (2011). Early age at menarche associated with increased all-cause mortality. European Journal of Epidemiology, 26, 771–778.CrossRefGoogle Scholar
  97. Tither, J. M., & Ellis, B. J. (2008). Impact of fathers on daughters’ age at menarche: A genetically and environmentally controlled sibling study. Developmental Psychology, 44, 1409–1420.CrossRefGoogle Scholar
  98. Towne, B., Czerwinski, S. A., Demerath, E. W., Blangero, J., Roche, A. F., & Siervogel, R. M. (2005). Heritability of age at menarche in girls from the Fels Longitudinal Study. American Journal of Physical Anthropology, 128, 210–219.CrossRefGoogle Scholar
  99. Trivers, R. L. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection & the descent of man 1871–1971 (pp. 136–179). New York, NY: Aldine de Gruyter.Google Scholar
  100. Tropf, F. C., Lee, S. H., Verweij, R. M., Stulp, G., van der Most, P. J., de Vlaming, R., . . . Mills, M. C. (2017). Hidden heritability due to heterogeneity across seven populations. Nature: Human Behaviour, 1, 757–765.Google Scholar
  101. Udry, J. R. (2008). Age at menarche, at first intercourse, and at first pregnancy. Journal of Biosocial Science, 11, 433–441.Google Scholar
  102. Udry, J. R., & Cliquet, R. L. (1982). A cross-cultural examination of the relationship between ages at menarche, marriage, and first birth. Demography, 19, 53–63.CrossRefGoogle Scholar
  103. Walter, S., Mejía-Guevara, I., Estrada, K., Liu, S. Y., & Glymour, M. M. (2016). Association of a genetic risk score with body mass index across different birth cohorts. JAMA, 316, 63–69.CrossRefGoogle Scholar
  104. Webster, G. D., Graber, J. A., Gesselman, A. N., Crosier, B. S., & Orozco Schember, T. (2014). A life history theory of father absence and menarche: A meta-analysis. Evolutionary Psychology, 12, 273–294.CrossRefGoogle Scholar
  105. Wojcik, G., Graff, M., Nishimura, K. K., Tao, R., Haessler, J., Gignoux, C. R., . . . Carlson, C. S. (2017). Genetic diversity turns a new PAGE in our understanding of complex traits. Unpublished manuscript. Retrieved from
  106. Wu, L. L., & Martinson, B. C. (1993). Family structure and the risk of a premarital birth. American Sociological Review, 58, 210–232.CrossRefGoogle Scholar

Copyright information

© Population Association of America 2018

Authors and Affiliations

  • Lauren Gaydosh
    • 1
    Email author
  • Daniel W. Belsky
    • 2
    • 3
  • Benjamin W. Domingue
    • 4
  • Jason D. Boardman
    • 5
  • Kathleen Mullan Harris
    • 6
  1. 1.Center for Medicine, Health, and SocietyVanderbilt UniversityNashvilleUSA
  2. 2.Department of Population Health SciencesDuke UniversityDurhamUSA
  3. 3.Population Research InstituteDuke UniversityDurhamUSA
  4. 4.Graduate School of EducationStanford UniversityStanfordUSA
  5. 5.Department of Sociology and Institute of Behavioral ScienceUniversity of Colorado at BoulderBoulderUSA
  6. 6.Department of Sociology, Carolina Population CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations