, 48:625 | Cite as

Intergenerational Profiles of Socioeconomic (Dis)advantage and Obesity During the Transition to Adulthood

  • Melissa Scharoun-Lee
  • Penny Gordon-Larsen
  • Linda S. Adair
  • Barry M. Popkin
  • Jay S. Kaufman
  • Chirayath M. Suchindran


Investigations of socioeconomic status (SES) and health during the transition to adulthood in the United States are complicated by the later and more varied transitions in residence, employment, schooling, and social roles compared with previous generations. Parental SES is an important influence during adolescence but cannot sufficiently capture the SES of the independent young adult. Typical, single SES indicators based on income or education likely misclassify the SES of young adults who have not yet completed their education or other training, or who have entered the labor force early with ultimately lower status attainment. We use a latent class analysis (LCA) framework to characterize five intergenerational SES groups, combining multidimensional SES information from two time points—that is, adolescent (parental) and young adult (self) SES data. Associations of these groups with obesity, a high-risk health outcome in young adults, revealed nuanced relationships not seen using traditional intergenerational SES measures. In males, for example, a middle-class upbringing in adolescence and continued material advantage into adulthood was associated with nearly as high obesity as a working poor upbringing and early, detrimental transitions. This intergenerational typology of early SES exposure facilitates understanding of SES and health during young adulthood.


Social class Life course Latent class analysis Young adults United States 



This analysis was supported by the National Institutes of Health, NICHD, Ruth L. Kirshstein (NRSA) F31-HD049334 and R01HD057194. This work was done while Dr. Scharoun-Lee was a graduate student at the University of North Carolina. The authors would like to thank Dr. Glen Elder for his valuable comments on previous drafts of this manuscript. We also thank Mr. Tom Swasey for assistance with graphic analysis. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by Grant P01-HD31921, from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website ( No direct support was received from Grant P01-HD31921 for this analysis. There are no potential or real conflicts of financial or personal interest with the financial sponsors of the scientific project.


  1. Arbuckle, J. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243–278). Mahwah, NJ: Erlbaum.Google Scholar
  2. Baltrus, P. T., Lynch, J. W., Everson-Rose, S., Raghunathan, T. E., & Kaplan, G. A. (2005). Race/ethnicity, life-course socioeconomic position, and body weight trajectories over 34 years: The Alameda County Study. American Journal of Public Health, 95, 1595–1601.CrossRefGoogle Scholar
  3. Benoit-Smullyan, E. (1944). Status, status types, and interrelations. American Sociological Review, 9, 151–161.CrossRefGoogle Scholar
  4. Ben-Shlomo, Y., & Kuh, D. (2002). A life course approach to chronic disease epidemiology: Conceptual models, empirical challenges and interdisciplinary perspectives. International Journal of Epidemiology, 31, 285–293.CrossRefGoogle Scholar
  5. Blau, P. M., & Duncan, O. D. (1967). The American occupational structure. New York: John Wiley and Sons.Google Scholar
  6. Bumpass, L., & McLanahan, S. (1989). Unmarried motherhood: Recent trends, composition, and black-white differences. Demography, 26, 279–286.CrossRefGoogle Scholar
  7. Burholt, V. (1999). Testing a behavioural and a developmental model of migration: A reevaluation of migration patterns among the elderly and why older people move. Environment and Planning A, 31, 2071–2088.CrossRefGoogle Scholar
  8. Carson, A. P., Rose, K. M., Catellier, D. J., Kaufman, J. S., Wyatt, S. B., Diez-Roux, A. V., & Heiss, G. (2007). Cumulative socioeconomic status across the life course and subclinical atherosclerosis. Annals of Epidemiology, 17, 296–303.CrossRefGoogle Scholar
  9. Clogg, C. C. (1980). Characterizing the class organization of labor market opportunity: A modified latent structure approach. Sociological Methods & Research, 8, 243–272.CrossRefGoogle Scholar
  10. Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 311–359). New York: Plenum.Google Scholar
  11. Collins, L. M., Hyatt, S. L., & Graham, J. W. (2000). LTA as a way of testing models of stage-sequential change in longitudinal data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multiple-group data: Practical issues, applied approaches, and specific examples (pp. 147–161). Hillsdale, NJ: Erlbaum.Google Scholar
  12. Crissey, S. R. (2005). Race/ethnic differences in the marital expectations of adolescents: The role of romantic relationships. Journal of Marriage and Family, 67, 697–709.CrossRefGoogle Scholar
  13. De Jong, G. F., & Madamba, A. B. (2001). A double disadvantage? Minority group, immigrant status, and underemployment in the United States. Social Science Quarterly, 82, 117–130.CrossRefGoogle Scholar
  14. Desantis, S. M., Houseman, E. A., Coull, B. A., Stemmer-Rachamimov, A., & Betensky, R. A. (2007). A penalized latent class model for ordinal data. Biostatistics, 9, 249–262.CrossRefGoogle Scholar
  15. Everitt, B. S. (1988). A finite mixture model for the clustering of mixed-mode data. Statistics & Probability Letters, 6, 305–309.CrossRefGoogle Scholar
  16. Everitt, B. S. (1993). Cluster analysis. London: Edward Arnold.Google Scholar
  17. Featherman, D. L., & Hauser, R. M. (1978). Opportunity and change. New York: Academic Press.Google Scholar
  18. Goldscheider, F. K., Thornton, A., & Yang, L.-S. (2001). Helping out the kids: Expectations about parental support in young adulthood. Journal of Marriage and Family, 63, 727–740.CrossRefGoogle Scholar
  19. Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.CrossRefGoogle Scholar
  20. Goodman, E., Hinden, B. R., & Khandelwal, S. (2000). Accuracy of teen and parental reports of obesity and body mass index. Pediatrics, 106(1,Pt 1), 52–58.CrossRefGoogle Scholar
  21. Gordon-Larsen, P., Adair, L. S., Nelson, M. C., & Popkin, B. M. (2004). Five-year obesity incidence in the transition period between adolescence and adulthood: The national longitudinal study of adolescent health. The American Journal of Clinical Nutrition, 80, 569–575.Google Scholar
  22. Greenland, S. (2004). Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. American Journal of Epidemiology, 160, 301–305.CrossRefGoogle Scholar
  23. Hagenaars, J., & McCutcheon, A. C. (2002). Applied latent class analysis models. New York: Cambridge University Press.CrossRefGoogle Scholar
  24. Hallqvist, J., Lynch, J., Bartley, M., Lang, T., & Blane, D. (2004). Can we disentangle life course processes of accumulation, critical period and social mobility? An analysis of disadvantaged socio-economic positions and myocardial infarction in the Stockholm Heart Epidemiology Program. Social Science & Medicine, 58, 1555–1562.CrossRefGoogle Scholar
  25. Harris, K. M., Gordon-Larsen, P., Chantala, K., & Udry, J. R. (2006). Longitudinal trends in race/ethnic disparities in leading health indicators from adolescence to young adulthood. Archives of Pediatrics & Adolescent Medicine, 160, 74–81.CrossRefGoogle Scholar
  26. Harris, K. M., Halpern, C. T., Whitsel, E., Hussey, J., Tabor, J., Entzel, P., & Udry, J. R. (2009). The national longitudinal study of adolescent health: Research design [WWW document]. Retrieved from
  27. Hart, C. L., Smith, G. D., & Blane, D. (1998a). Inequalities in mortality by social class measured at 3 stages of the lifecourse. American Journal of Public Health, 88, 471–474.CrossRefGoogle Scholar
  28. Hart, C. L., Smith, G. D., & Blane, D. (1998b). Social mobility and 21 year mortality in a cohort of Scottish men. Social Science & Medicine, 47, 1121–1130.CrossRefGoogle Scholar
  29. Heard, H. E. (2007). The family structure trajectory and adolescent school performance: Differential effects by race and ethnicity. Journal of Family Issues, 28, 319–354.CrossRefGoogle Scholar
  30. Holtgrave, D. R., & Crosby, R. (2006). Is social capital a protective factor against obesity and diabetes? Findings from an exploratory study. Annals of Epidemiology, 16, 406–408.CrossRefGoogle Scholar
  31. House, J. S., & Harkins, E. B. (1975). Why and when is status inconsistency stressful? The American Journal of Sociology, 81, 395–412.CrossRefGoogle Scholar
  32. Iacovou, M. (2002). Regional differences in the transition to adulthood. The Annals of the American Academy of Political and Social Science, 580, 40–69.CrossRefGoogle Scholar
  33. James, S. A., Fowler-Brown, A., Raghunathan, T. E., & Van Hoewyk, J. (2006). Life-course socioeconomic position and obesity in African American Women: The Pitt County study. American Journal of Public Health, 96, 554–560.CrossRefGoogle Scholar
  34. Jensen, L., & Slack, T. (2003). Underemployment in America: Measurement and evidence. American Journal of Community Psychology, 32, 21–31.CrossRefGoogle Scholar
  35. Jorgensen, M., & Hunt, L. (1996). Mixture model clustering of data sets with categorical and continuous variables. In D. L. Dowe, K. B. Korb, & J. J. Oliver (Eds.), Proceedings of the conference, information, statistics and induction in science (pp. 375–384). Melbourne, Australia: World Scientific.Google Scholar
  36. Kalleberg, A. (1988). Comparative perspectives on work structures and inequality. Annual Review of Sociology, 14, 203–225.CrossRefGoogle Scholar
  37. Kaplan, D. (2004). The Sage handbook of quantitative methodology in the social sciences. Newbury Park, CA: Sage Publications.Google Scholar
  38. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: John Wiley and Sons.Google Scholar
  39. Kawachi, I., & Berkman, L. F. (2001). Social ties and mental health. Journal of Urban Health, 78, 458–467.Google Scholar
  40. Kawachi, I., Kim, D., Coutts, A., & Subramanian, S. (2004). Commentary: Reconciling the three accounts of social capital. International Journal of Epidemiology, 33, 682–690.CrossRefGoogle Scholar
  41. Kim, D., Subramanian, S. V., Gortmaker, S. L., & Kawachi, I. (2006). US state- and county-level social capital in relation to obesity and physical inactivity: A multilevel, multivariable analysis. Social Science & Medicine, 63, 1045–1059.CrossRefGoogle Scholar
  42. Kleinbaum, D. G., Kupper, L. L., Muller, K. E., & Nizam, A. (1998). Applied regression analysis and other multivariate methods (3rd ed., pp. 250–251). Pacific Grove: Duxbury Thomson Learning.Google Scholar
  43. Kreider, R. M., & Fields, J. (2005). Living arrangements of children: 2001 (Current population reports P70-104). Washington, DC: U.S. Census Bureau.Google Scholar
  44. Krieger, N., Williams, D. R., & Moss, N. E. (1997). Measuring social class in US public health research: Concepts, methodologies, and guidelines. Annual Review of Public Health, 18, 341–378.CrossRefGoogle Scholar
  45. Kuh, D., Ben-Shlomo, Y., Lynch, J., Hallqvist, J., & Power, C. (2003). Life course epidemiology. Journal of Epidemiology and Community Health, 57, 778–783.CrossRefGoogle Scholar
  46. Lanza, S. T., Flaherty, B. P., & Collins, L. M. (2003). Latent class and latent transition analysis. In J. A. Schinka & W. F. Velicer (Eds.), Handbook of psychology: Vol. 2. Research methods in psychology (pp. 663–685). Hoboken, NJ: Wiley.Google Scholar
  47. Lanza, S. T., Collins, L. M., Lemmon, D. R., & Schafer, J. L. (2007). PROC LCA: A SAS procedure for latent class analysis. Structural Equation Modeling: A Multidisciplinary Journal, 14, 671–694.Google Scholar
  48. Lazarsfeld, P., & Henry, N. (1968). Latent structure analysis. New York: Houghton-Mifflin.Google Scholar
  49. Lin, T. H., & Dayton, C. M. (1997). Model selection information criteria for non-nested latent class models. Journal of Educational and Behavioral Statistics, 22, 249–264.Google Scholar
  50. Lumley, T., Kronmal, R., & Ma, S. (2006). Relative risk regression in medical research: Models, contrasts, estimators, and algorithms (UW Biostatistics Working Paper No. 293). Berkeley, CA: The Berkeley Electronic Press (bepress).Google Scholar
  51. Lynch, J. W., Kaplan, G. A., & Shema, S. J. (1997). Cumulative impact of sustained economic hardship on physical, cognitive, psychological, and social functioning. The New England Journal of Medicine, 337, 1889–1895.CrossRefGoogle Scholar
  52. McCutcheon, A. C. (1987). Latent class analysis. Beverly Hills, CA: Sage Publications.Google Scholar
  53. McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: John Wiley.CrossRefGoogle Scholar
  54. McLanahan, S. (1985). Family structure and the reproduction of poverty. The American Journal of Sociology, 90, 873–901.CrossRefGoogle Scholar
  55. McLanahan, S. (2004). Diverging destinies: How children are faring under the second demographic transition. Demography, 41, 607–627.CrossRefGoogle Scholar
  56. McLoyd, V. C., Cauce, A. M., Takeuchi, D., & Wilson, L. (2000). Marital processes and parental socialization in families of color: A decade review of research. Journal of Marriage and the Family, 62, 1070–1093.CrossRefGoogle Scholar
  57. McNutt, L. A., Wu, C., Xue, X., & Hafner, J. P. (2003). Estimating the relative risk in cohort studies and clinical trials of common outcomes. American Journal of Epidemiology, 157, 940–943.CrossRefGoogle Scholar
  58. McTigue, K. M., Garrett, J. M., & Popkin, B. M. (2002). The natural history of the development of obesity in a cohort of young U.S. adults between 1981 and 1998. Annals of Internal Medicine, 136, 857–864.Google Scholar
  59. Messineo, M. (2005). Influence of expectations for parental support on intergenerational coresidence behavior. Journal of Intergenerational Relationships, 3(3), 47–64.CrossRefGoogle Scholar
  60. Moore, S., Daniel, M., Paquet, C., Dube, L., & Gauvin, L. (2009). Association of individual network social capital with abdominal adiposity, overweight and obesity. Journal of Public Health, 31, 175–183.CrossRefGoogle Scholar
  61. Moors, G. (2008). The valued child. In search of a latent attitude profile that influences the transition to motherhood. European Journal of Population, 24, 33–57.CrossRefGoogle Scholar
  62. Muthén, L. K., & Muthén, B. O. (1998–2006). Mplus user’s guide (4th ed.). Los Angeles, CA: Muthen & Muthen.Google Scholar
  63. NHLBI. (1998). Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: The evidence report. Obesity Research, 6(Suppl), 51S–209S.Google Scholar
  64. Nylund, K. L. (2007a). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.Google Scholar
  65. Nylund, K. L. (2007b). Latent transition analysis: Modeling extensions and an application to peer victimization (Unpublished doctoral dissertation). University of California, Los Angeles.Google Scholar
  66. Oakes, J. M., & Rossi, P. H. (2003). The measurement of SES in health research: Current practice and steps toward a new approach. Social Science & Medicine, 56, 769–784.CrossRefGoogle Scholar
  67. Ogden, C. L., Carroll, M. D., Curtin, L. R., McDowell, M. A., Tabak, C. J., & Flegal, K. M. (2006). Prevalence of overweight and obesity in the United States, 1999–2004. JAMA, 295, 1549–1555.CrossRefGoogle Scholar
  68. Osgood, D. W., Ruth, G., Eccles, J. S., Jacobs, J. E., & Barber, B. L. (2004). Six paths to adulthood: Fast starters, parents without careers, educated partners, educated single, working singles, and slow starters. In R. A. Settersten, F. F. Furstenberg, & R. G. Rumbaut (Eds.), On the frontier of adulthood: Theory, research, and public policy (pp. 320–355). Chicago, IL: University of Chicago Press.Google Scholar
  69. Pastor, D. A., Barron, K. E., Miller, B. J., & Davis, S. L. (2006). A latent profile analysis of college students' achievement goal orientation. Contemporary Educational Psychology, 32, 8–47.CrossRefGoogle Scholar
  70. Pollitt, R. A., Rose, K. M., & Kaufman, J. S. (2005). Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: A systematic review. BMC Public Health, 5, 7.CrossRefGoogle Scholar
  71. Putnam, R. D. (2000). Bowling alone: The collapse and revival of American community. New York: Simon and Schuster.Google Scholar
  72. Rindfuss, R. R. (1991). The young adult years: Diversity, structural change, and fertility. Demography, 28, 493–512.CrossRefGoogle Scholar
  73. Rosner, B. (2000). Fundamentals of biostatistics (5th ed.). Pacific Grove, CA: Duxbury Thomson Learning.Google Scholar
  74. Rosvall, M., Chaix, B., Lynch, J., Lindstrom, M., & Merlo, J. (2006). Similar support for three different life course socioeconomic models on predicting premature cardiovascular mortality and all-cause mortality. BMC Public Health, 6, 203.CrossRefGoogle Scholar
  75. Sandefur, G. D., Mclanahan, S., & Wojtkiewicz, R. A. (1992). The effects of parental marital status during adolescence on high school graduation. Social Forces, 71, 103–121.CrossRefGoogle Scholar
  76. Scharoun-Lee, M., Adair, L. S., Kaufman, J. S., & Gordon-Larsen, P. (2009). Obesity, race/ethnicity and the multiple dimensions of socioeconomic status during the transition to adulthood: A factor analysis approach. Social Science & Medicine, 68, 708–716.CrossRefGoogle Scholar
  77. Schoeni, R., & Ross, K. (2004). Material Assistance from Families during the Transition to Adulthood. In R. A. Settersten, F. F. Furstenberg, & R. G. Rumbaut (Eds.), On the frontier of adulthood: Theory, research, and public policy (pp. 396–416). Chicago, IL: University of Chicago Press.Google Scholar
  78. Schoon, I. (2008). A transgenerational model of status attainment: The potential mediating role of school motivation and education. National Institute Economic Review, 205(1), 72–82.CrossRefGoogle Scholar
  79. Schwartz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  80. Sewell, W. H., & Hauser, R. M. (1975). Education, occupation & earnings: Achievement in the early career. New York: Academic Press.Google Scholar
  81. Shanahan, M. J., Porfeli, E. J., Mortimer, J. T., & Erickson, L. D. (2004). Subjective age identity and the transition to adulthood: When do adolescents become adults? In R. A. Settersten, F. F. Furstenberg, & R. G. Rumbaut (Eds.), On the frontier of adulthood: Theory, research, and public policy (pp. 225–255). Chicago, IL: University of Chicago Press.Google Scholar
  82. Singh-Manoux, A., Ferrie, J. E., Chandola, T., & Marmot, M. (2004). Socioeconomic trajectories across the life course and health outcomes in midlife: Evidence for the accumulation hypothesis? International Journal of Epidemiology, 33, 1072–1079.CrossRefGoogle Scholar
  83. Slack, T., & Jensen, L. (2002). Race, ethnicity and underemployment in nonmetropolitan America: A 30-year profile. Rural Sociology, 67, 208–233.CrossRefGoogle Scholar
  84. Smith, G. D., & Hart, C. (2002). Life-course socioeconomic and behavioral influences on cardiovascular disease mortality: The collaborative study. American Journal of Public Health, 92, 1295–1298.CrossRefGoogle Scholar
  85. Snyder, A. R., & McLaughlin, D. K. (2004). Female-headed families and poverty in rural America. Rural Sociology, 69, 127–149.CrossRefGoogle Scholar
  86. Sobal, J. (1991). Obesity and socioeconomic status: A framework for examining relationships between physical and social variables. Medical Anthropology, 13, 231–247.CrossRefGoogle Scholar
  87. Sobal, J., & Stunkard, A. J. (1989). Socioeconomic status and obesity: A review of the literature. Psychological Bulletin, 105, 260–275.CrossRefGoogle Scholar
  88. StataCorp. (2007). Stata statistical software: Release 9.2. College Station, TX: Stata Corporation.Google Scholar
  89. Teachman, J. D., Tedrow, L. M., & Crowder, K. D. (2000). The changing demography of America’s families. Journal of Marriage and the Family, 62, 1234–1246.CrossRefGoogle Scholar
  90. Thomson, E., Hanson, T. L., & McLanahan, S. S. (1994). Family structure and child well-being: Economic resources vs. parental behaviors. Social Forces, 73, 221–242.CrossRefGoogle Scholar
  91. Uebersax, J. (2001–2003). Latent class analysis. Retrieved from
  92. Usdansky, M., & McLanahan, S. (2003). Looking for Murphy Brown: Are college-educated, single mothers unique? (Working Paper No. 03-05-FF). Princeton, NJ: Center for Research on Child Wellbeing.Google Scholar
  93. Vermunt, J. K., & Magidson, J. (2000). Latent class cluster analysis. In J. Hagenaars & A. C. McCutcheon (Eds.), Applied latent class analysis (pp. 89–106). Cambridge, UK: Cambridge University Press.Google Scholar
  94. Wothke, W. (2000). Longitudinal and multi-group modeling with missing data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multiple group data: Practical issues, applied approaches and specific examples (pp. 219–240). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  95. Wright, E. O. (1979). Class structure and income determination. New York: Academic Press.Google Scholar
  96. Zhan, M., & Pandey, S. (2004). Postsecondary education and economic well-being of single mothers and single fathers. Journal of Marriage and Family, 66, 661–673.CrossRefGoogle Scholar
  97. Zou, G. (2004). A modified poisson regression approach to prospective studies with binary data. American Journal of Epidemiology, 159, 702–706.CrossRefGoogle Scholar

Copyright information

© Population Association of America 2011

Authors and Affiliations

  • Melissa Scharoun-Lee
    • 1
  • Penny Gordon-Larsen
    • 1
  • Linda S. Adair
    • 1
  • Barry M. Popkin
    • 1
  • Jay S. Kaufman
    • 2
  • Chirayath M. Suchindran
    • 3
  1. 1.Carolina Population Center and Department of Nutrition, Gillings School of Global Public Health and School of MedicineUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Epidemiology, Biostatistics, and Occupational HealthMcGill UniversityMontrealCanada
  3. 3.Carolina Population Center and Department of Biostatistics, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations