Demography

, Volume 48, Issue 2, pp 559–579 | Cite as

Transition to Parenthood: The Role of Social Interaction and Endogenous Networks

  • Belinda Aparicio Diaz
  • Thomas Fent
  • Alexia Prskawetz
  • Laura Bernardi
Article

Abstract

Empirical studies indicate that the transition to parenthood is influenced by an individual’s peer group. To study the mechanisms creating interdependencies across individuals’ transition to parenthood and its timing, we apply an agent-based simulation model. We build a one-sex model and provide agents with three different characteristics: age, intended education, and parity. Agents endogenously form their network based on social closeness. Network members may then influence the agents’ transition to higher parity levels. Our numerical simulations indicate that accounting for social interactions can explain the shift of first-birth probabilities in Austria during the period 1984 to 2004. Moreover, we apply our model to forecast age-specific fertility rates up to 2016.

Keywords

Fertility Education Social influence Social networks Agent-based modeling 

References

  1. Axinn, W. G., Clarkberg, M. E., & Thornton, A. (1994). Family influences on family size preferences. Demography, 31, 65–79.CrossRefGoogle Scholar
  2. Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.CrossRefGoogle Scholar
  3. Baldassarri, D., & Bearman, P. (2007). Dynamics of political polarisation. American Sociological Review, 72, 784–811.CrossRefGoogle Scholar
  4. Bernardi, L. (2003). Channels of social influence on reproduction. Population Research and Policy Review, 22, 527–555.CrossRefGoogle Scholar
  5. Bernardi, L., Keim, S., & von der Lippe, H. (2007). Social influence on fertility: A comparative mixed methods study in eastern and western Germany. Journal of Mixed Methods Research, 1, 23–47.CrossRefGoogle Scholar
  6. Billari, F. C., & Prskawetz, A. (Eds.). (2003). Agent-based computational demography: Using simulation to improve our understanding of demographic behaviour. Heidelberg, Germany: Physica Verlag.Google Scholar
  7. Billari, F., Prskawetz, A., & Fürnkranz, J. (2003). On the cultural evolution of age-at-marriage norms. In F. C. Billari & A. Prskawetz (Eds.), Agent-based computational demography: Using simulation to improve our understanding of demographic behaviour (pp. 139–158). Heidelberg, Germany: Physica Verlag.Google Scholar
  8. Billari, F., Fent, T., Prskawetz, A., & Scheffran, J. (Eds.). (2006). Agent-based computational modelling: Applications in demography, social, economic and environmental sciences. Heidelberg, Germany: Physica Verlag.Google Scholar
  9. Bongaarts, J., & Watkins, S. C. (1996). Social interactions and contemporary fertility transitions. Population and Development Review, 22, 639–682.CrossRefGoogle Scholar
  10. Burch, T. K. (1996). Icons, strawmen and precision: Reflections on demographic theories of fertility decline. Sociological Quarterly, 37, 59–81.CrossRefGoogle Scholar
  11. Burke, M. A., & Heiland, F. (2006). The strength of social interactions and obesity among women. In F. C. Billari, T. Fent, A. Prskawetz, & J. Scheffran (Eds.), Agent-based computational modelling: Applications in demography, social, economic, and environmental sciences (pp. 117–137). Heidelberg, Germany: Physica Verlag.Google Scholar
  12. Chattoe, E. (2003). The role of agent-based modelling in demographic explanation. In F. C. Billari & A. Prskawetz (Eds.), Agent-based computational demography: Applications in demography, social, economic and environmental sciences (pp. 41–54). Heidelberg: Physica Verlag.Google Scholar
  13. Cleland, J., & Wilson, C. (1987). Demand theories of the fertility transition: An iconoclastic view. Population Studies, 41, 5–30.CrossRefGoogle Scholar
  14. Cole, H. L., Mailath, G. J., & Postlewaite, A. (1998). Class systems and the enforcement of social norms. Journal of Public Economics, 70, 5–35.CrossRefGoogle Scholar
  15. d’Addio, A. C., & d’Ercole, M. M. (2005). Trends and determinants of fertility rates in OECD countries: The role of policies (OECD Social Employment and Migration Working Papers 27). Paris: OECD Directorate for Employment, Labour and Social Affairs.Google Scholar
  16. de Bruijn, B. J. (1999). Foundations of demographic theory. Choice, process, context. Amsterdam, The Netherlands: Thela Thesis.Google Scholar
  17. Deffuant, G., Amblard, F., & Weisbuch, G. (2001). Mixing beliefs among interacting agents. Advances in Complex Systems, 3, 87–98.CrossRefGoogle Scholar
  18. Dunbar, R., & Spoors, M. (1995). Social networks, support cliques, and kinship. Human Nature, 6, 273–290.CrossRefGoogle Scholar
  19. Ettrich, C., & Ettrich, K. U. (1995). Die bedeutung sozialer netzwerke und erlebter sozialer unterstützung beim übergang zur elternschaft—Ergebnisse einer längsschnittstudie [The impact of social networks and social support on the transition to parenthood—Results of a longitudinal study]. Psychologie in Erziehung und Unterricht, 42, 29–39.Google Scholar
  20. Fent, T., Groeber, P., & Schweitzer, F. (2008). Coexistence of social norms based on in- and out-group interactions. Advances in Complex Systems, 10, 271–286.CrossRefGoogle Scholar
  21. Flache, A., & Mäs, M. (2008a). How to get the timing right. A computational model of the effects of the timing of contacts on team cohesion in demographically diverse teams. Computational & Mathematical Organization Theory, 14, 23–51.CrossRefGoogle Scholar
  22. Flache, A., & Mäs, M. (2008b). Why do faultlines matter? A computational model of how strong demographic faultlines undermine team cohesion. Simulation Modelling Practice and Theory, 16, 175–191.CrossRefGoogle Scholar
  23. Friedkin, N. E. (1998). A structural theory of social influence. In M. Granovetter (Ed.), Structural analysis in the social sciences, no. 13. Cambridge, UK: Cambridge University Press.Google Scholar
  24. Granovetter, M. (1978). Threshold models of collective behavior. The American Journal of Sociology, 83, 1420–1443.CrossRefGoogle Scholar
  25. Hammer, M., Gutwirth, L., & Phillips, S. L. (1982). Parenthood and social networks. A preliminary view. Social Science & Medicine, 16, 2091–2100.CrossRefGoogle Scholar
  26. Hanika, A. (2006). Zukünftige bevölkerungsentwicklung österreichs 2006 bis 2050 (2075): Neudurchrechnung der bevölkerungsprognose [The future development of the Austrian population 2006 to 2050 (2075)]. Statistische Nachrichten, 10, 868–885.Google Scholar
  27. Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence: Models, analysis, and simulation. Journal of Artificial Societies and Social Simulation, 5(3).Google Scholar
  28. Hernes, G. (1972). The process of entry into first marriage. American Sociological Review, 37, 173–182.CrossRefGoogle Scholar
  29. Knodel, J., & van de Walle, E. (1979). Lessons from the past: Policy implications of historical fertility studies. Population and Development Review, 5, 217–245.CrossRefGoogle Scholar
  30. Kohler, H.-P. (2000). Social interaction and fluctuations in birth rates. Population Studies, 54, 223–237.CrossRefGoogle Scholar
  31. Kohler, H.-P. (2001). Fertility and social interaction. An economic perspective. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  32. Kohler, H.-P., Billari, F. C., & Ortega, H.-A. (2002). The emergence of lowest-low fertility in Europe during the 1990s. Population and Development Review, 28, 641–680.CrossRefGoogle Scholar
  33. Lyngstad, T. H., & Prskawetz, A. (2010). Do siblings’ fertility histories influence each other? Demography, 47, 923–934.CrossRefGoogle Scholar
  34. Macy, M. W., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28, 143–166.CrossRefGoogle Scholar
  35. Mason, K. O. (1992). Culture and the fertility transition: Thoughts on theories of fertility decline. Genus, 48, 1–14.Google Scholar
  36. Micheli, G. A. (2000). Kinship, family and social network: The anthropological embedment of fertility change in Southern Europe. Demographic Research, 3, article 13. doi:10.4054/DemRes.2000.3.13.
  37. Mitchell, J. C. (1974). Social networks. Annual Review of Anthropology, 3, 279–299.CrossRefGoogle Scholar
  38. Montgomery, M. R., & Casterline, J. B. (1996). Social learning, social influence, and new models of fertility. Population and Development Review 22(Suppl.), 151–175.Google Scholar
  39. Moore, G. (1990). Structural determinants of men’s and women’s personal networks. American Sociological Review, 55, 726–735.CrossRefGoogle Scholar
  40. Palloni, A. (1998). Theories and models of diffusion in sociology (CDE Working Paper No. 98–11). Madison: Center for Demography and Ecology, University of Wisconsin.Google Scholar
  41. Pollak, R., & Watkins, S. (1993). Cultural and economic approaches to fertility: Proper marriage or misalliance? Population and Development Review, 19, 467–496.CrossRefGoogle Scholar
  42. Prskawetz, A., & Zagaglia, B. (2005). Second births in Austria. Vienna Yearbook of Population Research, 3, 143–170.Google Scholar
  43. Rondinelli, C., Aassve, A., & Billari, F. C. (2006). Socio-economic differences in postponement and recuperation of fertility in Italy: Results from a multi-spell random effect model (ISER Working Paper 2006–46). Colchester, UK: University of Essex.Google Scholar
  44. Rosero-Bixby, L., & Casterline, J. (1993). Modeling diffusion effects in fertility transition. Population Studies, 47, 147–167.CrossRefGoogle Scholar
  45. Sanderson, W. C. (1998). Knowledge can improve forecasts: A review of selected socioeconomic population projection models. Population and Development Review, 24(Suppl.), 88–117.CrossRefGoogle Scholar
  46. Schelling, T. C. (1978). Micromotives and macrobehavior. New York: Norton.Google Scholar
  47. Statistik Austria. (1985). Volkszählung 1981 Hauptergebnis II. Google Scholar
  48. Statistik Austria. (1989). Volkszählung 1981, Eheschliessungs- und Geburtenstatistik. Google Scholar
  49. Statistik Austria. (1994). Volkszählung 1991 Hauptergebnis II. Google Scholar
  50. Statistik Austria. (1996). Volkszählung 1991, Haushalte und Familien. Google Scholar
  51. Statistik Austria. (1998). Statistisches Jahrbuch 1995. Google Scholar
  52. Statistik Austria. (2004). Volkszählung 2001 Hauptergebnis II. Google Scholar
  53. Statistik Austria. (2005a). Demographisches Jahrbuch 2001/2002. Google Scholar
  54. Statistik Austria. (2005b). Demographisches Jahrbuch 2003. Google Scholar
  55. Statistik Austria. (2005c). Volkszählung 1991, Haushalte und Familien. Google Scholar
  56. Statistik Austria. (2007). Statistisches Jahrbuch Österreich 2007. Google Scholar
  57. Watkins, S. (1986). Conclusions. In A. Coale & S. Watkins (Eds.), The decline of fertility in Europe (pp. 420–449). Princeton, NJ: Princeton University Press.Google Scholar
  58. Watkins, S. (1987). The fertility transition: Europe and the third world compared. Sociological Forum, 2, 645–673.CrossRefGoogle Scholar
  59. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  60. Watts, D. J., Dodds, P. S., & Newman, M. E. J. (2002). Identity and search in social networks. Science, 296, 1302–1305.CrossRefGoogle Scholar
  61. Wellman, B., Wong, R. Y., Tindall, D., & Nazer, N. (1997). A decade of network change: Turnover, persistence and stability in personal communities. Social Networks, 19, 27–50.CrossRefGoogle Scholar

Copyright information

© Population Association of America 2011

Authors and Affiliations

  • Belinda Aparicio Diaz
    • 1
  • Thomas Fent
    • 1
  • Alexia Prskawetz
    • 2
  • Laura Bernardi
    • 3
  1. 1.Vienna Institute of Demography, Austrian Academy of SciencesViennaAustria
  2. 2.Vienna Institute of Demography, Austrian Academy of Sciences and Institute of Mathematical Methods in EconomicsVienna University of TechnologyViennaAustria
  3. 3.Faculty of Social and Political SciencesUniversité de LausanneLausanneSwitzerland

Personalised recommendations