Demography

, Volume 50, Issue 4, pp 1341–1362 | Cite as

Including the Smoking Epidemic in Internationally Coherent Mortality Projections

  • Fanny Janssen
  • Leo J. G. van Wissen
  • Anton E. Kunst
Article

Abstract

We present a new mortality projection methodology that distinguishes smoking- and non-smoking-related mortality and takes into account mortality trends of the opposite sex and in other countries. We evaluate to what extent future projections of life expectancy at birth (e0) for the Netherlands up to 2040 are affected by the application of these components. All-cause mortality and non-smoking-related mortality for the years 1970–2006 are projected by the Lee-Carter and Li-Lee methodologies. Smoking-related mortality is projected according to assumptions on future smoking-attributable mortality. Projecting all-cause mortality in the Netherlands, using the Lee-Carter model, leads to high gains in e0 (4.1 for males; 4.4 for females) and divergence between the sexes. Coherent projections, which include the mortality experience of the other 21 sex- and country-specific populations, result in much higher gains for males (6.4) and females (5.7), and convergence. The separate projection of smoking and non-smoking-related mortality produces a steady increase in e0 for males (4.8) and a nonlinear trend for females, with lower gains in e0 in the short run, resulting in temporary sex convergence. The latter effect is also found in coherent projections. Our methodology provides more robust projections, especially thanks to the distinction between smoking- and non-smoking-related mortality.

Keywords

Life expectancy Projection Smoking Europe Li-Lee methodology 

References

  1. Alders, M., Keilman, N., & Cruijsen, H. (2007). Assumptions for long-term stochastic population forecasts in 18 European countries. European Journal of Population, 23, 33–69.CrossRefGoogle Scholar
  2. Alho, J. (2008). Aggregation across countries in stochastic population forecasts. International Journal of Forecasting, 24, 343–353.CrossRefGoogle Scholar
  3. Alho, J., Alders, M., Cruijsen, H., Keilman, N., Nikander, T., & Pham, D. Q. (2006). New forecast: Population decline postponed in Europe. Statistical Journal of the United Nations ECE, 23, 1–10.Google Scholar
  4. Bongaarts, J. (2005). Long-range trends in adult mortality: Models and projection methods. Demography, 42, 23–49.CrossRefGoogle Scholar
  5. Bongaarts, J. (2006). How long will we live? (Policy Research Division Working Papers 215). New York: Population Council.Google Scholar
  6. Bonneux, L., Looman, C. W. N., & Coebergh, J. W. (2003). Sterfte door roken in Nederland: Meer dan een miljoen doden tussen 1950 en 2015 [Mortality due to smoking in the Netherlands: 1.2 million tobacco-related deaths between 1950 and 2015]. Nederlands Tijdschrift voor Geneeskunde, 147, 917–921.Google Scholar
  7. Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of Forecasting, 22, 547–581.CrossRefGoogle Scholar
  8. Booth, H., Hyndman, R., Tickle, L., & de Jong, P. (2006). Lee-Carter mortality forecasting: A multi-country comparison of variants and extensions. Demographic Research, 15(9), 289–310. doi:10.4054/DemRes.2006.15.9 CrossRefGoogle Scholar
  9. Booth, H., Maindonald, J., & Smith, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies, 56, 325–336.CrossRefGoogle Scholar
  10. Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., & Khalaf-Allah, M. (2011). Mortality density forecasts: An analysis of six stochastic mortality models. Insurance: Mathematics and Economics, 48, 355–367.CrossRefGoogle Scholar
  11. Coelho, E., & Nunes, L. C. (2011). Forecasting mortality in the event of a structural change. Journal of the Royal Statistical Society—Series A, 174, 713–736.CrossRefGoogle Scholar
  12. Doll, R., Peto, R., Wheatley, K., Gray, R., & Sutherland, I. (1994). Mortality in relation to smoking: 40 years’ observations on male British doctors. British Medical Journal, 309, 901–911.CrossRefGoogle Scholar
  13. Ediev, D. M. (2008). Extrapolative projections of mortality: Towards a more consistent method. Part I: The central scenario (Vienna Institute of Demography Working Papers 3/2008). Vienna, Austria: Vienna Institute of Demography.Google Scholar
  14. Eurostat. (2010). EUROPOP2008 convergence scenario, national level—assumptions—life expectancy at birth. Retrieved from http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/database
  15. Ezzati, M., & Lopez, A. D. (2003). Measuring the accumulated hazards of smoking: Global and regional estimates for 2000. Tobacco Control, 12, 79–85.CrossRefGoogle Scholar
  16. Giannakouris, K. (2004). EUROPOP 2004: Methodology for drafting mortality assumptions (Working paper for the Ageing Working Group of the Economic Policy Committee). Luxembourg: European Commission.Google Scholar
  17. Gjonca, A., Tomassini, C., Toson, B., & Smallwood, S. (2005). Sex differences in mortality, a comparison of the United Kingdom and other developed countries. Health Statistics Quarterly, 26, 6–16.Google Scholar
  18. Gjonca, A., Tomassini, C., & Vaupel, J. W. (1999). Male-female differences in mortality in the developed world (MPIDR Working Paper WP-1999-009). Rostock, Germany: Max Planck Institute for Demographic Research.Google Scholar
  19. Goméz de Leon, J., & Texmon, I. (1992). Methods of mortality projections and forecasts. In N. Keilman & H. Cruijsen (Eds.), National population forecasting in industrialized countries (pp. 61–74). Amsterdam, The Netherlands: Swets and Zeitlinger.Google Scholar
  20. Gunning-Schepers, L. J. (1988). The health benefits of prevention. A simulation approach. Rotterdam, The Netherlands: Erasmus University Rotterdam.Google Scholar
  21. Janssen, F., & Kunst, A. E. (2005). Cohort patterns in mortality trends among the elderly in seven European countries, 1950–99. International Journal of Epidemiology, 34, 1149–1159.CrossRefGoogle Scholar
  22. Janssen, F., & Kunst, A. E. (2007). The choice among past trends as a basis for the prediction of future trends in old-age mortality. Population Studies, 61, 315–326.CrossRefGoogle Scholar
  23. Janssen, F., Kunst, A. E., & Mackenbach, J. P. (2007). Variations in the pace of old-age mortality decline among seven European countries, over the period 1950 to 1999: The role of smoking and factors earlier in life. European Journal of Population, 23, 171–188.CrossRefGoogle Scholar
  24. Janssen, F., Mackenbach, J. P., & Kunst, A. E. (2004). Trends in old-age mortality in seven European countries, 1950–1999. Journal of Clinical Epidemiology, 57, 203–216.CrossRefGoogle Scholar
  25. Janssen, F., Nusselder, W. J., Looman, C. W. N., Mackenbach, J. P., & Kunst, A. E. (2003). Stagnation in mortality decline among elders in The Netherlands. The Gerontologist, 43, 722–734.CrossRefGoogle Scholar
  26. Lee, R. D., & Carter, L. (1992). Modeling and forecasting U.S. mortality. Journal of the American Statistical Association, 87, 659–671.Google Scholar
  27. Lee, R., & Miller, T. (2001). Evaluating the performance of Lee-Carter mortality forecasts. Demography, 38, 537–549.CrossRefGoogle Scholar
  28. Lee, R. D., & Nault, F. (1993). Modeling and forecasting provincial mortality in Canada. Paper presented at the World Congress of the IUSSP, Montreal, Canada.Google Scholar
  29. Li, N., & Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography, 42, 575–594.CrossRefGoogle Scholar
  30. Lopez, A. D., Collishaw, N. E., & Piha, T. (1994). A descriptive model of the cigarette epidemic in developed countries. Tobacco Control, 3, 242–247.CrossRefGoogle Scholar
  31. Lundström, H. (2003). Mortality assumptions for Sweden. The 2000–2050 population projection. In T. Bengtsson & N. Keilman (Eds.), Perspectives on mortality forecasting I. Current practice (pp. 59–74). Stockholm: Swedish National Social Insurance Board.Google Scholar
  32. Meslé, F. (2004). Espérance de vie: Un avantage féminin menacé? [Life expectancy: A female advantage under threat]. Population & Sociétés, 402.Google Scholar
  33. Murphy, M. J. (1990). Methods of forecasting mortality for population projections. In British Society for Population Studies (Ed.), Population projections: Trends, methods and uses (pp. 87–101). London, UK: Office of Population Censuses and Surveys.Google Scholar
  34. Olshansky, S. J. (1988). On forecasting mortality. The Milbank Quarterly, 66, 482–530.CrossRefGoogle Scholar
  35. Pampel, F. C. (2001). Cigarette diffusion and sex differences in smoking. Journal of Health and Social Behaviour, 42, 388–404.CrossRefGoogle Scholar
  36. Pampel, F. C. (2002). Cigarette use and the narrowing sex differential in smoking. Population and Development Review, 28, 77–104.CrossRefGoogle Scholar
  37. Pampel, F. C. (2003). Declining sex differences in mortality from lung cancer in high-income nations. Demography, 40, 45–65.CrossRefGoogle Scholar
  38. Pampel, F. C. (2005). Forecasting sex differences in mortality in high income nations: The contribution of smoking. Demographic Research, 13(18), 455–484. doi:10.4054/DemRes.2005.13.18 CrossRefGoogle Scholar
  39. Peto, R., Lopez, A. D., Boreham, J., Thun, M., & Heath, C., Jr. (1992). Mortality from tobacco in developed countries: Indirect estimation from national vital statistics. Lancet, 339, 1268–1278.CrossRefGoogle Scholar
  40. Pollard, J. (1987). Projection of age-specific mortality rates. Population Bulletin United Nations, 21(22), 55–69.Google Scholar
  41. Preston, S., & Wang, H. (2006). Sex mortality differences in the United States: The role of cohort smoking patterns. Demography, 43, 631–646.CrossRefGoogle Scholar
  42. Preston, S. H., Glei, D. A., & Wilmoth, J. R. (2010). A new method for estimating smoking-attributable mortality in high-income countries. International Journal of Epidemiology, 39, 430–438.CrossRefGoogle Scholar
  43. Renshaw, A. E., & Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 58, 556–570.CrossRefGoogle Scholar
  44. Rostron, B. L. (2010). A modified new method for estimating smoking-attributable mortality in high-income countries. Demographic Research, 23(14), 399–420. doi:10.4054/DemRes.2010.23.14 CrossRefGoogle Scholar
  45. Rostron, B. L., & Wilmoth, J. R. (2011). Estimating the effect of smoking on slowdowns in mortality declines in developed countries. Demography, 48, 461–479.CrossRefGoogle Scholar
  46. Shang, H. L., Booth, H., & Hyndman, R. (2011). Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods. Demographic Research, 25(5), 173–214. doi:10.4054/DemRes.2011.25.5 CrossRefGoogle Scholar
  47. Sprague, W. W. (2009). LCFIT: Web-based software for estimating the Lee-Carter method for modeling and forecasting mortality, with extensions to coherent forecasts of Li and Lee, and Lee-Carter method with sparse and incomplete data. Retrieved from http://lcfit.demog.berkeley.edu
  48. Statistics Canada. (2010). Population projections for Canada: Provinces and territories 2005–2031. Section I: Methods and assumptions. Retrieved from http://www.statcan.gc.ca/pub/91-520-x/00105/4095124-eng.htm
  49. Trovato, F., & Lalu, N. M. (1996). Narrowing sex differentials in life expectancy in the industrialized world: Early 1970’s to early 1990’s. Social Biology, 43, 20–37.Google Scholar
  50. United Nations Department of Economic and Social Affairs Population Division. (2004). World population to 2300. New York: United Nations.Google Scholar
  51. United Nations Population Division. (2007). World population prospects: The 2006 revision. New York: United Nations.Google Scholar
  52. van Bodegom, D., Bonneux, L., Engelaer, F. M., Lindenberg, J., Meij, J. J., & Westendorp, R. G. J. (2010). Dutch life expectancy from an international perspective. Leiden, The Netherlands: Leyden Academy on Vitality and Ageing.Google Scholar
  53. van der Meulen, A., van Duin, C., & Garssen, J. (2009). Bevolkingsprognose 2008–2050: Model en veronderstellingen betreffende de sterfte [Population forecast 2008–2050: The method and assumptions regarding mortality]. Bevolkingstrends, 2009(1), 41–53.Google Scholar
  54. van Duin, C., van der Meulen, A., & Garssen, J. (2006). Bevolkingsprognose 2006–2050: Model en veronderstellingen betreffende de sterfte [Population forecast 2006–2050: The method and assumptions regarding mortality]. Bevolkingstrends, 2006(4), 62–77.Google Scholar
  55. van Oers, J. A. M. (2002). Health on course? The 2002 Dutch public health status and forecasts report [in Dutch]. Bilthoven, The Netherlands: RIVM Bohn Stafleu Van Loghum.Google Scholar
  56. van Poppel, F., & de Beer, J. (1996). Evaluation of standard mortality projections for the elderly. In G. Caselli & A. D. Lopez (Eds.), Health and mortality among elderly populations (pp. 288–312). Oxford, UK: Clarendon Press.Google Scholar
  57. Waldron, I. (1993). Recent trends in sex mortality ratios for adults in developed countries. Social Science & Medicine, 36, 451–462.CrossRefGoogle Scholar
  58. Wang, H., & Preston, S. H. (2009). Forecasting United States mortality using cohort smoking histories. Proceedings of the National Academy of Sciences, 106, 393–398.CrossRefGoogle Scholar
  59. Wilmoth, J. R. (2000). Demography of longevity: Past, present, and future trends. Experimental Gerontology, 35, 1111–1129.CrossRefGoogle Scholar
  60. Wilson, T., & Bell, M. (2007). Probabilistic regional population forecasts: The example of Queensland, Australia. Geographic Analysis, 39, 1–25.CrossRefGoogle Scholar

Copyright information

© Population Association of America 2013

Authors and Affiliations

  • Fanny Janssen
    • 1
    • 2
  • Leo J. G. van Wissen
    • 1
    • 3
  • Anton E. Kunst
    • 4
  1. 1.Population Research Centre, Faculty of Spatial SciencesUniversity of GroningenGroningenThe Netherlands
  2. 2.Unit PharmacoEpidemiology & PharmacoEconomics (PE2), Department of PharmacyUniversity of GroningenGroningenThe Netherlands
  3. 3.Netherlands Interdisciplinary Demographic InstituteThe HagueThe Netherlands
  4. 4.Department of Social Medicine, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations