Journal of Environmental Studies and Sciences

, Volume 5, Issue 3, pp 459–473 | Cite as

Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability

  • Sarah Rotz
  • Evan D. G. Fraser


The purpose of this paper is to explore how socioeconomic and technological shifts in Canadian and American food production, processing, and distribution have impacted resilience in the food system. First, we use the social ecological systems literature to define food system resilience as a function of that system’s ability to absorb external shocks while maintaining core functions, such as food production and distribution. We then use the literature to argue that we can infer food system resilience by exploring three key dimensions: (1) the diversity of the food system’s components, (2) the degree to which the components are connected, and (3) the degree of decision-making autonomy within the food system. Next, we discuss the impacts of industrialization on these three factors within Canada and the USA. Specifically, we show how processes of corporate concentration, farm-scale intensification, mechanization, and the “cost-price squeeze” have led to a decrease in ecological and economic diversity, a high degree of spatial and organizational connectivity, and a diminished decision-making capacity for individual farmers. While this analysis is qualitative and heuristic, the evidence reviewed here leads us to postulate that our food system is becoming less resilient to external shocks such as climate change. We conclude by discussing four possible strategies to restore resilience and suggest a more transformational shift in food system politics and practice. Specifically, we argue that publicly led multifunctional policies may support more diversified production while programs to promote food system localization can increase farmer autonomy. However, these shifts will not be possible without social-structural corrections of current power imbalances in the food system. This policy discussion reinforces the value of the social ecological framework and, specifically, its capacity to produce an analysis that interweaves ecology, economy, and power.


Climate change Resilience Adaptive capacity Agriculture Farming Industrial food system 



The support of the Social Sciences and Humanities Research Council (SSHRC) and the Vanier Scholarship program are gratefully acknowledged. This paper benefits greatly from the review process, and so, we acknowledge the blind peer reviewers who provided insights and input to an earlier draft.


  1. Agriculture and Agri-food Canada (AAFC) (2012) An overview of the Canadian agriculture and agri-food system. AAFC, OttawaGoogle Scholar
  2. Abson DJ, Fraser ED, Benton TG (2013) Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric Food Secur 2:2. doi: 10.1186/2048-7010-2-2 CrossRefGoogle Scholar
  3. Adger WN (2006) Vulnerability. Glob Environ Chang 16:268–281. doi: 10.1016/j.gloenvcha.2006.02.006 CrossRefGoogle Scholar
  4. Adger WN, Brown K (2009) Vulnerability and resilience to environmental change: ecological and social perspectives. In: Castree N, Demeritt D, Liverman D, Rhoads B (eds) A companion to environmental geography. Blackwell, Oxford, pp 109–122Google Scholar
  5. Adger WN, Hughes T, Folke C et al (2005) Social-ecological resilience to coastal disasters. Science 309(5737):1036–1039Google Scholar
  6. Alonso-Fradejas A, Borras SM, Holmes T et al (2015) Food sovereignty: convergence and contradictions, conditions and challenges. Third World Q 36:431–448. doi: 10.1080/01436597.2015.1023567 CrossRefGoogle Scholar
  7. Baker L, Campsie P, Rabinowicz K (2010) Menu 2020: ten good food ideas for Ontario. Metcalf Food Solutions, TorontoGoogle Scholar
  8. Becton L (2014) Update on PEDV research. Minnesota Pork Congress, MinneapolisGoogle Scholar
  9. Bennett AJ, Bending GD, Chandler D et al (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev Camb Philos Soc 87:52–71. doi: 10.1111/j.1469-185X.2011.00184.x CrossRefGoogle Scholar
  10. Berardi G, Green R, Hammond B (2011) Stability, sustainability, and catastrophe: applying resilience thinking to U.S. agriculture. Res Hum Ecol 18:115–125Google Scholar
  11. Berkes F, Colding J, Folke C (2003) Navigating social-ecological systems: building resilience for complexity and change. Cambridge University Press, CambridgeGoogle Scholar
  12. Blackwell BF, Dolbeer RA (2001) Decline of the red-winged blackbird population in Ohio correlated to changes in agriculture. J Wildl Manag 65:661–667CrossRefGoogle Scholar
  13. Bonanno A, Busch L, Friedland WH et al (1994) Introduction. In: Bonanno A, Busch L, Friedland WH et al (eds) From Columbus to Conagra: the globalization of agriculture and food. University Press of Kansas, Lawrence, p 294Google Scholar
  14. Boody G, Vondracek B, Andow DA et al (2005) Multifunctional agriculture in the United States. Bioscience 55:27–38CrossRefGoogle Scholar
  15. Born B, Purcell M (2006) Avoiding the local trap: scale and food systems in planning research. J Plan Educ Res 26:195–207. doi: 10.1177/0739456X06291389 CrossRefGoogle Scholar
  16. Bradshaw B (2004) Plus c’est la même chose? Questioning crop diversification as a response to agricultural deregulation in Saskatchewan, Canada. J Rural Stud 20:35–48. doi: 10.1016/S0743-0167(03)00033-0 CrossRefGoogle Scholar
  17. Brent ZW, Schiavoni CM, Alonso-Fradejas A (2015) Contextualising food sovereignty: the politics of convergence among movements in the USA. Third World Q 36:618–635. doi: 10.1080/01436597.2015.1023570 CrossRefGoogle Scholar
  18. Bretting P, Stoner A, Widrlechner M, Williams K (2011) Country report on the state of plant genetic resources for food and agriculture: United States of America. Food and Agriculture Organization of the United NationsGoogle Scholar
  19. Brown K (2014) Global environmental change I: a social turn for resilience? Prog Hum Geogr 38:107–117. doi: 10.1177/0309132513498837 CrossRefGoogle Scholar
  20. Bryant C, Smit B, Brklacich M et al (2000) Adaptation in Canadian agriculture to climatic variability and change. Clim Change 45:181–201CrossRefGoogle Scholar
  21. Bullock DG (1992) Crop rotation. Crit Rev Plant Sci 11:309–326CrossRefGoogle Scholar
  22. Burch D, Lawrence G (2009) Towards a third food regime: behind the transformation. Agric Hum Values 26:267–279. doi: 10.1007/s10460-009-9219-4 CrossRefGoogle Scholar
  23. Burnett K, Murphy S (2014) What place for international trade in food sovereignty? J Peasant Stud 1–20. doi: 10.1080/03066150.2013.876995
  24. Buttel FH (2003) Envisioning the future development of farming in the USA: agroecology between extinction and multifunctionality? New Directions in Agroecology Research and EducationGoogle Scholar
  25. Cantor A, Strochlic R (2009) Breaking down market barriers for small and mid-sized organic growers. California Institute for Rural StudiesGoogle Scholar
  26. Cargill (2010) Cargill, Meyer natural foods enter into joint “Go-to-Market” agreement. Accessed May 2014
  27. Challinor AJ, Watson J, Lobell DB et al (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291. doi: 10.1038/NCLIMATE2153 CrossRefGoogle Scholar
  28. Clapp J, Fuchs D (2009) Corporate power in global agrifood governance. MIT Press, USCrossRefGoogle Scholar
  29. Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  30. Cote M, Nightingale AJ (2011) Resilience thinking meets social theory: situating social change in socio-ecological systems (SES) research. Prog Hum Geogr 36:475–489. doi: 10.1177/0309132511425708 CrossRefGoogle Scholar
  31. Da Silva CA (2005) The growing role of contract farming in Agri-Food Systems development: drivers, theory and practice. FAO, RomeGoogle Scholar
  32. Davis M, Waters T (2014) Killer pig virus wipes out more than 10 percent of nation’s hogs, causing spike in pork prices. In: Reuters. Accessed May 2014
  33. Davis AS, Hill JD, Chase CA et al (2012) Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One 7, e47149. doi: 10.1371/journal.pone.0047149 CrossRefGoogle Scholar
  34. DeLind LB, Howard PH (2008) Safe at any scale? Food scares, food regulation, and scaled alternatives. Agric Hum Values 25:301–317. doi: 10.1007/s10460-007-9112-y CrossRefGoogle Scholar
  35. Desjardins E, MacRae R, Schumilas T (2009) Linking future population food requirements for health with local production in Waterloo Region, Canada. Agric Hum Values 27:129–140. doi: 10.1007/s10460-009-9204-y CrossRefGoogle Scholar
  36. Emel J, Neo H (2011) Killing for profit: global livestock industries and their socio-ecological implications. In: Peet R, Watts M, Robbins P (eds) Global political ecology. Routledge, Florence, pp 82–96Google Scholar
  37. Engle NL, Bremond A, Malone EL, Moss RH (2013) Towards a resilience indicator framework for making climate-change adaptation decisions. Mitig Adapt Strateg Glob Chang. doi: 10.1007/s11027-013-9475-x Google Scholar
  38. Ericksen PJ (2008) Conceptualizing food systems for global environmental change research. Glob Environ Chang Policy Dimens 18:234–245. doi: 10.1016/j.gloenvcha.2007.09.002 CrossRefGoogle Scholar
  39. ETC. Group (2013) Putting the cartel before the horse … and farm, seeds, soil, peasants, etc. Communique# 111. ETC Group, OttowaGoogle Scholar
  40. Farmdoc (2014) Marketing and outlook: U.S. Price History. In: Univ. Illinois. Accessed May 2014
  41. Feagan R (2007) The place of food: mapping out the “local” in local food systems. Prog Hum Geogr 31:23–42. doi: 10.1177/0309132507073527 CrossRefGoogle Scholar
  42. Folke C (2006) Resilience: the emergence of a perspective for social–ecological systems analyses. Glob Environ Chang 16(3):253–267Google Scholar
  43. Fragoso C, Brown GG, Patrón JC et al (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Appl Soil Ecol 6:17–35. doi: 10.1016/S0929-1393(96)00154-0 CrossRefGoogle Scholar
  44. Fraser EDG (2003) Social vulnerability and ecological fragility: building bridges between social and Natural Sciences Using the Irish Potato Famine as a case study. Conserv Ecol 7(2):9Google Scholar
  45. Fraser E (2006) Crop diversification and trade liberalization: linking global trade and local management through a regional case study. Agric Hum Values 23:271–281. doi: 10.1007/s10460-006-9005-5 CrossRefGoogle Scholar
  46. Fraser E (2007) Travelling in antique lands: using past famines to develop an adaptability/resilience framework to identify food systems vulnerable to climate change. Clim Change 83:495–514. doi: 10.1007/s10584-007-9240-9 CrossRefGoogle Scholar
  47. Fraser E, Mabee W, Figge F (2005) A framework for assessing the vulnerability of food systems to future shocks. Futures 37:1–30CrossRefGoogle Scholar
  48. Fraser EDG, Dougill AJ, Hubacek K et al (2011) Assessing vulnerability to climate change in dryland livelihood systems: conceptual challenges and interdisciplinary solutions. Ecol Soc 16:3Google Scholar
  49. Fridell G (2004) The fair trade network in historical perspective. Can J Dev Stud Can d’études du développement 25:411–428. doi: 10.1080/02255189.2004.9668986 CrossRefGoogle Scholar
  50. Friedland WH, Barton AE, Thomas RJ (1981) Manufacturing green gold: capital, labor, and technology in the lettuce industry. Cambridge University Press, CambridgeGoogle Scholar
  51. Fulponi L (2006) Private voluntary standards in the food system: the perspective of major food retailers in OECD countries. Food Policy 31:1–13. doi: 10.1016/j.foodpol.2005.06.006 CrossRefGoogle Scholar
  52. Geisseler D, Horwath WR (2013) Lettuce production in California. Fertilizer Research and Education Program. Accessed May 2014
  53. Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439CrossRefGoogle Scholar
  54. Gunderson LH, Holling CS (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DCGoogle Scholar
  55. Hammond B, Berardi G, Green R (2013) Resilience in agriculture: small- and medium-sized farms in Northwest Washington State. Agroecol Sustain Food Syst 37:316–339. doi: 10.1080/10440046.2012.746251 CrossRefGoogle Scholar
  56. Hanrahan CE, Canada C, Banks BA (2011) U.S. Agricultural Trade: trends, composition, direction, and policy. Nova Science, Washington, DCGoogle Scholar
  57. Hartz T, Miyao G, Mickler J et al (2008) Processing tomato production in California. UCANR, University of CaliforniaGoogle Scholar
  58. Hinrichs CC (2014) Transitions to sustainability: a change in thinking about food systems change? Agric Hum Values 1–13. doi: 10.1007/s10460-014-9479-5
  59. Hooper DU, Chapin FS III, Ewel JJ, Hector A et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  60. IPCC (2014) IPCC WGII AR5 chapter 7: food security and food production systems. Cambridge University Press, Cambridge, pp 1–82Google Scholar
  61. Jackson W (2002) Natural systems agriculture: a truly radical alternative. Agric Ecosyst Environ 88:111–117CrossRefGoogle Scholar
  62. Jaffee D, Howard PH (2009) Corporate cooptation of organic and fair trade standards. Agric Hum Values 27:387–399. doi: 10.1007/s10460-009-9231-8 CrossRefGoogle Scholar
  63. Johnstone S, Mazo J (2011) Global warming and the Arab Spring. Survival (Lond) 53:11–17. doi: 10.1080/00396338.2011.571006 CrossRefGoogle Scholar
  64. Juma C, Tabo R, Wilson K, Conway G (2013) Innovation for sustainable intensification in Africa. The Montpellier Panel, Agriculture for Impact, LondonGoogle Scholar
  65. Khoury CK, Bjorkman AD, Dempewolf H et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111:4001–4006. doi: 10.1073/pnas.1313490111 CrossRefGoogle Scholar
  66. Kogan F, Guo W (2014) Early twenty-first-century droughts during the warmest climate. Geomatics Nat Hazards Risk 1–11. doi: 10.1080/19475705.2013.878399
  67. Liebman M, Mohler CL, Staver CP (2001) Ecological management of agricultural weeds. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  68. Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193. doi: 10.1525/bio.2011.61.3.4 CrossRefGoogle Scholar
  69. Lynch D (2009) Environmental impacts of organic agriculture: a Canadian perspective. Can J Plant Sci 89:621–628CrossRefGoogle Scholar
  70. MacRae RJ, Lynch D, Martin RC (2010) Improving energy efficiency and GHG mitigation potentials in Canadian organic farming systems. J Sustain Agric 34:549–580. doi: 10.1080/10440046.2010.484704 CrossRefGoogle Scholar
  71. MacRae R, Cuddeford V, Young SB, Matsubuchi-Shaw M (2013) The food system and climate change: an exploration of emerging strategies to reduce GHG emissions in Canada. Agroecol Sustain Food Syst 37:933–963. doi: 10.1080/21683565.2013.774302 CrossRefGoogle Scholar
  72. Marsden T (1997) Creating space for food: the distinctiveness of recent agrarian development. In: Goodman D, Watts M (eds) Globalising food: agrarian questions and global restructuring. Routledge, New York, pp 122–136Google Scholar
  73. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(80-):504–509. doi: 10.1126/science.277.5325.504 CrossRefGoogle Scholar
  74. McMichael P (2010) The world food crisis in historical perspective. In: Magdoff F, Tokar B (eds) Agriculture and food in crisis: conflict, resistance, and renewal. NYU Press, New YorkGoogle Scholar
  75. McMichael P (2013) Value-chain agriculture and debt relations: contradictory outcomes. Third World Q 34:671–690. doi: 10.1080/01436597.2013.786290 CrossRefGoogle Scholar
  76. Miewald C, Ostry A, Hodgson S (2013) Food safety at the small scale: the case of meat inspection regulations in British Columbia’s rural and remote communities. J Rural Stud 32:93–102. doi: 10.1016/j.jrurstud.2013.04.010 CrossRefGoogle Scholar
  77. Mutoko MC, Hein L, Shisanya C (2014) Farm diversity, resource use efficiency and sustainable land management in the western highlands of Kenya. J Rural Stud 36:108–120. doi: 10.1016/j.jrurstud.2014.07.006 CrossRefGoogle Scholar
  78. NASS (2009) National agricultural statistics service. Accessed May 2014
  79. National Farmers Union (2010) Losing our grip: how a Corporate Farmland buy-up, rising farm debt, and agribusiness financing of inputs threaten family farms and food sovereignty. National Farmers Union, Saskatoon, SaskatchewanGoogle Scholar
  80. National Farmers Union (2013) Farms, farmers and agriculture in Ontario. National Farmers Union, Saskatoon, SaskatchewanGoogle Scholar
  81. O’Brien K (2012) Global environmental change II: from adaptation to deliberate transformation. Prog Hum Geogr 36:667–676. doi: 10.1177/0309132511425767 CrossRefGoogle Scholar
  82. Osteen C, Gottlieb J, Vasavada U (2012) Agricultural resources and environmental indicators. USDA-ERS Economic Information Bulletin 98, Washington, DCGoogle Scholar
  83. Pelling M (2011) Adaptation to climate change: from resilience to transformation. Routledge, London and New YorkGoogle Scholar
  84. Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18CrossRefGoogle Scholar
  85. Pimentel D, Williamson S, Alexander CE et al (2008) Reducing energy inputs in the US food system. Hum Ecol 36:459–471. doi: 10.1007/s10745-008-9184-3 CrossRefGoogle Scholar
  86. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 CrossRefGoogle Scholar
  87. Pritchard B, Burch D (2003) Agri-food globalization in perspective: international restructuring in the processing tomato industry. Ashgate, AldershotGoogle Scholar
  88. Schnepf R (2014) U.S. farm incomeGoogle Scholar
  89. Seccombe W (2007) A home-grown strategy for Ontario agriculture a new deal for farmers, a new relationship with consumers. Toronto Food Policy Council, TorontoGoogle Scholar
  90. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232. doi: 10.1038/nature11069 CrossRefGoogle Scholar
  91. Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Glob Environ Chang 16:282–292. doi: 10.1016/j.gloenvcha.2006.03.008 CrossRefGoogle Scholar
  92. Smithers J, Johnson P (2004) The dynamics of family farming in North Huron County, Ontario. Part I. Development trajectories. Can Geogr 48:191–208. doi: 10.1111/j.0008-3658.2004.00055.x CrossRefGoogle Scholar
  93. Statistics Canada (2011) 2011 Census of agriculture. Government of Canada, OttawaGoogle Scholar
  94. Tilman D, Reich PB, Knops J et al (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. doi: 10.1126/science.1060391 CrossRefGoogle Scholar
  95. Tilman D, Cassman KG, Matson PA et al (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefGoogle Scholar
  96. Tomanio J (2014) Reinvigorating public plant breeding: seeds & breeds | RAFI. In: Rural Adv. Found. Int. Accessed 17 Mar 2015
  97. Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi: 10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  98. USDA (2014) Assets, debt, and wealth. In: United States Dep. Agric. Econ. Res. ServGoogle Scholar
  99. USEPA (2013) Economic overview. In: U.S. Environ. Prot. AgencyGoogle Scholar
  100. Van der Ploeg JD (2006) Agricultural production in crisis. In: Cloke P, Marsden T, Mooney P (eds) Handbook of rural studies. Sage Publications, Thousand Oaks, pp 258–271CrossRefGoogle Scholar
  101. Vandermeer J, Van Noordwijk M, Anderson J et al (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22. doi: 10.1016/S0167-8809(97)00150-3 CrossRefGoogle Scholar
  102. Watts MJ, Bohle HJ (1993) The space of vulnerability: the causal structure of hunger. Prog Hum Geogr 17:43–68. doi: 10.1177/030913259301700103 CrossRefGoogle Scholar
  103. Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42:3508–3513CrossRefGoogle Scholar
  104. Weis T (2010) The accelerating biophysical contradictions of industrial capitalist agriculture. J Agrar Chang 10:315–341. doi: 10.1111/j.1471-0366.2010.00273.x CrossRefGoogle Scholar
  105. Weis T (2012) A political ecology approach to industrial food production. In: Koc M, Sumner J, Winson T (eds) Critical perspectives in food studies. Oxford University Press, Toronto, pp 104–121Google Scholar
  106. Winson A (1993) The intimate commodity: food and the development of the agro-industrial complex in Canada. Garamond Press, AuroraGoogle Scholar
  107. Winson A (2013) The Industrial Diet: the degradation of food and the struggle for healthy eating. UBC Press and New York University Press, Vancouver and New YorkGoogle Scholar
  108. Woodall P, Lynn BC, Halverson (2011) Monopoly meat: a discussion on the market concentration in relation to meat packing. George Washington University, Washington, DCGoogle Scholar

Copyright information

© AESS 2015

Authors and Affiliations

  1. 1.Department of GeographyUniversity of GuelphGuelphCanada

Personalised recommendations