In vitro effects of Geranium graveolens, Sarcopoterium spinosum and Varthemia iphionoides extracts on pancreatic MIN6 proliferation and insulin secretion and on extrapancreatic glucose diffusion

  • Violet Kasabri
  • Rana Abu-Dahab
  • Fatma U. Afifi
  • Randa Naffa
  • Lara Majdalawi
  • Hazar Shawash
Original Article

Abstract

Geranium graveolens, Sarcopoterium spinosum and Varthemia iphionoides are utilized traditionally for diabetes ethnomedicine in Jordan. Their aqueous extracts (AE) for antidiabetic activity and mechanism of action were investigated in vitro. Insulin secretion and pancreatic proliferation as well as glucose diffusion in vitro bioassays were recruited. Similar to L-alanine, S. spinosum AE (0.01 and 0.5 mg/ml) potentiated acute glucose-stimulated Ca2+ regulated insulin secretion in the clonal pancreatic β-cell line MIN6 (19.3 and 20.6 folds, P < 0.001). G. graveolens and V. iphionoides AEs were inactive. Comparable to GLP-1-enhanced β-cell proliferation, G. graveolens AE (0.01 and 0.05 mg/ml), S. spinosum (0.1 mg/ml) and V. iphionoides AEs (0.5 and 1 mg/ml) induced augmentations in pancreatic BrdU incorporation (P < 0.05−0.001). Performing effectively as guar gum diffusional hindrance, all three plants’ AE concentrations retarded 24 h glucose efflux into external solution across dialysis membrane (P < 0.05−0.001). Conclusively β-cell mass expansion was augmented and carbohydrate absorption was reduced by all selected plants. Exceptionally, S. spinosum stimulated pancreatic insulin secretion.

Keywords

Geranium graveolens Sarcopoterium spinosum Varthemia iphionoides Insulin secretion MIN6 proliferation Jordan 

References

  1. 1.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.Google Scholar
  2. 2.
    Levy P. The current unmet need in type 2 diabetes mellitus: addressing glycaemia and cardiovascular disease. Postgrad Med. 2009;121:7–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Ball AJ, McCluskey JT, Flatt PR, McClenaghan N. Chronic exposure to tolbutamide and glibenclamide impairs insulin secretion but not transcription of KATP channel components. Pharmacol Res. 2004;50:41–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Aboudi A, Afifi FU. Plants used for the treatment of diabetes in Jordan: A review of scientific evidence. Pharma Biol. 2011;49:221–39.CrossRefGoogle Scholar
  5. 5.
    Wazaify M, Afifi FU, El-Khateeb M, Ajlouni K. Complementary and alternative medicine use among Jordanian diabetes patients. Complement Ther Clin Pract. 2011;17:71–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Ajlouni K, Khader YS, Batieha A, Ajlouni H, El-Khateeb M. An increase of diabetes mellitus in Jordan over 10 years. J Diabetes Complications. 2008;22:317–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Zindah M, Belbeisi A, Walke H, Mokdad AH. Obesity and diabetes in Jordan: findings from the behavioral risk factor surveillance system, 2004. Prev Chron Disease. 2008;5:1–8.Google Scholar
  8. 8.
    Oran SA, Al-Eisawi DM. Check list of medicinal plants in Jordan. Dirasat. 1998;25:84–112.Google Scholar
  9. 9.
    Hamdan II, Afifi FU. Screening of Jordanian flora for α-amylase inhibitory activity. Pharm Biol. 2008;46:746–50.CrossRefGoogle Scholar
  10. 10.
    Flammang AM, Kendall DM, Baumgartner CJ, Slagle TD, Choe YS. Effect of a viscous fiber bar on postprandial glycemia in subjects with type 2 diabetes. J Am Coll Nutr. 2006;25:409–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Khookhor O, Sato Y. Mongolian plant extracts with potential glucose absorption inhibiting effects in rats. J Trad Med. 2009;26:74–9.Google Scholar
  12. 12.
    Gupta P, Premavalli KS. In-vitro studies on functional properties of selected natural dietary fibers. Int J Food Propert. 2011;14:397–410.CrossRefGoogle Scholar
  13. 13.
    Gallagher AM, Flatt PR, Duggy G, Abdel-Wahab YHA. The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr Res. 2003;23:413–24.CrossRefGoogle Scholar
  14. 14.
    Gorelick J, Kitron A, Pen S, Rosenzweig T, Madar Z. Anti-diabetic activity of Chiliadenus iphionoides. J Ethnopharmacol. 2011;137:1245–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Smirin P, Taler D, Abitbol G, Brutman-Barazani T, Kerem Z, Sampson SR, et al. Sarcopoterium spinosum extract as an antidiabetic agent: in vitro and in vivo study. J Ethnopharmacol. 2010;129:10–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Kasabri V, Flat PR, Abdel-Wahab YH. Terminalia bellirica stimulates the secretion and action of insulin and inhibits starch digestion and protein glycation in vitro. Br J Nutr. 2010;103:212–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Mathews JN, Flatt PR, Abdel-Wahab YH. Asparagus adscendes (Shwera musali) stimulates insulin secretion, insulin action and inhibits starch digestion. Br J Nutr. 2006;95:576–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Hamdan II, Afifi FU. Studies on the in vitro and in vivo hypoglycaemic activities of some medicinal plants used in treatment of diabetes in Jordanian traditional medicine. J Ethnopharmacol. 2004;93:117–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, et al. Establishment of a pancreatic β cell line that retains glucose inducible insulin secretion: Special reference to expression of glucose transport forms. Endocrinology. 1990;127:126–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Hannan JM, Ali L, Rokeya B, Khaleque J, Akhter M, Flatt PR, et al. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br J Nutr. 2007;97:514–21.PubMedCrossRefGoogle Scholar
  21. 21.
    List JF, Habener JF. Glucagon-like peptide 1 agonists and the development and growth of pancreatic β-cells. Am J Physiol Endocrinol Metab. 2004;286:E875–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Thiebart-Fassy I, Hervagault J. Combined effects of diffusional hindrances, electronic repulsion and product inhibition on the kinetic properties of a bound acid phosphatase. FEBS. 1993;334:89–94.CrossRefGoogle Scholar
  23. 23.
    Takahashi T, Yokawa T, Ishihara N, Okubo T, Chu DC, Nishigaki E, et al. Hydrolysed guar gum decreases postprandial blood glucose and glucose absorption in the rat small intestine. Nutr Res. 2009;29:419–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Wagner H, Bladt S. Plant drug analysis, a thin layer chromatography atlas. Berlin, Springer-Verlag, 1996; 155, 176, 178.Google Scholar
  25. 25.
    Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine. 1995;2:137–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Rosata A, Vitali C, De Laurentis N, Armenise D, Antonietta MM. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine. 2007;14:727–32.CrossRefGoogle Scholar
  27. 27.
    Kasabri V, Afifi FU, Hamdan I. Evaluation of the acute antihyperglycemic effects of four selected indigenous plants from Jordan used in traditional medicine. Pharm Biol. 2011;49:687–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Al-Mustafa AH, Al-Thunibat OY. Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pak J Biol Sci. 2008;11:351–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Kasabri V, Afifi FU, Hamdan I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine. J Ethnopharmacol. 2011;13:888–96.CrossRefGoogle Scholar
  30. 30.
    Cefalu WT. Pharmacotherapy for the treatment of patients with type 2 diabetes mellitus: rationale and specific agents. Nature. 2007;81:636–49.Google Scholar
  31. 31.
    Al-Dabbas MM, Suganuma T, Kitahara K, Hou DX, Fujii M. Cytotoxic, antioxidant and antibacterial activities of Varthemia iphionoides Boiss. Extracts J Ethnopharmacol. 2006;108:287–93.CrossRefGoogle Scholar
  32. 32.
    Afifi F, Aburjai T. Antiplatelet activity of Varthenmia iphionoides. Fitoterapia. 2004;75:629–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Abu-Hijleh A, Jarrar N, Adwan K. Antibacterial activity of common Varthemia, Varthemia iphionoides ethanol extract alone and in combination with cefotaxine. Adv Biol Res. 2009;3:144–7.Google Scholar
  34. 34.
    Al-Dabbas MM, Kitahara K, Suganuma T, Hashimoto F, Tadera K. Antioxidant and alpha-amylase inhibitory compounds from aerial parts of Varthemia iphionoides. Boiss Biosci Biotechnol Biochem. 2006;70:2178–84.Google Scholar
  35. 35.
    Sjoholm S. Liraglutide therapy for type 2 diabetes: overcoming unmet needs. Pharmaceuticals. 2010;3:764–81.CrossRefGoogle Scholar
  36. 36.
    Movassat J, Portha B. Models for pharmacological activation of beta-cell regeneration in diabetes. Drug Discov Today: Disease Models. 2007;4:31–8.CrossRefGoogle Scholar
  37. 37.
    Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem cell differentiation. Nature. 2004;429:41–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J, et al. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology. 2010;151:3026–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Krisanapun C, Peungvicha P, Temsiririrkkul R, Wongkrajang Y. Aqueous extract of Abutilon indicum sweet inhibits glucose absorption and stimulates insulin secretion in rodents. Nutr Res. 2009;29:579–89.PubMedCrossRefGoogle Scholar
  40. 40.
    Giacco R, Clemente G, Riccardi G. Dietary fiber in treatment of diabetes: myth or reality? Dig Liver Dis. 2002;34 Suppl 2:S140–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim M. High-methoxyl pectin has greater enhancing effect on glucose uptake in intestinal perfused rats. Nutrition. 2005;21:372–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Butt MS, Ahmad A, Sharif MK. Influence of pectin and guar gum composite flour on plasma biochemical profile of streptozocin-induced diabetic male albino rats. Int J Food Propert. 2007;10:345–61.CrossRefGoogle Scholar
  43. 43.
    Flourie B, Vidon N, Florent CH, Bernier JJ. Effect of pectin on jejunal glucose absorption and unstirred layer thickness in normal man. Gut. 1984;2:936–41.CrossRefGoogle Scholar
  44. 44.
    Jenkins DJA, Leeds AR, Wolever TMS, Goff DV, George K, Alberti MM, et al. Unabsorbable carbohydrates and diabetes: decreased postprandial hyperglycaemia. Lancet. 1976;2:172–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Edwards CA, Blackburn NA, Craigne L, Davison P, Tomlin J, Sugden K, et al. Viscosity of food gums determined in vitro related to their hypoglycaemic actions. Am J Clin Nutr. 1987;46:72–7.PubMedGoogle Scholar

Copyright information

© Research Society for Study of Diabetes in India 2013

Authors and Affiliations

  • Violet Kasabri
    • 1
  • Rana Abu-Dahab
    • 1
  • Fatma U. Afifi
    • 1
  • Randa Naffa
    • 2
  • Lara Majdalawi
    • 1
  • Hazar Shawash
    • 1
  1. 1.Faculty of PharmacyThe University of JordanAmmanJordan
  2. 2.Faculty of MedicineThe University of JordanAmmanJordan

Personalised recommendations