, Volume 50, Issue 3, pp 1105–1128 | Cite as

New Approaches to Human Mobility: Using Mobile Phones for Demographic Research

  • John R. B. PalmerEmail author
  • Thomas J. Espenshade
  • Frederic Bartumeus
  • Chang Y. Chung
  • Necati Ercan Ozgencil
  • Kathleen Li


This article explores new methods for gathering and analyzing spatially rich demographic data using mobile phones. It describes a pilot study (the Human Mobility Project) in which volunteers around the world were successfully recruited to share GPS and cellular tower information on their trajectories and respond to dynamic, location-based surveys using an open-source Android application. The pilot study illustrates the great potential of mobile phone methodology for moving spatial measures beyond residential census units and investigating a range of important social phenomena, including the heterogeneity of activity spaces, the dynamic nature of spatial segregation, and the contextual dependence of subjective well-being.


Spatial demography Activity space Segregation Subjective well-being Ecological momentary assessment 



The authors thank Hazer Inaltekin, Spencer Lucian, and David Potere for their contributions to this project during its initial phases, and Matthew Salganik for his invaluable guidance and contributions throughout. The work was funded by a grant from the Center for Information Technology Policy at Princeton University. Institutional support was provided by National Institutes of Health Training Grant T32HD07163 and Infrastructure Grant R24HD047879.


  1. Adey, P. (2010). Mobility. London, UK: Routledge.Google Scholar
  2. Ahas, R. (2011). Mobile positioning. In M. Büscher, J. Urry, & K. Witchger (Eds.), Mobile methods (pp. 183–199). London, UK: Routledge.Google Scholar
  3. Ahas, R., & Mark, Ü. (2005). Location based services—New challenges for planning and public administration? Futures, 37, 547–561.CrossRefGoogle Scholar
  4. Anderson, E., & Massey, D. S. (2001). Problem of the century: Racial stratification in the United States. New York: Russell Sage Foundation.Google Scholar
  5. Anokwa, Y., Hartung, C., Brunette, W., Borriello, G., & Lerer, A. (2009). Open source data collection in the developing world. Computer, 42(10), 97–99.CrossRefGoogle Scholar
  6. Armstrong, M. P., Rushton, G., & Zimmerman, D. L. (1999). Geographically masking health data to preserve confidentiality. Statistics in Medicine, 18, 497–525.CrossRefGoogle Scholar
  7. Arnold, S. E. (2010). Google and its strategy of “meh.” KM World, 19, 6–24.Google Scholar
  8. Asakura, Y., & Hato, E. (2001). Behavioral monitoring of public transport users through a mobile communication system. Journal of Advanced Transportation, 35, 289–304.CrossRefGoogle Scholar
  9. Asakura, Y., & Hato, E. (2004). Tracking survey for individual travel behaviour using mobile communication instruments. Transportation Research Part C: Emerging Technologies, 12, 273–291.CrossRefGoogle Scholar
  10. Barraquand, F., & Benhamou, S. (2008). Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movement bouts. Ecology, 89, 3336–3348.CrossRefGoogle Scholar
  11. Bartumeus, F., Giuggioli, L., Louzao, M., Bretagnolle, V., Oro, D., & Levin, S. A. (2010). Fishery discards impact on seabird movement patterns at regional scales. Current Biology, 20, 215–222.CrossRefGoogle Scholar
  12. Basta, L. A., Richmond, T. S., & Wiebe, D. J. (2010). Neighborhoods, daily activities, and measuring health risks experienced in urban environments. Social Science & Medicine, 71, 1943–1950.CrossRefGoogle Scholar
  13. Bertolini, L., & Dijst, M. (2003). Mobility environments and network cities. Journal of Urban Design, 8, 27–43.CrossRefGoogle Scholar
  14. Blumenstock, J., Gillick, D., & Eagle, N. (2010). Who’s calling? Demographics of mobile phone use in Rwanda. AAAI Symposium on Artificial Intelligence and Development, 18, 116–117.Google Scholar
  15. Borrell, B. (2011). Every bite you take. Nature, 470, 320–322.CrossRefGoogle Scholar
  16. Buliung, R. N., & Kanaroglou, P. S. (2006). Urban form and household activity-travel behavior. Growth and Change, 172–199.Google Scholar
  17. Büscher, M., & Urry, J. (2009). Mobile methods and the empirical. European Journal of Social Theory, 12, 99–116.CrossRefGoogle Scholar
  18. Büscher, M., Urry, J., & Witchger, K. (2011). Introduction. In M. Büscher, J. Urry, & K. Witchger (Eds.), Mobile methods (pp. 1–19). London, UK: Routledge.Google Scholar
  19. Calabrese, F., Colonna, M., Lovisolo, P. P. D., & Ratti, C. (2007). Real-time urban monitoring using cell phones: A case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12, 141–151.CrossRefGoogle Scholar
  20. Calabrese, F., Pereira, F., Di Lorenzo, G., Liu, L., & Ratti, C. (2010). The geography of taste: Analyzing cell-phone mobility and social events. In P. Floréen, A. Krüger, & M. Spasojevic (Eds.), Pervasive computing (pp. 22–37). Berlin, Germany: Springer.CrossRefGoogle Scholar
  21. Carioua, C., Ziemlickib, C., & Smoredab, Z. (2010). Paris by night. NetMob, 2010, 62–66.Google Scholar
  22. Cassels, S., Curran, S. R., & Kramer, R. (2005). Do migrants degrade coastal environments? Migration, natural resource extraction and poverty in North Sulawesi, Indonesia. Human Ecology, 33, 329–363.CrossRefGoogle Scholar
  23. Chaix, B., Merlo, J., Evans, D., Leal, C., & Havard, S. (2009). Neighbourhoods in eco-epidemiologic research: Delimiting personal exposure areas. A response to Riva, Gauvin, Apparicio and Brodeur. Social Science & Medicine, 69, 1306–1310.CrossRefGoogle Scholar
  24. Chang, G., Tan, C., Li, G., & Zhu, C. (2010). Developing mobile applications on the Android platform. In X. Jiang, M. Ma, & C. Chen (Eds.), Mobile multimedia processing (pp. 264–286). Berlin, Germany: Springer.CrossRefGoogle Scholar
  25. Csikszentmihalyi, M., & Hunter, J. (2003). Happiness in everyday life: The uses of experience sampling. Journal of Happiness Studies, 4, 185–199.CrossRefGoogle Scholar
  26. Cummins, S., Curtis, S., Diez-Roux, A. V., & Macintyre, S. (2007). Understanding and representing “place” in health research: A relational approach. Social Science & Medicine, 65, 1825–1838.CrossRefGoogle Scholar
  27. D’Andrea, A., Ciolfi, L., & Gray, B. (2011). Methodological challenges and innovations in mobilities research. Mobilities, 6, 149–160.CrossRefGoogle Scholar
  28. de Castro, M. C., Monte-Mór, R. L., Sawyer, D. O., & Singer, B. H. (2006). Malaria risk on the Amazon frontier. Proceedings of the National Academy of Sciences of the United States of America, 103, 2452–2457.CrossRefGoogle Scholar
  29. Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. L. (1999). Subjective well-being: Three decades of progress. Psychological Bulletin, 125, 276–302.CrossRefGoogle Scholar
  30. Du Bois, W. E. B. (1899). The Philadelphia Negro: A social study. Philadelphia: University of Pennsylvania.Google Scholar
  31. Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10, 255–268.CrossRefGoogle Scholar
  32. Eagle, N., & Pentland, A. (2009). Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology, 63, 1057–1066.CrossRefGoogle Scholar
  33. Eagle, N., Pentland, A., & Lazer, D. (2009a). Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106, 15274–15278.CrossRefGoogle Scholar
  34. Eagle, N., Quinn, J., & Clauset, A. (2009b). Methodologies for continuous cellular tower data analysis. In H. Tokuda, M. Beigl, A. Friday, A. Brush, & Y. Tobe (Eds.), Pervasive computing (pp. 342–353). Berlin, Germany: Springer.CrossRefGoogle Scholar
  35. Ellis, M., Wright, R., & Parks, V. (2004). Work together, live apart? Geographies of racial and ethnic segregation at home and at work. Annals of the Association of American Geographers, 94, 620–637.CrossRefGoogle Scholar
  36. Entwisle, B. (2007). Putting people into place. Demography, 44, 687–703.CrossRefGoogle Scholar
  37. Foley, D. L. (1950). The use of local facilities in a metropolis. The American Journal of Sociology, 56, 238–246.CrossRefGoogle Scholar
  38. Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. New York: Cambridge University Press.Google Scholar
  39. Golledge, R. G., & Stimson, R. J. (1997). Spatial behavior: A geographic perspective. New York: The Guilford Press.Google Scholar
  40. Golob, T. T., & Meurs, H. (1986). Biases in response over time in a seven-day travel diary. Transportation, 13, 163–181.CrossRefGoogle Scholar
  41. Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453, 779–782.CrossRefGoogle Scholar
  42. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69, 211–221.CrossRefGoogle Scholar
  43. Goodchild, M. F., & Janelle, D. G. (1984). The city around the clock: Space-time patterns of urban ecological structure. Environment and Planning A, 16, 807–820.CrossRefGoogle Scholar
  44. Gutmann, M. P., Witkowski, K., Colyer, C., O’Rourke, J. M., & McNally, J. (2008). Providing spatial data for secondary analysis: Issues and current practices relating to confidentiality. Population Research and Policy Review, 27, 639–665.CrossRefGoogle Scholar
  45. Hägerstrand, T. (1970). What about people in regional science? Papers in Regional Science, 24, 6–21.CrossRefGoogle Scholar
  46. Helliwell, J. F. (2003). How’s life? Combining individual and national variables to explain subjective well-being. Economic Modelling, 20, 331–360.CrossRefGoogle Scholar
  47. Inagami, S., Cohen, D. A., & Finch, B. K. (2007). Non-residential neighborhood exposures suppress neighborhood effects on self-rated health. Social Science & Medicine, 65, 1779–1791.CrossRefGoogle Scholar
  48. Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Rowland, J., & Varshavsky, A. (2010). A tale of two cities. In Proceedings of the Eleventh Workshop on Mobile Computing Systems and Applications (pp. 19–24). Annapolis, MD: ACM.CrossRefGoogle Scholar
  49. Janelle, D. G., Klinkenberg, B., & Goodchild, M. F. (1998). The temporal ordering of urban space and daily activity patterns for population role groups. Geographical Systems, 5, 117–137.Google Scholar
  50. Jones, M., & Pebley, A. (2012, May). Redefining neighborhoods using common destinations: Social characteristics of activity spaces and home census tracts compared. Presented at the annual meeting of the Population Association of America, San Francisco. Retrieved from
  51. Kahneman, D., & Krueger, A. B. (2006). Developments in the measurement of subjective well-being. Journal of Economic Perspectives, 20, 3–24.CrossRefGoogle Scholar
  52. Kain, J. F. (1968). Housing segregation, Negro employment, and metropolitan decentralization. Quarterly Journal of Economics, 82, 175–197.CrossRefGoogle Scholar
  53. Killingsworth, M. A., & Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330, 932.CrossRefGoogle Scholar
  54. Kwan, M.-P. (1999). Gender, the home-work link, and space-time patterns of nonemployment activities. Economic Geography, 75, 370–394.CrossRefGoogle Scholar
  55. Kwan, M.-P. (2008). From oral histories to visual narratives: Re-presenting the post-September 11 experiences of the Muslim women in the USA. Social and Cultural Geography, 9, 653–669.CrossRefGoogle Scholar
  56. Kwan, M.-P. (2009). From place-based to people-based exposure measures. Social Science & Medicine, 69, 1311–1313.CrossRefGoogle Scholar
  57. Kwan, M.-P., & Lee, J. (2004). Geovisualization of human activity patterns using 3D GIS: A time-geographic approach. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science: Examples in best practice (pp. 48–66). New York: Oxford University Press.Google Scholar
  58. Laube, P., Dennis, T., Forer, P., & Walker, M. (2007). Movement beyond the snapshot: Dynamic analysis of geospatial lifelines. Computers, Environment and Urban Systems, 31, 481–501.CrossRefGoogle Scholar
  59. Laube, P., Imfeld, S., & Weibel, R. (2005). Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science, 19, 639–668.CrossRefGoogle Scholar
  60. Law, J., & Urry, J. (2004). Enacting the social. Economy and Society, 33, 390–410.CrossRefGoogle Scholar
  61. Lee, J. Y., & Kwan, M.-P. (2011). Visualisation of socio-spatial isolation based on human activity patterns and social networks in space-time. Tijdschrift voor economische en sociale geografie [Journal of Economic and Social Geography], 102, 468–485.Google Scholar
  62. Lee, B. A., Reardon, S. F., Firebaugh, G., Farrell, C. R., Matthews, S. A., & O’Sullivan, D. (2008). Beyond the census tract: Patterns and determinants of racial segregation at multiple geographic scales. American Sociological Review, 73, 766–791.CrossRefGoogle Scholar
  63. Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique, and future directions. Statistics in Medicine, 28, 3049–3067.CrossRefGoogle Scholar
  64. MacKerron, G. (2012). Happiness economics from 35,000 feet. Journal of Economic Surveys, 26, 705–735. doi: 10.1111/j.1467-6419.2010.00672.x CrossRefGoogle Scholar
  65. Madan, A., Cebrian, M., Lazer, D., & Pentland, A. (2010). Social sensing for epidemiological behavior change. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing (pp. 291–300). New York: ACM.CrossRefGoogle Scholar
  66. Martens, P., & Hall, L. (2000). Malaria on the move: Human population movement and malaria transmission. Emerging Infectious Diseases, 6, 103–109.CrossRefGoogle Scholar
  67. Massey, D. S., & Denton, N. A. (1988). The dimensions of residential segregation. Social Forces, 67, 281–315.Google Scholar
  68. Massey, D. S. & Denton, N. A. (1993). American apartheid: Segregation and the making of the underclass. Cambridge, MA: Harvard University Press.Google Scholar
  69. Matthews, S. A. (2008). The salience of neighborhood: Some lessons from sociology. American Journal of Preventive Medicine, 34(3), 257–259.CrossRefGoogle Scholar
  70. Matthews, S. A. (2011). Spatial polygamy and the heterogeneity of place: Studying people and place via egocentric methods. In L. M. Burton, S. P. Kemp, M. Leung, S. A. Matthews, & D. T. Takeuchi (Eds.), Communities, neighborhoods, and health: Expanding the boundaries of place (pp. 35–55). New York: Springer.CrossRefGoogle Scholar
  71. Murakami, E., & Wagner, D. P. (1999). Can using global positioning system (GPS) improve trip reporting? Transportation Research Part C: Emerging Technologies, 7, 149–165.CrossRefGoogle Scholar
  72. Nusser, S. M., Intille, S. S., & Maitra, R. (2006). Emerging technologies and next-generation intensive longitudinal data collection. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 254–277). New York: Oxford University Press.CrossRefGoogle Scholar
  73. Ōkubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: Modern perspectives. New York: Springer.Google Scholar
  74. Park, R. E., & Burgess, E. W. (1925). The city. Chicago, IL: University of Chicago Press.Google Scholar
  75. Pentland, A. (2007). Automatic mapping and modeling of human networks. Physica A: Statistical Mechanics and its Applications, 378, 59–67.CrossRefGoogle Scholar
  76. Raento, M., Oulasvirta, A., & Eagle, N. (2009). Smartphones: An emerging tool for social scientists. Sociological Methods and Research, 37, 426–454.CrossRefGoogle Scholar
  77. Ratti, C., Sevtsuk, A., Huang, S., & Pailer, R. (2007). Mobile landscapes: Graz in real time. In G. Gartner, W. Cartwright, & M. P. Peterson (Eds.), Location based services and telecartography (pp. 433–444). Berlin, Germany: Springer.CrossRefGoogle Scholar
  78. Ratti, C., Williams, S., Frenchman, D., & Pulselli, R. M. (2006). Mobile landscapes: Using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design, 33, 727–748.CrossRefGoogle Scholar
  79. Reades, J., Calabrese, F., & Ratti, C. (2009). Eigenplaces: Analysing cities using the space-time structure of the mobile phone network. Environment and Planning B: Planning and Design, 36, 824–836.CrossRefGoogle Scholar
  80. Reades, J., Calabrese, F., Sevtsuk, A., & Ratti, C. (2007). Cellular census: Explorations in urban data collection. IEEE Pervasive Computing, 6(3), 30–38.CrossRefGoogle Scholar
  81. Reardon, S. F., Matthews, S. A., O’Sullivan, D., Lee, S. A., Firebaugh, G., Farrell, C. R., & Bischoff, K. (2008). The geographic scale of metropolitan racial segregation. Demography, 45, 489–514.CrossRefGoogle Scholar
  82. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., & Srivastava, M. (2010). Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks, 6(2, article 13), 1–27. doi: 10.1145/1689239.1689243 CrossRefGoogle Scholar
  83. Sheller, M., & Urry, J. (2006). The new mobilities paradigm. Environment and Planning A, 38, 207–226.CrossRefGoogle Scholar
  84. Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32.CrossRefGoogle Scholar
  85. Stopher, P., FitzGerald, C., & Xu, M. (2007). Assessing the accuracy of the Sydney Household Travel Survey with GPS. Transportation, 34, 723–741.CrossRefGoogle Scholar
  86. Urry, J. (2007). Mobilities. Cambridge, UK: Polity.Google Scholar
  87. VanWey, L. K., Rindfuss, R. R., Gutmann, M. P., Entwisle, B., & Balk, D. L. (2005). Confidentiality and spatially explicit data: Concerns and challenges. Proceedings of the National Academy of Sciences, 102, 15337–15342.CrossRefGoogle Scholar
  88. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.CrossRefGoogle Scholar
  89. Wang, D., Li, F., & Chai, Y. (2012). Activity spaces and sociospatial segregation in Beijing. Urban Geography, 33, 256–277.CrossRefGoogle Scholar
  90. Wesolowski, A. P., & Eagle, N. (2010). Parameterizing the dynamics of slums. In Proceedings of the AAAI Artificial Intelligence for Development Symposium (pp. 103–108).Google Scholar
  91. Wiehe, S. E., Carroll, A. E., Liu, G. C., Haberkorn, K. L., Hoch, S. C., Wilson, J. S., & Fortenberry, J. D. (2008). Using GPS-enabled cell phones to track the travel patterns of adolescents. International Journal of Health Geographics, 7, 22. doi: 10.1186/1476-072X-7-22 CrossRefGoogle Scholar
  92. Wilson, W. J. (1987). The truly disadvantaged: The inner city, the underclass, and public policy. Chicago, IL: University of Chicago Press.Google Scholar
  93. Wilson, W. J. (1996). When work disappears: The world of the urban poor. New York: Alfred Knopf.Google Scholar
  94. Wong, D. W. S., & Shaw, S.-L. (2011). Measuring segregation: An activity space approach. Journal of Geographical Systems, 13, 127–145.CrossRefGoogle Scholar
  95. Yarow, J. (2011). GARTNER: Android market share doubles, iOS drops in Q3. Business Insider. Retrieved from\
  96. Zandvliet, R., & Dijst, M. (2006). Short-term dynamics in the use of places: A space-time typology of visitor populations in the Netherlands. Urban Studies, 43, 1159–1176.CrossRefGoogle Scholar
  97. Zenk, S. N., Schulz, A. J., Israel, B. A., James, S. A., Bao, S., & Wilson, M. L. (2005). Neighborhood racial composition, neighborhood poverty, and the spatial accessibility of supermarkets in metropolitan Detroit. American Journal of Public Health, 95, 660–667.CrossRefGoogle Scholar

Copyright information

© Population Association of America 2012

Authors and Affiliations

  • John R. B. Palmer
    • 1
    Email author
  • Thomas J. Espenshade
    • 2
  • Frederic Bartumeus
    • 3
  • Chang Y. Chung
    • 4
  • Necati Ercan Ozgencil
    • 5
  • Kathleen Li
    • 6
  1. 1.Woodrow Wilson School of Public and International Affairs and Office of Population ResearchPrinceton UniversityPrincetonUSA
  2. 2.Office of Population Research and Department of SociologyPrinceton UniversityPrincetonUSA
  3. 3.Center for Advanced Studies of BlanesCEAB-CSICBlanesSpain
  4. 4.Office of Population ResearchPrinceton UniversityPrincetonUSA
  5. 5.SyncsortWoodcliff LakeUSA
  6. 6.GoogleNew YorkUSA

Personalised recommendations