Advertisement

Gold Bulletin

, Volume 52, Issue 1, pp 27–33 | Cite as

Launching low-energy surface plasmons in purple gold (AuAl2)

  • Panupon Samaimongkol
  • Hans D. RobinsonEmail author
Original Paper
  • 7 Downloads

Abstract

We confirm that the unusual purple color of the intermetallic compound AuAl2 is of a plasmonic origin by launching surface plasmons (SPs) in thin AuAl2 films. We measure the SP dispersion relation and also use the films to measure the index of refraction of sucrose solutions using standard SP resonance sensing. We find that the SP energy in planar AuAl2 is approximately 2.1 eV, about 0.4 eV lower than in gold, and the material is highly resistant to oxidation. This is close to what is expected from previously reported measurements of the dielectric function of AuAl2. On this basis, we predict that AuAl2 nanoparticles will a have very strong, spectrally nearly uniform light absorbance about an order of magnitude greater than standard carbon black. Such particles may therefore find applications as obscurants or as an alternative to more complex light-absorbing gold structures in areas such as photothermal therapy or solar steam generation, or in plasmonic catalysis.

Keywords

Purple gold Surface plasmons Thin films Nanoparticles Light absorber 

Notes

References

  1. 1.
    Harman G (2010) Gold-aluminum intermetallic compounds and other metallic Interface reactions in wire bonding. In: Wire bonding in microelectronics. 3rd edn. McGraw Hill, pp 131–182Google Scholar
  2. 2.
    Roberts-Austen WC (1891) On the melting points of the gold-aluminium series of alloys. Proc R Soc Lond 50:367–368.  https://doi.org/10.1098/rspl.1891.0047 Google Scholar
  3. 3.
    Cretu C, van der Lingen E (1999) Coloured gold alloys. Gold Bull 32(4):115–126.  https://doi.org/10.1007/bf03214796 Google Scholar
  4. 4.
    Cahn RW (1998) Materials science: a precious stone that isn’t. Nature 396(6711):523–524.  https://doi.org/10.1038/25010 Google Scholar
  5. 5.
    Klotz U (2010) Metallurgy and processing of coloured gold intermetallics — part I: properties and surface processing. Gold Bull 43(1):4–10.  https://doi.org/10.1007/bf03214961 Google Scholar
  6. 6.
    Philofsky E (1970) Intermetallic formation in gold-aluminum systems. Solid State Electron 13(10):1391–1394.  https://doi.org/10.1016/0038-1101(70)90172-3 Google Scholar
  7. 7.
    Majni G, Nobili C, Ottaviani G, Costato M, Galli E (1981) Gold-aluminum thin-film interactions and compound formation. J Appl Phys 52(6):4047–4054.  https://doi.org/10.1063/1.329214 Google Scholar
  8. 8.
    Xu C, Sritharan T, Mhaisalkar SG (2007) Interface transformations in thin film aluminum–gold diffusion couples. Thin Solid Films 515(13):5454–5461.  https://doi.org/10.1016/j.tsf.2007.01.017 Google Scholar
  9. 9.
    Xu H, Liu C, Silberschmidt VV, Pramana SS, White TJ, Chen Z, Sivakumar M, Acoff VL (2010) A micromechanism study of thermosonic gold wire bonding on aluminum pad. J Appl Phys 108(11):113517.  https://doi.org/10.1063/1.3514005 Google Scholar
  10. 10.
    Noolu N, Murdeshwar N, Ely K, Lippold J, Baeslack W (2004) Phase transformations in thermally exposed Au-Al ball bonds. J Electron Mater 33(4):340–352.  https://doi.org/10.1007/s11664-004-0141-7 Google Scholar
  11. 11.
    Hüfner S, Wernick JH, West KW (1972) The density of states of AuAl2, AuIn2 and AuGa2. Solid State Commun 10(11):1013–1016.  https://doi.org/10.1016/0038-1098(72)90885-X Google Scholar
  12. 12.
    Wernick JH, Menth A, Geballe TH, Hull G, Maita JP (1969) Superconducting, thermal and magnetic susceptibility behavior of some intermetallic compounds with the fluorite structure. J Phys Chem Solids 30(8):1949–1956.  https://doi.org/10.1016/0022-3697(69)90171-1 Google Scholar
  13. 13.
    Switendick AC, Narath A (1969) Band structure and 197Au nuclear-magnetic resonance studies in AuAl2, AuGa2, and AuIn2. Phys Rev Lett 22(26):1423–1426.  https://doi.org/10.1103/PhysRevLett.22.1423 Google Scholar
  14. 14.
    Perez I, Qi B, Liang G, Lu F, Croft M, Wieliczka D (1988) Spectroscopic results on the above and below E F electronic structure of TAl2, T=Au and Pt. Phys Rev B 38(17):12233–12237.  https://doi.org/10.1103/PhysRevB.38.12233 Google Scholar
  15. 15.
    Hsu L-S, Guo GY, Denlinger JD, Allen JW (2001) Experimental and theoretical study of the electronic structure of AuAl2. J Phys Chem Solids 62(6):1047–1054.  https://doi.org/10.1016/S0022-3697(00)00275-4 Google Scholar
  16. 16.
    Keast VJ, Birt K, Koch CT, Supansomboon S, Cortie MB (2011) The role of plasmons and interband transitions in the color of AuAl2, AuIn2, and AuGa2. Appl Phys Lett 99(11):111908.  https://doi.org/10.1063/1.3638061 Google Scholar
  17. 17.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379.  https://doi.org/10.1103/PhysRevB.6.4370 Google Scholar
  18. 18.
    Supansomboon S, Maaroof A, Cortie MB (2008) “Purple glory”: the optical properties and technology of AuAl2 coatings. Gold Bull 41(4):296–304.  https://doi.org/10.1007/bf03214887 Google Scholar
  19. 19.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Berlin.  https://doi.org/10.1007/0-387-37825-1 Google Scholar
  20. 20.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193.  https://doi.org/10.1126/science.1114849 Google Scholar
  21. 21.
    Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photonics Rev 2(3):136–159.  https://doi.org/10.1002/lpor.200810003 Google Scholar
  22. 22.
    Brolo AG (2012) Plasmonics for future biosensors. Nat Photon 6(11):709–713.  https://doi.org/10.1038/nphoton.2012.266 Google Scholar
  23. 23.
    Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294.  https://doi.org/10.1002/adma.201205076 Google Scholar
  24. 24.
    Keast VJ, Zwan B, Supansomboon S, Cortie MB, Persson POÅ (2013) AuAl2 and PtAl2 as potential plasmonic materials. J Alloy Compd 577(0):581–586.  https://doi.org/10.1016/j.jallcom.2013.06.161 Google Scholar
  25. 25.
    Supansomboon S, Dowd A, Gentle A, van der Lingen E, Cortie MB (2015) Thin films of PtAl2 and AuAl2 by solid-state reactive synthesis. Thin Solid Films 589:805–812.  https://doi.org/10.1016/j.tsf.2015.07.019 Google Scholar
  26. 26.
    Moser M, Mayrhofer PH, Ross IM, Rainforth WM (2007) Thermal stability of sputtered intermetallic Al–Au coatings. J Vac Sci Technol A 25(5):1402–1406.  https://doi.org/10.1116/1.2757181 Google Scholar
  27. 27.
    Debu DT, Ghosh PK, French D, Herzog JB (2017) Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks. Opt Mater Express 7(1):73–84.  https://doi.org/10.1364/OME.7.000073 Google Scholar
  28. 28.
    Habteyes TG, Dhuey S, Wood E, Gargas D, Cabrini S, Schuck PJ, Alivisatos AP, Leone SR (2012) Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 6(6):5702–5709.  https://doi.org/10.1021/nn301885u Google Scholar
  29. 29.
    ASTM (2017) Standard practice for computing the colors of objects by using the CIE system. E308-17Google Scholar
  30. 30.
    Kretschmann E, Raether H (1968) Radiative decay of nonradiative surface plasmons excited by light. Z Naturforch A 23:2135–2136.  https://doi.org/10.1515/zna-1968-1247 Google Scholar
  31. 31.
    Kabashin AV, Kochergin VE, Beloglazov AA, Nikitin PI (1998) Phase-polarisation contrast for surface plasmon resonance biosensors. Biosens Bioelectron 13(12):1263–1269.  https://doi.org/10.1016/S0956-5663(98)00088-8 Google Scholar
  32. 32.
    Rhodes C, Franzen S, Maria JP, Losego M, Leonard DN, Laughlin B, Duscher G, Weibel S (2006) Surface plasmon resonance in conducting metal oxides. J Appl Phys 100(5):054905.  https://doi.org/10.1063/1.2222070 Google Scholar
  33. 33.
    Homola J (ed) (2006) Surface plasmon resonance based sensors, Springer Series on Chemical Sensors and Biosensors, vol 4. Springer, BerlinGoogle Scholar
  34. 34.
    Latimer GW Jr (ed) (2012) Official methods of analysis of AOAC international, Vol. II, vol II, 19th edn. AOAC international, RockvilleGoogle Scholar
  35. 35.
    Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40(1):27–67.  https://doi.org/10.1080/02786820500421521 Google Scholar
  36. 36.
    Streit JK, Bachilo SM, Ghosh S, Lin C-W, Weisman RB (2014) Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. Nano Lett 14(3):1530–1536.  https://doi.org/10.1021/nl404791y Google Scholar
  37. 37.
    Paul GA (2007) Modelled infrared extinction and attenuation performance of atmospherically disseminated high aspect ratio metal nanoparticles. J Opt A 9(3):278–300.  https://doi.org/10.1088/1464-4258/9/3/012 Google Scholar
  38. 38.
    Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2013) Solar vapor generation enabled by nanoparticles. ACS Nano 7(1):42–49.  https://doi.org/10.1021/nn304948h Google Scholar
  39. 39.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120.  https://doi.org/10.1021/Ja057254a Google Scholar
  40. 40.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934.  https://doi.org/10.1021/nl070610y Google Scholar
  41. 41.
    Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183.  https://doi.org/10.1002/smll.201000134 Google Scholar
  42. 42.
    Lissett B, Jiantang S, Kun F, Nastassja L, Vengadesan N, Joseph C, Rebekah D (2008) Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnol 19(31):315102.  https://doi.org/10.1088/0957-4484/19/31/315102 Google Scholar
  43. 43.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317.  https://doi.org/10.1038/86684 Google Scholar
  44. 44.
    Aslam U, Chavez S, Linic S (2017) Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat Nanotech 12:1000–1005.  https://doi.org/10.1038/nnano.2017.131 Google Scholar
  45. 45.
    Zhang X, Li X, Reish ME, Zhang D, Su NQ, Gutiérrez Y, Moreno F, Yang W, Everitt HO, Liu J (2018) Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett 18(3):1714–1723.  https://doi.org/10.1021/acs.nanolett.7b04776 Google Scholar
  46. 46.
    Ren X, Cao E, Lin W, Song Y, Liang W, Wang J (2017) Recent advances in surface plasmon-driven catalytic reactions. RSC Adv 7(50):31189–31203.  https://doi.org/10.1039/C7RA05346K Google Scholar
  47. 47.
    Zhang XM, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401.  https://doi.org/10.1088/0034-4885/76/4/046401 Google Scholar
  48. 48.
    Christopher P, Xin H, Marimuthu A, Linic S (2012) Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater 11:1044–1050.  https://doi.org/10.1038/nmat3454 Google Scholar
  49. 49.
    Chen H, Liu C, Wang M, Zhang C, Luo N, Wang Y, Abroshan H, Li G, Wang F (2017) Visible light gold nanocluster photocatalyst: selective aerobic oxidation of amines to imines. ACS Catal 7(5):3632–3638.  https://doi.org/10.1021/acscatal.6b03509 Google Scholar
  50. 50.
    Huang L, Rudolph M, Rominger F, Hashmi ASK (2016) Photosensitizer-free visible-light-mediated gold-catalyzed 1,2-difunctionalization of alkynes. Angew Chem Int Ed 55(15):4808–4813.  https://doi.org/10.1002/anie.201511487 Google Scholar
  51. 51.
    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95(25):257403.  https://doi.org/10.1103/PhysRevLett.95.257403 Google Scholar
  52. 52.
    Furrer A, Seita M, Spolenak R (2013) The effects of defects in purple AuAl2 thin films. Acta Mater 61(8):2874–2883.  https://doi.org/10.1016/j.actamat.2013.01.029 Google Scholar
  53. 53.
    Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129.  https://doi.org/10.1023/A:1016875709579 Google Scholar
  54. 54.
    Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7(2):496–501.  https://doi.org/10.1021/nl062901x Google Scholar
  55. 55.
    Geddes CD (ed) (2010) Metal-enhanced fluorescence. John Wiley & sons, HobokenGoogle Scholar
  56. 56.
    Deng W, Xie F, Baltar HTMCM, Goldys EM (2013) Metal-enhanced fluorescence in the life sciences: here, now and beyond. Phys Chem Chem Phys 15(38):15695–15708.  https://doi.org/10.1039/c3cp50206f Google Scholar
  57. 57.
    Racknor C, Singh MR, Zhang Y, Birch DJS, Chen Y (2014) Energy transfer between a biological labelling dye and gold nanorods. Methods Appl Fluoresc 2(1):015002.  https://doi.org/10.1088/2050-6120/2/1/015002 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhysicsVirginia TechBlacksburgUSA

Personalised recommendations