High DHA dosage from algae oil improves postprandial hypertriglyceridemia and is safe for type-2 diabetics

  • S. D. Doughman
  • A. S. Ryan
  • S. Krupanidhi
  • C. B. Sanjeevi
  • V. Mohan
Review Article

Abstract

Postprandial refers to diet induced changes in plasma concentrations of sugars, amino acids and fats between 0 and 6 h following a meal. This review details the fat transport through lipoprotein particles and triglyceride fractions in the postprandial plasma. The long-chain omega-3 fatty acid docosahexaenoic acid (DHA) is more active in postprandial plasma and is more abundantly incorporated into the surface phospholipid fraction of lipoproteins. A survey of controlled clinical trials in the literature demonstrates that 1,000 mg to 2,000 mg DHA daily is effective to treat hypertriglyceridemia (HTG), mixed dyslipidemia and most effectively controls elevated postprandial triglycerides (TG). TG is a marker for total fat in circulation. Omega-3 fatty acids lower fasting and postprandial TG, an activity first discovered in 1971 in Greenlandic Inuits. Low TG and high DHA were coincident with the absence of type 2 diabetes. It is now known that DHA is the major structural and functional omega-3 component of lipoproteins in human plasma. DHA is the omega-3 to most substantially increase by mass in the phospholipid fraction of very low-density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL). DHA is most effective at raising HDL levels and improves the omega-3 index in red blood cells (RBC). DHA intake also correlates with greater than 25 % reductions of fasting TG and greater than 40 % reductions in postprandial TG. Postprandial HTG is common in the type 2 diabetes; therefore, we considered the safety of DHA from Schizochytrium sp. algae oil and the evidence for risk reduction of coronary vascular disease (CVD) and type 2 diabetes. Recent clinical trials suggest high DHA intake from Chromista algae controls plasma TG, but does not appear to control glucocentric markers or cholesterol levels. DHA directly affects postprandial TG transport, but has little effect on insulin function and insulin resistance. Applications for use in South Asian diabetics are considered. 1,200 mg algae DHA daily over 3 months is an optimized program for direct control of postprandial HTG and is safe for type 2 diabetics.

Keywords

Triglycerides Diabetes DHA Vegetarian Omega-3 fatty acids 

References

  1. 1.
    Harris WS. The omega-6/omega-3 ratio and cardiovascular disease risk: uses and abuses. Curr Atheroscler Rep. 2006;8:453–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Bang HO, Dyerberg J, Nielsen AB. Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet. 1971:1143–5.Google Scholar
  3. 3.
    O’Brien DM, Kristal AR, Jeannet MA, Wilkinson MJ, Bersamin A, Luick B. Red blood cell delta15N: a novel biomarker of dietary eicosapentaenoic acid and docosahexaenoic acid intake. Am J Clin Nutr. 2009;89:913–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Radhika G, Ganesan A, Sathya RM, Sudha V, Mohan V. Dietary Carbohydrates, Glycemic load and serum high-density lipoprotein cholesterol concentrations among south Indian adults. (CURES-48). Eur J Clin Nutr. 2009;63:413–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Baum SJ, Kris-Etherton PM, Willett WC, Lichtenstein AH, Rudel LL, Maki KC, et al. Fatty acids in cardiovascular health and disease: a comprehensive update. J Clin Lipidol. 2012;6:216–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res. 2001;40:1–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Qi K, Hall M, Deckelbaum RJ. Long-chain polyunsaturated fatty acid accretion in brain. Curr Opin Clin Nutr Metab Care. 2002;5:133–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Fedorova-Dahms I, Marone PA, Bailey-Hall E, Ryan AS. Safety evaluation of Algal oil from Schizochytrium sp. Food Chem Toxicol. 2011;49:70–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Fedorova-Dahms I, Marone PA, Bauter M, Ryan AS. Safety evaluation of DHA-rich Algal Oil from Schizochytrium sp. Food Chem Toxicol. 2011;49:3310–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Bernstein AM, Ding EL, Willett WC, Rimm EB. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J Nutr. 2012;142:99–104.PubMedCrossRefGoogle Scholar
  11. 11.
    Sanders TA, Gleason K, Griffin B, Miller GJ. Influence of an algal triacylglycerol containing docosahexaenoic acid (22: 6n–3) and docosapentaenoic acid (22: 5n–6) on cardiovascular risk factors in healthy men and women. Br J Nutr. 2006;95:525–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Doughman SD, Krupanidhi S, Sanjeevi CB. Omega-3 fatty acids for nutrition and medicine: considering algae oil as a vegetarian source of EPA and DHA. Curr Diab Rev. 2007;3:198–203.CrossRefGoogle Scholar
  13. 13.
    Health RB, Karpe F, Milne RW, Burdge GC, Wootton SA, Frayn KN. Selective portioning of dietary fatty acids into the VLDL TG pool in the early postprandial period. J Lipid Res. 2003;44:2065–72.CrossRefGoogle Scholar
  14. 14.
    Jacobson TA, Glickstein SB, Rowe JD, Soni PN. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6:5–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Mori TA, Beilin LJ. N3 fatty acids and inflammation. Curr Atheroscler Rep. 2004;6:461–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Kelley DS, Siegel D, Vemuri M, Mackey BE. Docosahexaenoic acid supplementation improves fasting and postprandial lipid profiles in hypertriglyceridemic men. Am J Clin Nutr. 2007;86:324–33.PubMedGoogle Scholar
  17. 17.
    Grimsgaard S, Bonaa KH, Hansen JB, Nordøy A. Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids. Am J Clin Nutr. 1997;66:649–59.PubMedGoogle Scholar
  18. 18.
    Griffin MD, Sanders TA, Davies IG, Morgan LM, Millward DJ, Lewis F, et al. Effects of altering the ratio of dietary n-6 to n-3 fatty acids on insulin sensitivity, lipoprotein size, and postprandial lipemia in men and postmenopausal women aged 45–70 y: the OPTILIP study. Am J Clin Nutr. 2006;84:1290–8.PubMedGoogle Scholar
  19. 19.
    Valdivielso P, Rioja J, García-Arias C, Sánchez-Chaparro MA, González-Santos P. Omega 3 fatty acids induce a marked reduction of apolipoprotein B48 when added to fluvastatin in patients with Type-2 diabetes and mixed hyperlipidemia: a preliminary report. Cardiovasc Diabetol. 2009;8:1.PubMedCrossRefGoogle Scholar
  20. 20.
    Engler MM, Engler MB, Malloy MJ, Paul SM, Kulkarni KR, Mietus-Snyder ML. Effect of docosahexaenoic acid on lipoprotein subclasses in hyperlipidemic children (the EARLY study). Am J Cardiol. 2005;95:869–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Kelley DS, Adkins Y, Woodhouse LR, Swislocki A, Mackey BE, Siegel D. Docosahexaenoic acid supplementation improved lipocentric but not glucocentric markers of insulin sensitivity in hypertriglyceridemic men. Metab Syndr Relat Disord. 2012;10:32–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Hansen JB, Grimsgaard S, Nilsen H, Nordøy A, Bønaa KH. Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on fatty acid absorption, incorporation into serum phospholipids and postprandial triglyceridemia. Lipids. 1998;33:131–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Grimsgaard S, Bønaa KH, Bjerve KS. Fatty acid chain length and degree of unsaturation are inversely associated with serum triglycerides. Lipids. 2000;35:1185–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Kelley DS, Siegel D, Vemuri M, Chung GH, Mackey BE. Docosahexaenoic acid supplementation decreases remnant-like particle-cholesterol and increases the (n-3) index in hypertriglyceridemic men. J Nutr. 2008;138:30–5.PubMedGoogle Scholar
  25. 25.
    Simon JA, Hodgkins ML, Browner WS, Neuhaus JM, Bernert Jr JT, Hulley SB. Serum fatty acids and the risk of coronary heart disease. Am J Epidemiol. 1995;142:469–76.PubMedGoogle Scholar
  26. 26.
    Conquer JA, Holub BJ. Supplementation with an algae source of docosahexaenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects. J Nutr. 1996;126:3032–9.PubMedGoogle Scholar
  27. 27.
    Ryan AS, Keske MA, Hoffman JP, Nelson EB. Clinical overview of algal-docosahexaenoic acid: effects on triglyceride levels and other cardiovascular risk factors. Am J Ther. 2009;16:183–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Miller M, Stone NJ, Ballantyne S et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. 2011;123:2292–2333.Google Scholar
  29. 29.
    Huffman KM, Hawk VH, Henes ST, Ocampo CI, Orenduff MC, Slentz CA, et al. Exercise effects on lipids in persons with varying dietary patterns-does diet matter if they exercise? Responses in studies of a targeted risk reduction intervention through defined exercise I. Am Heart J. 2012;164:117–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Albert CM, Hennekens CH, O’Donnell CJ, Ajani UA, Carey VJ, Willett WC, et al. Fish consumption and risk of sudden death. JAMA. 1998;279:23–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Gissi-Prevenzione Trial. Lancet. 1999;354:9189.Google Scholar
  32. 32.
    Galli C, Tremoli E, Sirtori C. N-3 fatty acids: incorporation into tissue lipids and interactions with dietary components. In: De Caterina R, Kristensen SD, Schmidt ED, editors. Fish oil and vascular disease. Verona: Bi & Gi Publishers; 1992. p. 35–41.CrossRefGoogle Scholar
  33. 33.
    Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr. 2000;71:1085–94.PubMedGoogle Scholar
  34. 34.
    Engler MM, Engler MB, Malloy M, Chiu E, Besio D, Paul S, et al. Docosahexaenoic acid restores endothelial function in children with hyperlipidemia: results from the EARLY study. Int J Clin Pharmacol Ther. 2004;42:672–9.PubMedGoogle Scholar
  35. 35.
    Bonna KH, Thelle DS. Association between blood pressure and serum lipids in a population. Circulation. 1991;83:1305–14.CrossRefGoogle Scholar
  36. 36.
    Keller DD, Jurgilas S, Perry B, Blum J, Farino B, Reynolds J, et al. Docosahexaenoic acid (DHA) lowers triglyceride levels and improves low density lipoprotein particle size in a statin-treated cardiac risk population. J Clin Lipidol. 2007;1:151.CrossRefGoogle Scholar
  37. 37.
    Eritsland J, Arnesen H, Grønseth K, Fjeld NB, Abdelnoor M. Effect of dietary supplementation with n-3 fatty acids on coronary artery bypass graft patency. Am J Cardiol. 1996;77:31–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Daviglus ML, Stamler J, Orencia AJ, Dyer AR, Liu K, Greenland P, et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N Eng J Med. 1997;336:1046–53.CrossRefGoogle Scholar
  39. 39.
    Zhang J, Sasaki S, Amano K, Kesteloot H. Fish consumption and mortality from all causes, ischemic heart disease, and stroke: an ecological study. Prev Med. 1999;28:520–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287:1815–21.PubMedCrossRefGoogle Scholar
  41. 41.
    McKenney JM, Sica D. Role of prescription omega-3 fatty acids in the treatment of hypertriglyceridemia. Pharmacotherapy. 2007;27:715–28.PubMedCrossRefGoogle Scholar
  42. 42.
    Park Y, Harris WS. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J Lipid Res. 2003;44:455–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond). 2005;2:5.CrossRefGoogle Scholar
  44. 44.
    Avramoglu RK, Qiu W, Adeli K. Mechanisms of metabolic dyslipidemia in insulin resistant states: deregulation of hepatic and intestinal lipoprotein secretion. Front Biosci. 2003;1:d464–76.CrossRefGoogle Scholar
  45. 45.
    Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Mills EJ, O’Regan C, Eyawo O, Wu P, Mills F, Berwanger O, et al. Intensive statin therapy compared with moderate dosing for prevention of cardiovascular events: a meta-analysis of >40 000 patients. Eur Heart J. 2011;32:1409–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Nazir A, Papita R, Anbalagan VP, Anjana RM, Deepa M, Mohan V. Prevalence of diabetes in Asian Indians based on glycated hemoglobin and fasting and 2-H post-load (75-g) plasma glucose (CURES-120). Diabetes Technol Ther. 2012;14:665–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Deepa M, Anjana RM, Manjula D, Narayan KM, Mohan V. Convergence of prevalence rates of diabetes and cardiometabolic risk factors in middle and low income groups in urban India: 10-year follow-up of the Chennai urban population study. J Diabetes Sci Technol. 2011;5:918–27.PubMedGoogle Scholar
  49. 49.
    Mozaffarian D, Wu JH. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr. 2012;142:614S–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Mohan V, Sandeep S, Deepa R, Shah B, Varghese C. Epidemiology of type-2 diabetes : Indian scenario. Indian J Med Res. 2007;125:217–30.PubMedGoogle Scholar
  51. 51.
    Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-India Diabetes (ICMR-INDIAB) study. Diabetologia. 2011;54:3022–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, et al. Omega-3 fatty acids and incident type-2 diabetes : a systematic review and meta-analysis. Br J Nutr. 2012;S2:S214–27.CrossRefGoogle Scholar
  53. 53.
    Jiménez-Gómez Y, Marín C, Peérez-Martínez P, Hartwich J, Malczewska-Malec M, Golabek I, et al. A low-fat, high-complex carbohydrate diet supplemented with long-chain (n-3) fatty acids alters the postprandial lipoprotein profile in patients with metabolic syndrome. J Nutr. 2010;140:1595–601.PubMedCrossRefGoogle Scholar
  54. 54.
    Wu WH, Lu SC, Wang TF, Jou HJ, Wang TA. Effects of docosahexaenoic acid supplementation on blood lipids, estrogen metabolism, and in vivo oxidative stress in postmenopausal vegetarian women. Eur J Clin Nutr. 2006;60:386–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Arterburn LM, Oken HA, Hoffman JP, Bailey-Hall E, Chung G, Rom D, et al. Bioequivalence of docosahexaenoic acid from different algal oils in capsules and in a DHA-fortified food. Lipids. 2007;42:1011–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Geppert J, Kraft V, Demmelmair H, Koletzko B. Docosahexaenoic acid supplementation in vegetarians effectively increases omega-3 index: a randomized trial. Lipids. 2005;40:807–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Geppert J, Kraft V, Demmelmair H, Koletzko B. Microalgal docosahexaenoic acid decreases plasma triacylglycerol in normolipidaemic vegetarians: a randomised trial. Br J Nutr. 2006;95:779–86.PubMedCrossRefGoogle Scholar
  58. 58.
    Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr. 2004;24:597–615.PubMedCrossRefGoogle Scholar
  59. 59.
    Seo T, Blaner WS, Deckelbaum RJ. N-3 fatty acids: molecular approaches to optimal biological outcomes. Curr Opin Lipidol. 2005;16:11–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Saxena A, Vikram NK. Role of selected Indian plants in management of type-2 diabetes: a review. J Altern Complement Med. 2004;10:369–78.PubMedCrossRefGoogle Scholar
  61. 61.
    Manav M, Su J, Hughes K, Lee HP, Ong CN. Omega-3 fatty acids and selenium as coronary heart disease risk modifying factors in Asian Indian and Chinese males. Nutrition. 2004;20:967–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Shetty PS. Nutrition transition in India. Public Health Nutr. 2002;5:175–82.PubMedCrossRefGoogle Scholar
  63. 63.
    Mishra A, Chaudhary A, Sethi S. Oxidized n-3 fatty acids inhibit NFkappaB activation via a PPAR alpha-dependent pathway. Arterioscler Thromb Vasc Biol. 2004;24:1621–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Narayanan BA, Narayanan NK, Simi B, Reddy BS. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the n-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 2003;63:972–9.PubMedGoogle Scholar
  65. 65.
    Sundrarjun T, Komindr S, Archararit N, Dahlan W, Puchaiwatananon O, Angthararak S, et al. Effects of n-3 fatty acids on serum interleukin-6, tumour necrosis factor-alpha and soluble tumour necrosis factor receptor p55 in active rheumatoid arthritis. J Int Med Res. 2004;32:443–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST. Differential effects of prostaglandin derived from n-6 and n-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA. 2003;100:1751–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Persaud SJ, Muller D, Belin VD, Kitsou-Mylona I, Asare-Anane H, Papadimitriou A, et al. The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes. 2007;56:197–203.PubMedCrossRefGoogle Scholar
  68. 68.
    Tvrzicka E, Kremmyda LS, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease–a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155:117–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Lambert JE, Parks EJ. Postprandial metabolism of meal triglyceride in humans. Biochim Biophys Acta. 2012;1821:721–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Phillips C, Owens D, Collins P, Tomkin GH. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes. Atherosclerosis. 2005;181:109–14.PubMedCrossRefGoogle Scholar

Copyright information

© Research Society for Study of Diabetes in India 2013

Authors and Affiliations

  • S. D. Doughman
    • 1
  • A. S. Ryan
    • 2
  • S. Krupanidhi
    • 3
  • C. B. Sanjeevi
    • 4
  • V. Mohan
    • 5
  1. 1.Source-Omega, LLCChapel HillUSA
  2. 2.Martek Biosciences CorporationColumbiaUSA
  3. 3.Department of BiotechnologyVignan UniversityVadlamudiIndia
  4. 4.Department of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
  5. 5.Madras Diabetes Research Foundation and Dr Mohan’s Diabetes Specialties CentreChennaiIndia

Personalised recommendations