Skip to main content

Advertisement

Log in

Perturbation Analysis of Indices of Lifespan Variability

  • Published:
Demography

Abstract

A number of indices exist to calculate lifespan variation, each with different underlying properties. Here, we present new formulae for the response of seven of these indices to changes in the underlying mortality schedule (life disparity, Gini coefficient, standard deviation, variance, Theil’s index, mean logarithmic deviation, and interquartile range). We derive each of these indices from an absorbing Markov chain formulation of the life table, and use matrix calculus to obtain the sensitivity and the elasticity (i.e., the proportional sensitivity) to changes in age-specific mortality. Using empirical French and Russian male data, we compare the underlying sensitivities to mortality change under different mortality regimes to determine the conditions under which the indices might differ in their conclusions about the magnitude of lifespan variation. Finally, we demonstrate how the sensitivities can be used to decompose temporal changes in the indices into contributions of age-specific mortality changes. The result is an easily computable method for calculating the properties of this important class of longevity indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We excluded populations that were double-counted; that is, we excluded civilian population in favor of total national population life tables and excluded nationally aggregated life tables in favor of including regional or ethnicity-based life tables.

  2. Note that P is column-stochastic and operates on column vectors, in line with the orientation of population projection matrices (e.g., Caswell 2001; Keyfitz and Caswell 2005).

References

  • Abadir, K. M., & Magnus, J. R. (2005). Matrix algebra: Econometric exercises. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Allison, P. D. (1978). Measures of inequality. American Sociological Review, 43, 865–880.

    Article  Google Scholar 

  • Anand, S., Diderichsen, F., Evans, T., Shkolnikov, V., Wirth, M. (2001). Measuring disparities in health: Methods and indicators. In Challenging inequities in health: From ethics to action (pp. 49–67). New York: Oxford University Press.

    Google Scholar 

  • Asada, Y. (2007). Health inequality: Morality and measurement. Toronto, Canada: University of Toronto Press.

    Google Scholar 

  • Brown, D. C., Hayward, M., Montez, J. K., Hummer, R. A., Chiu, C.-T., Hidajat, M. M. (2012). The significance of education for mortality compression in the United States. Demography, 49 819–840.

    Article  Google Scholar 

  • Caswell, H. (1978). A general formula for the sensitivity of population growth rate to changes in life history parameters. Theoretical Population Biology, 14, 215–230.

    Article  Google Scholar 

  • Caswell, H. (1989). Analysis of life table response experiments I. Decomposition of effects on population growth rate. Ecological Modelling, 46, 221–237.

    Article  Google Scholar 

  • Caswell, H. (2001). Matrix population models: Construction, analysis, and interpretation (2nd ed.). Sunderland, MA: Sinauer.

    Google Scholar 

  • Caswell, H. (2006). MAM2006: Markov anniversary meeting. In Applications of Markov chains in demography (pp. 319–334). Raleigh: Boson Books.

    Google Scholar 

  • Caswell, H. (2007). Sensitivity analysis of transient population dynamics. Ecology Letters, 10,1–15.

    Article  Google Scholar 

  • Caswell, H. (2008). Perturbation analysis of nonlinear matrix population models. Demographic Research, 18(article 3), 59–116. doi:10.4054/DemRes.2008.18.3.

    Article  Google Scholar 

  • Caswell, H. (2009). Stage, age and individual stochasticity in demography. Oikos, 118,1763–1782.

    Article  Google Scholar 

  • Caswell, H. (2010). Perturbation analysis of longevity using matrix calculus. Paper presented at the annual meeting of the Population Association of America, Dallas.

  • Caswell, H. (2011). Sensitivity analysis of discrete Markov chains via matrix calculus. Linear Algebra and Its Applications. doi:10.1016/j.laa.2011.07.046

  • Cheung, S. L., & Robine, J. M. (2007). Increase in common longevity and the compression of mortality: The case of Japan. Population Studies, 61,85–97.

    Article  Google Scholar 

  • Cheung, S. L., Robine, J. M., Tu, E. J., Caselli, G. (2005). Three dimensions of the survival curve: Horizontalization, verticalization, and longevity extension. Demography, 42,243–258.

    Article  Google Scholar 

  • Coale, A. J. (1972). The growth and structure of human populations: A mathematical investigation. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Demetrius, L. (1969). The sensitivity of population growth rate to pertubations in the life cycle components. Mathematical Biosciences, 4,129–136.

    Article  Google Scholar 

  • Eakin, T., & Witten, M. (1995). How square is the survival curve of a given species?Experimental Gerontology, 30,33–64.

    Article  Google Scholar 

  • Edwards, R. D., & Tuljapurkar, S. (2005). Inequality in life spans and a new perspective on mortality convergence across industrialized countries. Population and Development Review, 31,645–674.

    Article  Google Scholar 

  • Feichtinge,r G. (1973). Markovian models for some demographic processes. Statistical Papers, 14, 310–334.

    Google Scholar 

  • Gakidou, E., & King, G. (2002). Measuring total health inequality: Adding individual variation to group-level differences. International Journal for Equity in Health, 1,1–12.

    Article  Google Scholar 

  • Gakidou, E. E., Murray, C. J. L., Frenk, J. (2000). Defining and measuring health inequality: An approach based on the distribution of health expectancy. Bulletin of the World Health Organization, 78, 42–54.

    Google Scholar 

  • Goldman, N., & Lord, G. (1986). A new look at entropy and the life table. Demography, 23,275–282.

    Article  Google Scholar 

  • Hamilton, W. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12,12–45.

    Article  Google Scholar 

  • Herskind, A., McGue, M., Holm, N., Srensen, T., Harvald, B., Vaupel, J. (1996). The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 18701900. Human Genetics, 97, 319–323.

    Article  Google Scholar 

  • HMD (2012). Human mortality database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Retrieved from www.mortality.org or www.humanmortality.de

  • Horiuchi, S., Wilmoth, J. R., Pletcher, S. D. (2008). A decomposition method based on a model of continuous change. Demography, 45, 785–801.

    Article  Google Scholar 

  • Kannisto, V. (2000). Measuring the compression of mortality. Demographic Research , 3, 1–24.

    Article  Google Scholar 

  • Kannisto, V. (2001). Mode and dispersion of the length of life. Population: An English Selection, 13, 159–171.

    Google Scholar 

  • Keyfitz, N. (1971). Linkages of intrinsic to age-specific rates. Journal of the American Statistical Association, 66,275–281.

    Article  Google Scholar 

  • Keyfitz, N. (1977). Applied mathematical demography (Vol. 1). New York: Wiley.

    Google Scholar 

  • Keyfitz, N., & Caswel, H. (2005). Applied mathematical demography (3rd ed.). New York: Springer-Verlag.

    Google Scholar 

  • Lambert, P. J., & Aronson, J. R. (1993). Inequality decomposition analysis and the Gini coefficient revisited. The Economic Journal, 103,1221–1227.

    Article  Google Scholar 

  • Leon, D. A., Chenet, L., Shkolnikov, V. M., Zakharov, S., Shapiro, J., Rakhmanova, G., ... McKee, M. (1997). Huge variation in Russian mortality rates 1984–94: Artefact, alcohol, or what?The Lancet, 350,383–388.

  • Magnus, J., & Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. New York: Wiley.

    Google Scholar 

  • Magnus, J. R., & Neudecker, H. (1985). Matrix differential calculus with applications to simple, Hadamard, and Kronecker products. Journal of Mathematical Psychology, 29,474–492.

    Article  Google Scholar 

  • Marchand, S., Wikler, D., Landesman, B. (1998). Class, health, and justice. The Milbank Quarterly, 76, 449–467.

    Article  Google Scholar 

  • McGue, M., Vaupel, J. W., Holm, N. V., Harvald, B. (1993). Longevity is moderately heritable in a sample of Danish twins born 1870–1880. The Journal of Gerontology, 48, 237–244.

    Google Scholar 

  • Mookherjee, D., & Shorrocks, A. (1982). A decomposition analysis of the trend in UK income inequality. The Economic Journal, 92,886–902.

    Article  Google Scholar 

  • Nau, C., & Firebaugh, G. (2012). A new method for determining why length of life is more unequal in some populations than in others. Demography, 49,1207–1230.

    Article  Google Scholar 

  • Ouellette, N., & Bourbeau, R.R. (2011). Changes in the age-at-death distribution in four low mortality countries: A nonparametric approach. Demographic Research, 25(article 19), 595–628. doi:10.4054/DemRes.2011.25.19

    Article  Google Scholar 

  • Pollard, J. (1982). The expectation of life and its relationship to mortality. Journal of the Institute of Actuaries, 109,225–240.

    Article  Google Scholar 

  • Pollard, J. (1988). On the decomposition of changes in expectation of life and differentials in life expectancy. Demography, 25,265–276.

    Article  Google Scholar 

  • Roemer, J. E. (1996). Theories of distributive justice. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Roth, W. (1934). On direct product matrices. Bulletin of the American Mathematical Society, 40,461–468.

    Article  Google Scholar 

  • Sen, A. (1992). Inequality reexamined. New York: Russell Sage Foundation; Cambridge, MA: Harvard University Press, 1997.

    Google Scholar 

  • Shkolnikov, V., Andreev, E., Begun, A. Z. (2003). Gini coefficient as a life table function. Computation from discrete data, decomposition of differences and empirical examples. Demographic Research, 8,(article 11), 305–358. doi:10.4054/DemRes.2003.8.11

    Article  Google Scholar 

  • Shorrocks, A. F. (1980). The class of additively decomposable inequality measures. Econometrica, 48,613–625.

    Article  Google Scholar 

  • Smits, J., & Monden, C. (2009). Length of life inequality around the globe. Social Science & Medicine, 68,1114–1123.

    Article  Google Scholar 

  • Thatcher, A. R., Cheung, S. L. K., Horiuchi, S., Robine, J.-M. (2010). The compression of deaths above the mode. Demographic Research, 22,(article 17), 505–538. doi:10.4054/DemRes.2010.22.17

    Article  Google Scholar 

  • Theil, H. (1967). Amsterdam: North-Holland Publishing Co.

  • van Raalte, A. A. (2011). Lifespan variation: Methods, trends and the role of socioeconomic inequality. Ph.D. thesis, Erasmus University.

  • van Raalte, A. A., Kunst, A. E., Deboosere, P., Leinsalu, M., Lundberg, O., Martikainen, P., ... Mackenbach, J. P. (2011). More variation in lifespan in lower educated groups: Evidence from 10 European countries. International Journal of Epidemiology, 40,1703–1714.

  • Vaupel, J. W. (1986). How change in age-specific mortality affects life expectancy. Population Studies, 40,147–157.

    Article  Google Scholar 

  • Vaupel, J. W., & Canudas, Romo V. (2003). Decomposing change in life expectancy: A bouquet of formulas in honor of Nathan Keyfitz’s 90th birthday. Demography, 40,201–216.

    Article  Google Scholar 

  • Vaupel, J. W., Zhang Z., van Raalte, A. A. (2011). Life expectancy and disparity. BMJ Open, 1,e000128. doi:10.1136/bmjopen-2011-000128

    Article  Google Scholar 

  • Wagner, P. (2010). Sensitivity of life disparity with respect to changes in mortality rates. Demographic Research, 23(3), 63–72.

    Article  Google Scholar 

  • WHO (2000). The World Health Report 2000. Geneva, Switzerland: World Health Organization.

  • Willekens, F. J. (1977). Sensitivity analysis in multiregional demographic models. Environment and Planning A, 9,653–674.

    Article  Google Scholar 

  • Wilmoth, J. R., & Horiuchi, S. (1999). Rectangularization revisited: Variability of age at death within human populations. Demography, 36,475–495.

    Article  Google Scholar 

  • Wrycza, T., & Baudisch, A. (2012). How life expectancy varies with perturbations in age-specific mortality. Demographic Research, 27,(article 13), 365–375. doi:10.4054/DemRes.2012.27.13

    Article  Google Scholar 

  • Zhang, Z., & Vaupel, J. W. (2009). The age separating early deaths from late deaths. Demographic Research, 20,(article 29), 721–730. doi:10.4054/DemRes.2009.20.29

    Article  Google Scholar 

Download references

Acknowledgments

Alyson van Raalte is supported by the Max Planck Society. Hal Caswell acknowledges financial support from the U.S. National Science Foundation (DEB-0816514 and SES-1156378), the Woods Hole Oceanographic Institution, and a Research Award from the Alexander von Humboldt Foundation, as well as the hospitality of the Max Planck Institute for Demographic Research. The International Max Planck Research School of Demography provided support for a course (IMPRSD 133) in which some of these ideas were first explored. The authors thank Jim Vaupel, Johan Mackenbach, Mikko Myrskyl, and two anonymous reviewers for helpful comments. An earlier version of this article was presented at the 2012 annual meeting of the Population Association of America in San Francisco, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyson A. van Raalte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 88.2 KB)

Appendices

Appendix: Sensitivity Results and Derivations

This appendix provides details of the derivations. We begin with a summary of some basic matrix calculus techniques, and then present the derivations of the sensitivities of the indices of lifespan variation.

Matrix Calculus Preliminaries

The indices of lifespan variation in Table 3 are functions of scalars, vectors, and matrices. Matrix calculus permits differentiation of all three. The derivative of a scalar y with respect to a scalar x is the derivative \(\frac {dy}{dx}\) familiar from basic calculus. The derivative of a n × 1 vector y with respect to a scalar x is the n × 1 vector

$$ \frac{d\mathbf{y}}{dx}=\left(\begin{aligned}{c} \displaystyle \frac{dy_{1}}{dx}\\ \vdots \\ \displaystyle \frac{dy_{n}}{dx}\ \end{aligned}\right). $$
(18)

The derivative of a scalar y with respect to a m × 1 vector x is the 1 × m gradient vector

$$ \frac{dy}{d\mathbf{x}^{\top}}=\left(\frac{\partial y}{dx_{1}} \cdots \frac{\partial y}{dx_{m}}\right). $$
(19)

The derivative of an n × 1 vector y with respect to a m × 1 vector x is the n × m Jacobian matrix, whose (i, j) entry is the derivative of y i with respect to x j :

$$ \frac{d\mathbf{y}}{d\mathbf{x}^{\top}}=\left(\frac{dy_{i}}{dx_{j}}\right). $$
(20)

The derivatives of matrices are computed by transforming the matrices into column vectors using the \(\text {vec}\) operator and applying the rules for vector differentiation. Thus, the derivative of the m × n matrix Y with respect to the p × q matrix X is the mn × pq matrix

$$ \frac{d\mathbf{Y}}{d\mathbf{X}}=\frac{d\text{vec}\mathbf{Y}}{d\text{vec}^{\top}\mathbf{X}}. $$
(21)

For notational simplicity, we denote \((d\text {vec}\mathbf {X})^{\top }\) as \(d\text {vec}^{\top }\mathbf {X}\).

These definitions imply the chain rule for matrix calculus; if Y is a function of X, and X is a function of Z, then

$$ \frac{d\text{vec}\textbf{Y}}{d\text{vec}^{\top}\textbf{Z}}=\frac{d\text{vec}\textbf{Y}}{d\text{vec}^{\top}\textbf{X}}\frac{d\text{vec}\textbf{X}}{d\text{vec}^{\top}\textbf{Z}}. $$
(22)

Matrix derivatives are constructed by forming differentials, where the differential of a matrix (or vector) is the matrix (or vector) of differentials of the elements; that is,

$$ d\mathbf{X}=(dx_{ij}). $$
(23)

If, for some matrix Q, it can be shown that

$$ d\mathbf{y}=\mathbf{Q}d\mathbf{x}, $$
(24)

then according to the “first identification theorem” of Magnus and Neudecker (1985),

$$ \frac{d\mathbf{y}}{d\mathbf{x}^{\top}}=\mathbf{Q}. $$
(25)

We will frequently obtain expressions of the form shown in Eq. (25) using a theorem originated by Roth (1934): if \(\mathbf {Y}=\mathbf {ABC}\), then

$$ \text{vec}\mathbf{Y} = (\mathbf{C}^{\top} \otimes \mathbf{A})\text{vec}\mathbf{B}. $$
(26)

We will also simplify expressions involving Kronecker products using

$$ (\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{AC} \otimes \mathbf{BD} $$
(27)

whenever AC and BD are defined.

More details on matrix calculus can be found in Magnus and Neudecker (1988). A good mathematical introduction can be found in Abadir and Magnus (2005), and demographic discussions appear in Caswell (2007, 2008, 2010).

Sensitivities of the Indices of Lifespan Variation

Preliminaries

Differentiating the various indices made use of the following sensitivities. The vector of life expectancies as a function of age is given by

$$ \boldsymbol{\upeta}^{\top} = \mathbf{e}^{\top} \mathbf{N}. $$
(28)

The derivative of this vector with respect to mortality is (Caswell 2006, 2009)

$$ \frac{d\boldsymbol{\upeta}}{d\boldsymbol{\uptheta}^{\top}} = \left(\mathbf{I}\otimes\mathbf{e}^{\top}\right)\left(\mathbf{N}^{\top}\otimes\mathbf{N}\right)\frac{d\text{vec}\mathbf{U}}{d\boldsymbol{\uptheta}^{\top}}. $$
(29)

The life expectancy at birth is given by

$$ \upeta_{1} = \boldsymbol{\upeta}^{\top} \mathbf{e}_{1}, $$
(30)

and thus its derivative is

$$ \frac{d{\upeta_{1}}}{d\boldsymbol{\uptheta}^{\top}} = \left(\mathbf{e}_{1}^{\top} \otimes \mathbf{e}^{\top}\right) \frac{d\text{vec} \mathbf{N}}{d\boldsymbol{\uptheta}^{\top}} $$
(31)
$$ = \left(\mathbf{e}_{1}^{\top}\mathbf{N}^{\top} \otimes \mathbf{e}^{\top} \mathbf{N}\right) \frac{d\text{vec} \mathbf{U}}{d\boldsymbol{\uptheta}^{\top}}. $$
(32)

The distribution of age at death is given by the vector

$$ \mathbf{f} = \mathbf{MNe}_{1}. $$
(33)

Its derivative is given by (Caswell 2010),

$$ {\frac{d\mathbf{f}}{d\boldsymbol{\uptheta}^{\top}}} = {\left(\mathbf{e}_{1}^{\top}\mathbf{N}^{\top}\otimes\mathbf{I}\right)} \frac{d\text{vec}{\mathbf{M}}}{d\boldsymbol{\uptheta}^{\top}} + \left(\mathbf{e}_{1}^{\top}\mathbf{N}^{\top}\otimes\mathbf{B}\right)\frac{d\text{vec}{\mathbf{U}}}{d\boldsymbol{\uptheta}^{\top}}. $$
(34)

The derivatives of U and M depend on the structure of the life cycle; in the age-classified case under consideration here, M contains the probabilities of death q i on the diagonal, and U contains the probabilities of survival 1−q i on the subdiagonal.

Life Disparity, \(\upeta ^{\dagger }\)

The disparity can be written as

$$ \upeta^{\dagger} = \mathbf{f}^{\top} \boldsymbol{\upeta}. $$
(35)

As shown in Caswell (2010, 2011),

$$ d\upeta^{\top} = \left(d\mathbf{f}^{\top}\right)\boldsymbol{\upeta} + \mathbf{f}^{\top} \left(d\boldsymbol{\upeta}\right), $$
(36)

and thus

$$ \frac{d\upeta^{\dagger}}{d\boldsymbol{\uptheta}^{\top}} = \boldsymbol{\upeta}^{\top} \frac{d\mathbf{f}}{d\boldsymbol{\uptheta}^{\top}} + \mathbf{f}^{\top} \frac{d\boldsymbol{\upeta}}{d\boldsymbol{\uptheta}^{\top}}, $$
(37)

where \(d\mathbf {f}/ d\boldsymbol {\uptheta }^{\top }\) is given by (34) and \(d\boldsymbol {\upeta } / d \boldsymbol {\uptheta }^{\top }\) is given by (29).

Gini Coefficient

In matrix form, the Gini coefficient is given by

$$ G=1-\frac{1}{\upeta_{1}} \mathbf{e}^{\top}\left[\boldsymbol{\ell} \circ \boldsymbol{\ell} \right] , $$
(38)

where the survivorship vector is

$$ \boldsymbol{\ell} = \mathbf{e}-\mathbf{Cf} . $$
(39)

Differentiating (38), noting that \(\upeta _{1}\) is a scalar, gives

$$ d G = \frac{1}{\upeta_{1}^{2}} \mathbf{e}^{\top} \left(\boldsymbol{\ell} \circ \boldsymbol{\ell} \right) d \upeta_{1} - \frac{2}{\upeta_{1}} \mathbf{e}^{\top} \left[ \boldsymbol{\ell} \circ (d \boldsymbol{\ell}) \right] . $$
(40)

We apply the vec operator to both sides of (40) and obtain

$$ d G = \frac{1}{\upeta_{1}^{2}} \mathbf{e}^{\top} \left(\boldsymbol{\ell} \circ \boldsymbol{\ell} \right) d \upeta_{1} - \frac{2}{\upeta_{1}} \ell^{\top} d \boldsymbol{\ell} . $$
(41)

Differentiating (39) gives \(d \boldsymbol {\ell } = - \mathbf {C} d \mathbf {f}\); substituting this into (41) and using the chain rule gives

$$ \frac{dG}{d\boldsymbol{\uptheta}^{\top}} = \frac{1}{\upeta_{1}^{2}} \mathbf{e}^{\top} \left(\boldsymbol{\ell} \circ \boldsymbol{\ell} \right) \frac{d\upeta_{1}}{d\boldsymbol{\uptheta}^{\top}} + \frac{2}{\upeta_{1}} \ell^{\top} \mathbf{C} \frac{d\mathbf{f}}{d\boldsymbol{\uptheta}^{\top}}, $$
(42)

where \(d \upeta _1/ d \boldsymbol {\uptheta }^{\top }\) is given by (32)

Mean Logarithmic Deviation

The mean logarithmic deviation in matrix notation is

$$ MLD = \mathbf{f}^{\top} \left[ \mathbf{e} \log \upeta_{1} - \log \mathbf{x} \right] , $$
(43)

where the logarithm is applied elementwise. Differentiating (43) gives

$$ dMLD = \left( d \mathbf{f}^{\top} \right) \left[ \mathbf{e} \log \upeta_{1} - \log \mathbf{x} \right] + \mathbf{f}^{\top} \mathbf{e} \left( d \log \upeta_{1} \right) . $$
(44)

However, \(\mathbf {f}^{\top } \mathbf {e} =1\) because f is a probability distribution. Using this fact and also noting that \(d \log \upeta _{1} = (1/\upeta _1) d \upeta _{1}\), we obtain

$$ \frac{dMLD}{d\boldsymbol{\uptheta}^{\top}} = \left[ \mathbf{e}^{\top} \log \upeta_{1} - \log \mathbf{x}^{\top} \right] \frac{d\mathbf{f}}{d\boldsymbol{\uptheta}^{\top}} + \frac{1}{\upeta_{1}} \frac{d\upeta_{1}}{d\boldsymbol{\uptheta}^{\top}}, $$
(45)

where \(d \upeta _1/ d \boldsymbol {\uptheta }^{\top }\) is given by (32) and \(d \mathbf {f}/ d\boldsymbol {\uptheta }^{\top }\) is given by (34).

Theil’s Index

The expression for Theil’s index in matrix notation is

$$ T = \mathbf{f}^{\top} \left[ \frac{\mathbf{x}}{\upeta_{1}} \circ \log \frac{\mathbf{x}}{\upeta1} \right] , $$
(46)

where the logarithm is applied elementwise. Differentiating (46) term by term yields

$$ {}dT \,=\, {} \left( d \mathbf{f}^{\top} \right) {} \left[ \frac{\mathbf{x}}{\upeta_{1}} \circ \log \frac{\mathbf{x}}{\upeta1} \right] + \mathbf{f}^{\top} {} \left[ d {} \left( \frac{\mathbf{x}}{\upeta_{1}} \right) \circ \log \frac{\mathbf{x}}{\upeta_{1}} \right] + \mathbf{f}^{\top} {} \left[ \frac{\mathbf{x}}{\upeta_{1}} \circ d {} \left( \log \frac{\mathbf{x}}{\upeta_{1}} \right) \right] {} . $$
(47)

However,

$$ d \left( \frac{\mathbf{x}}{\upeta_{1}} \right) = -\frac{\mathbf{x}}{\upeta_{1}^{2}} d \upeta_{1} $$
(48)
$$\begin{array}{rll} d \left( \log \frac{\mathbf{x}}{\upeta_{1}} \right) &=& d \left( \log \mathbf{x} - \mathbf{e} \log \upeta_{1} \right) \\ &=& -\frac{\mathbf{e}}{\upeta_{1}} d \upeta_1 . \end{array} $$
(49)

Substituting (48) and (49) into (47), and transposing the first term, gives

$$ dT = \left( \frac{\mathbf{x}^{\top}}{\upeta_{1}} \circ \log \frac{\mathbf{x}^{\top}}{\upeta_{1}} \right) d \mathbf{f} - \mathbf{f}^{\top} \left[ \left( \frac{\mathbf{x}}{\upeta_{1}^{2}} \circ \log \frac{\mathbf{x}}{\upeta_{1}} \right)+ \left( \frac{\mathbf{x}}{\upeta_{1}} \circ \frac{\mathbf{e}}{\upeta_{1}} \right) \right] d \upeta_1 . $$
(50)

Simplifying Eq. (50) and expressing the result in terms of a parameter vector θ gives

$$ \frac{dT}{d\boldsymbol{\uptheta}^{\top}} = \left( \frac{\mathbf{x}^{\top}}{\upeta_{1}} \circ \log \frac{\mathbf{x}^{\top}}{\upeta_{1}} \right) \frac{d\mathbf{f}}{d\boldsymbol{\uptheta}^{\top}} - \left( \frac{T}{\upeta_{1}} + \frac{\mathbf{f}^{\top} \mathbf{x}}{\upeta_{1}^{2}} \right) \frac{d\upeta_{1}}{d\boldsymbol{\uptheta}^{\top}}, $$
(51)

where \(d \upeta _1/ d \boldsymbol {\uptheta }^{\top }\) is given by (32) and \(d \mathbf {f}/ d\boldsymbol {\uptheta }^{\top }\) is given by (34).

The Variance and Standard Deviation of Longevity

The variance in longevity, conditional on survival to age class i, is given by the vector v, which satisfies

$$ \mathbf{v}^{\top} = \mathbf{e}^{\top} \mathbf{N} \left( 2 \mathbf{N} - \mathbf{I} \right) - \boldsymbol{\upeta}^{\top} \circ \boldsymbol{\upeta}^{\top} . $$
(52)

Caswell (2006, 2009, 2010) shows that

$$ \frac{d\mathbf{v}}{d\boldsymbol{\uptheta}^{\top}} = \left[2 \left( \mathbf{N}^{\top} \otimes \mathbf{e}^{\top} \right) + 2 \left( \mathbf{I} \otimes \mathbf{e}^{\top} \mathbf{N} \right) - \left( \mathbf{I} \otimes \mathbf{e}^{\top} \right) \right] \frac{d\text{vec}\mathbf{N}}{d\boldsymbol{\uptheta}^{\top}} - 2\text{diag}(\boldsymbol{\upeta} ) \frac{d\boldsymbol{\upeta}}{d\boldsymbol{\uptheta}^{\top}}, $$
(53)

where \(d \boldsymbol {\upeta } / d \boldsymbol {\uptheta }^{\top }\) is given by (29) and

$$ \frac{d\text{vec} \mathbf{N}}{d\boldsymbol{\uptheta}^{\top}} = \left( \mathbf{N}^{\top} \otimes \mathbf{N} \right) \frac{d\text{vec} \mathbf{U}}{d\boldsymbol{\uptheta}^{\top}}. $$
(54)

The standard deviation of longevity is given by the vector

$$ \mathbf{s} = \sqrt{\mathbf{v}}, $$
(55)

where the square root is taken elementwise and its sensitivity, as derived in Caswell (2010), is

$$ \frac{d\mathbf{s}}{d\boldsymbol{\uptheta}^{\top}} = \frac{1}{2}\text{diag}\left(\mathbf{s}\right)^{-1}\frac{d\mathbf{v}}{d\boldsymbol{\uptheta}^{\top}}. $$
(56)

The Interquartile Range

The interquartile range is defined implicitly in terms of the distribution of ages at death. Let \(f\left ( x \right )\)be a probability density function and \(F\!\!\left(x\right)=\displaystyle\int_{-\infty }^{x}f\!\!\left(s\right)ds\) be the cumulative distribution. The qth quantile is the value \(\hat {x}\) satisfying

$$ F\left(\hat{x}\right)=q. $$
(57)

Let \(F\left (\hat {x}_{1}\right )=q_{1}\) and \(F\left (\hat {x}_{2}\right )=q_{2}\), assuming that q 2 > q 1. The interquantile range is

$$ R\left ( q_{1},q_{2} \right )=\hat{x_{2}}-\hat{x_{1}}. $$
(58)

The special case of the interquartile range refers to R(0.25,0.75).

Now we choose a set of probabilities of interest

$$ \textbf{q} =\left(\begin{aligned}{c} q_{1}\\ \vdots \\ q_{h} \end{aligned}\right), $$
(59)

and let \(\hat {\mathbf {x}}\) be the vector of quantiles that satisfy

$$ F\left [ \boldsymbol{\uptheta},\hat{\mathbf{x}}\left (\boldsymbol{\uptheta}\right ) \right ]=\mathbf{q}, $$
(60)

where the distribution \(f\left ( \cdot \right )\) depends on a parameter vector θ of dimension p × 1.

Next we differentiate Eq. (60) as follows:

$$ \frac{\partial F}{\partial \boldsymbol{\uptheta}^{\top}}d \boldsymbol{\uptheta}+\frac{\partial F}{\partial \hat{\mathbf{x}}^{\top}}d\hat{\mathbf{x}}=0, $$
(61)

and solve for \(d\hat {\mathbf {x}}\), to obtain

$$ d\hat{\mathbf{x}}=-\left (\frac{\partial F}{\partial \hat{\mathbf{x}}^{\top}} \right )^{-1}\left (\frac{\partial F}{\partial \boldsymbol{\uptheta}^{\top}} \right )d \boldsymbol{\uptheta}. $$
(62)

The first identification theorem implies that

$$ \frac{d\hat{\mathbf{x}}}{d\boldsymbol{\uptheta}^{\top}}=-\left (\frac{\partial F}{\partial \hat{\mathbf{x}}^{\top}} \right)^{-1}\left ( \frac{\partial F}{\partial \boldsymbol{\uptheta}^{\top}} \right) . $$
(63)

The first term on the right side of of Eq. (63) is

$$ \left(\frac{\partial F}{\partial \hat{\mathbf{x}}^{\top}} \right)^{-1}=\left( \begin{aligned} \frac{1}{f\left(\hat{x}_{1}\right)} && 0\\ & \ddots & \\ 0 & & \frac{1}{f\left(\hat{x}_{h}\right)} \end{aligned}\right), $$
(64)

while the second term is

$$ \left (\frac{\partial F}{\partial \uptheta^{\top}} \right )=\left( \begin{aligned} \frac{\partial F\left(\hat{x}_{1}\right)}{\partial \uptheta_{1}} & \cdots & \frac{\partial F\left(\hat{x}_{1}\right)}{\partial \uptheta_{p}}\\ \vdots & & \vdots \\ \frac{\partial F\left(\hat{x}_{h}\right)}{\partial \uptheta_{1}} & \cdots & \frac{\partial F\left(\hat{x}_{h}\right)}{\partial \uptheta_{p}} \end{aligned}\right). $$
(65)

The product of Eqs. (64) and (65), following Eq. (63), gives

$$ \left (\frac{d\hat{x}}{d\uptheta^{\top}} \right )=-\left( \begin{aligned}f \frac{1}{f\left(\hat{x}_{1}\right)}\frac{\partial F\left(\hat{x}_{1}\right)}{\partial \uptheta_{1}} & \cdots & \frac{1}{f\left(\hat{x}_{1}\right)}\frac{\partial F\left(\hat{x}_{1}\right)}{\partial \uptheta_{p}}\\ \vdots & & \vdots \\ \frac{1}{f\left(\hat{x}_{h}\right)}\frac{\partial F\left(\hat{x}_{h}\right)}{\partial \uptheta_{1}} & \cdots & \frac{1}{f\left(\hat{x}_{h}\right)}\frac{\partial F\left(\hat{x}_{h}\right)}{\partial \uptheta_{p}} \end{aligned}\right). $$
(66)

The sensitivity of the interquantile range is the difference between row j and row i of (66):

$$ \frac{dR_{\left(i,j\right)}}{d\boldsymbol{\uptheta}^{\top}}= \frac{d\hat{x}_{j}}{d\boldsymbol{\uptheta}^{\top}}-\frac{d\hat{x}_{i}}{d\boldsymbol{\uptheta}^{\top}}. $$
(67)

When \(\mathbf {f}(x)\)is a discrete distribution, the quantiles will have to be interpolated. This is what we did to find the sensitivity of the IQR with quartiles \(\hat {x}_{3}\) and \(\hat {x}_{1}\).

Appendix Figures Depicting the Sensitivity and Elasticity of Indices Calculated From Age 10

Fig. 6
figure 6

The sensitivity of each index conditional on survival to age 10 with respect to mortality change at different ages. The sensitivities were standardized to the value of each index, i.e. \(y_{10}\frac {dy}{d\uptheta }\), to make them comparable. Note the difference in scale between the top and bottom panels, plotted separately to more clearly delineate behavior of the indices at early and later ages. French males, period life table data from the Human Mortality Database

Fig. 7
figure 7

The proportional change in the index calculated conditional upon survival to age 10 from a 1 % change in mortality at each age on the x-axis. French males, period life table data from the Human Mortality Database

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Raalte, A.A., Caswell, H. Perturbation Analysis of Indices of Lifespan Variability. Demography 50, 1615–1640 (2013). https://doi.org/10.1007/s13524-013-0223-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13524-013-0223-3

Keywords

Navigation