Advertisement

Demography

, Volume 49, Issue 4, pp 1259–1283 | Cite as

The DYNAMO-HIA Model: An Efficient Implementation of a Risk Factor/Chronic Disease Markov Model for Use in Health Impact Assessment (HIA)

  • Hendriek C. BoshuizenEmail author
  • Stefan K. Lhachimi
  • Pieter H. M. van Baal
  • Rudolf T. Hoogenveen
  • Henriette A. Smit
  • Johan P. Mackenbach
  • Wilma J. Nusselder
Article

Abstract

In Health Impact Assessment (HIA), or priority-setting for health policy, effects of risk factors (exposures) on health need to be modeled, such as with a Markov model, in which exposure influences mortality and disease incidence rates. Because many risk factors are related to a variety of chronic diseases, these Markov models potentially contain a large number of states (risk factor and disease combinations), providing a challenge both technically (keeping down execution time and memory use) and practically (estimating the model parameters and retaining transparency). To meet this challenge, we propose an approach that combines micro-simulation of the exposure information with macro-simulation of the diseases and survival. This approach allows users to simulate exposure in detail while avoiding the need for large simulated populations because of the relative rareness of chronic disease events. Further efficiency is gained by splitting the disease state space into smaller spaces, each of which contains a cluster of diseases that is independent of the other clusters. The challenge of feasible input data requirements is met by including parameter calculation routines, which use marginal population data to estimate the transitions between states. As an illustration, we present the recently developed model DYNAMO-HIA (DYNAMIC MODEL for Health Impact Assessment) that implements this approach.

Keywords

Health impact assessment Markov models Matrix exponential Micro-simulation Chronic disease modeling 

References

  1. Alho, J. M. (1992). On prevalence, incidence, and duration in general stable populations. Biometrics, 48, 587–592.CrossRefGoogle Scholar
  2. Alho, J. M., Spencer, B. D. (2005). Statistical demography and forecasting. New York: Springer.Google Scholar
  3. Andronis, L., Barton, P., Bryan, S. (2009). Sensitivity analysis in economic evaluation: An audit of NICE current practice and a review of its use and value in decision-making. Health Technology Assessment, 13(29), iii, ix-xi, 1–61.Google Scholar
  4. Barendregt, J. J., Van Oortmarssen, G. J., Van Hout, B. A., Van Den Bosch, J. M., & Bonneux, L. (1998). Coping with multiple morbidity in a life table. Mathematical Population Studies, 7(1), 29–49, 109.CrossRefGoogle Scholar
  5. Barendregt, J. J., Van Oortmarssen, G. J., Vos, T., & Murray, C. J. (2003). A generic model for the assessment of disease epidemiology: The computational basis of DisMod II. Population Health Metrics, 1(1), 4.CrossRefGoogle Scholar
  6. Boshuizen, H. C., & van Baal, P. H. (2009). Probabilistic sensitivity analysis: Be a Bayesian. Value in Health, 12, 1210–1214.CrossRefGoogle Scholar
  7. Briggs, A., Sculpher, M., & Buxton, M. (1994). Uncertainty in the economic evaluation of health care technologies: The role of sensitivity analysis. Health Economics, 3(2), 95–104.CrossRefGoogle Scholar
  8. Clarke, P. M., Gray, A. M., Briggs, A., Farmer, A. J., Fenn, P., Stevens, R. J., . . . UK Prospective Diabetes Study (UKDPS) Group. (2004). A model to estimate the lifetime health outcomes of patients with type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS) outcomes model (UKPDS no. 68). Diabetologia, 47, 1747–1759.CrossRefGoogle Scholar
  9. Cole, B. L., Shimkhada, R., Morgenstern, H., Kominski, G., Fielding, J. E., & Wu, S. (2005). Projected health impact of the Los Angeles City Living Wage Ordinance. Journal of Epidemiology and Community Health, 59, 645–650.CrossRefGoogle Scholar
  10. Crimmins, E. M., Hayward, M. D., & Saito, Y. (1994). Changing mortality and morbidity rates and the health status and life expectancy of the older population. Demography, 31, 159–175.CrossRefGoogle Scholar
  11. Ford, E. S., Ajani, U. A., Croft, J. B., Critchley, J. A., Labarthe, D. R., Kottke, T. E., . . . Capewell, S. (2007). Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. The New England Journal of Medicine, 356, 2388–2398.CrossRefGoogle Scholar
  12. Gallivan, S., Utley, M., Jit, M., & Pagel, C. (2007). A computational algorithm associated with patient progress modelling. Computational Management Science, 4, 283–299.CrossRefGoogle Scholar
  13. Goldman, D. P., Shang, B., Bhattacharya, J., Garber, A. M., Hurd, M., Joyce, G. F., . . . Shekelle, P. G. (2005). Consequences of health trends and medical innovation for the future elderly. Health Affairs, 24(Suppl. 2). doi: 10.1377/hlthaff.W5.R5 Google Scholar
  14. Hoogenveen, R. T., van Baal, P. H., Boshuizen, H. C. (2010). Chronic disease projections in heterogeneous ageing populations: Approximating multi-state models of joint distributions by modelling marginal distributions. Mathematical Medicine and Biology, 27, 1–19.Google Scholar
  15. Kok, L., Engelfriet, P., Jacobs-van der Bruggen, M. A., Hoogenveen, R. T., Boshuizen, H. C., & Verschuren, M. W. (2009). The cost-effectiveness of implementing a new guideline for cardiovascular risk management in primary care in the Netherlands. European Journal of Cardiovascular Prevention and Rehabilitation, 16, 371–376.CrossRefGoogle Scholar
  16. Lauer, J. A., Rohrich, K., Wirth, H., Charette, C., Gribble, S., & Murray, C. J. (2003). PopMod: A longitudinal population model with two interacting disease states. Cost Effectiveness and Resource Allocation, 1(1), 6.CrossRefGoogle Scholar
  17. Lhachimi, S. K., Nusselder, W. J., Boshuizen, H. C., & Mackenbach, J. P. (2010). Standard tool for quantification in health impact assessment a review. American Journal of Preventive Medicine, 38, 78–84.CrossRefGoogle Scholar
  18. Manton, K. G., Gu, X., & Lowrimore, G. R. (2008). Cohort changes in active life expectancy in the U.S. elderly population: Experience from the 1982–2004 National Long-Term Care Survey. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 63, S269–S281.CrossRefGoogle Scholar
  19. McCarthy, M., Biddulph, J. P., Utley, M., Ferguson, J., & Gallivan, S. (2002). A health impact assessment model for environmental changes attributable to development projects. Journal of Epidemiology and Community Health, 56, 611–616.CrossRefGoogle Scholar
  20. Mindell, J. S., Boltong, A., & Forde, I. (2008). A review of health impact assessment frameworks. Public Health, 122, 1177–1187.CrossRefGoogle Scholar
  21. Moler, C., & Van Loan, C. (1978). Nineteen dubious ways to compute the expotential of a matrix. SIAM Review, 20, 801–836.CrossRefGoogle Scholar
  22. Naidoo, B., Thorogood, M., McPherson, K., & Gunning-Schepers, L. J. (1997). Modelling the effects of increased physical activity on coronary heart disease in England and Wales. Journal of Epidemiology and Community Health, 51, 144–150.CrossRefGoogle Scholar
  23. Neogi, T., & Zhang, Y. (2006). Re: “Easy SAS calculations for risk or prevalence ratios and differences.” American Journal of Epidemiology, 163, 1157. author reply 1159–1161.CrossRefGoogle Scholar
  24. Shechter, S. M., Schaefer, A. J., Braithwaite, R. S., & Roberts, M. S. (2006). Increasing the efficiency of Monte Carlo cohort simulations with variance reduction techniques. Medical Decision Making, 26, 550–553.CrossRefGoogle Scholar
  25. Utley, M., Gallivan, S., Biddulph, J., McCarthy, M., & Ferguson, J. (2003). ARMADA–A computer model of the impact of environmental factors on health. Health Care Management Science, 6, 137–146.CrossRefGoogle Scholar
  26. Van Baal, P. H., Engelfriet, P. M., Boshuizen, H. C., van de Kassteele, J., Schellevis, F. G., & Hoogenveen, R. T. (2011). Co-occurrence of diabetes, myocardial infarction, stroke, and cancer: Quantifying age patterns in the Dutch population using health survey data. Population Health Metrics, 9, 51.CrossRefGoogle Scholar
  27. Van Baal, P. H., Hoogenveen, R. T., de Wit, G. A., & Boshuizen, H. C. (2006). Estimating health-adjusted life expectancy conditional on risk factors: Results for smoking and obesity. Population Health Metrics, 4, 14.CrossRefGoogle Scholar
  28. Van de Kassteele, J., Hoogenveen, R. T., Engelfriet, P. M., van Baal, P. H. M., & Boshuizen, H. C. (2011). Estimating net transition probabilities from cross-sectional data with application to risk factors in chronic disease modeling. Statistics in Medicine, 31, 533–543.CrossRefGoogle Scholar
  29. Van Meijgaard, J., Fielding, J. E., & Kominski, G. F. (2009). Assessing and forecasting population health: Integrating knowledge and beliefs in a comprehensive framework. Public Health Reports, 124, 778–789.Google Scholar

Copyright information

© Population Association of America 2012

Authors and Affiliations

  • Hendriek C. Boshuizen
    • 1
    • 2
    Email author
  • Stefan K. Lhachimi
    • 1
    • 3
  • Pieter H. M. van Baal
    • 1
  • Rudolf T. Hoogenveen
    • 1
  • Henriette A. Smit
    • 1
    • 4
  • Johan P. Mackenbach
    • 3
  • Wilma J. Nusselder
    • 3
  1. 1.Department of Statistics and Mathematical ModellingNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands
  2. 2.Division of Human NutritionWageningen UniversityWageningenThe Netherlands
  3. 3.Department of Public HealthErasmus UniversityRotterdamThe Netherlands
  4. 4.Department of Public Health, Julius CentreUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations