Gold Bulletin

, Volume 50, Issue 1, pp 69–76 | Cite as

Shape-selective purification of gold nanorods with low aspect ratio using a simple centrifugation method

  • Maxime Boksebeld
  • Nicholas P. Blanchard
  • Ali Jaffal
  • Yann Chevolot
  • Virginie Monnier
Original Paper
  • 198 Downloads

Abstract

This work presents a new and simple procedure for the shape selective purification of gold nanorods from a mixture of rods and spheres. Previously reported methods were time-consuming and revealed several drawbacks such as low yields and difficulty to recover the purified nanoparticles. Additionally, they were mostly applied to high aspect ratio (AR) nanorods. Our process is based on only simple and short centrifugation steps in order to precipitate specifically gold nanospheres. Samples containing low AR nanorods (AR < 6) were selected to perform the purification process. The supernatant content was followed by UV-Visible absorption spectroscopy after each centrifugation step. Then, transmission electron microscopy (TEM) allowed extract the purification efficiency thanks to shape analyses performed on more than 1000 nanoparticles. These results showed that our centrifugation process was applied successfully to three sizes of nanorods (2.4, 3.7, and 5.3). High purification yields of 72 and 78% were attained for AR = 3.7 and AR = 5.3 nanorods, respectively.

Keywords

Gold Nanorods Shape selective Centrifugation Purification 

Supplementary material

13404_2017_197_MOESM1_ESM.docx (345 kb)
ESM 1(DOCX 344 kb)

References

  1. 1.
    Cao J, Galbraith EK, Sun T, Grattan KTV (2012) Effective surface modification of gold nanorods for localized surface plasmon resonance-based biosensors. Sensor Actuat B-Chem 169:360–367. doi:10.1016/j.snb.2012.05.019 CrossRefGoogle Scholar
  2. 2.
    Murphy CJ, Gole AM, Hunyadi SE et al (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun:544–557. doi:10.1039/b711069c
  3. 3.
    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910. doi:10.1002/adma.200802789 CrossRefGoogle Scholar
  4. 4.
    Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550. doi:10.1021/nl070363y CrossRefGoogle Scholar
  5. 5.
    Alkilany AM, Nagaria PK, Hexel CR et al (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708. doi:10.1002/smll.200801546 CrossRefGoogle Scholar
  6. 6.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900. doi:10.1021/bc049951i CrossRefGoogle Scholar
  7. 7.
    Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent Core-Shell Ag@SiO2 Nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525CrossRefGoogle Scholar
  8. 8.
    Tovmachenko OG, Graf C, van den Heuvel DJ et al (2006) Fluorescence enhancement by metal-Core/silica-Shell nanoparticles. Adv Mater 18:91–95. doi:10.1002/adma.200500451 CrossRefGoogle Scholar
  9. 9.
    Sui N, Monnier V, Zakharko Y et al (2012) Plasmon-controlled narrower and blue-shifted fluorescence emission in (Au@SiO2)SiC nanohybrids. J Nanopart Res 14:1004. doi:10.1007/s11051-012-1004-4 CrossRefGoogle Scholar
  10. 10.
    Weitz DA, Garoff S, Gersten JI, Nitzan A (1983) The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. J Chem Phys 78:5324–5338CrossRefGoogle Scholar
  11. 11.
    He Y, Yang L, Chen Q (2013) Surface-enhanced Raman scattering spectroscopy of dendrimer-entrapped gold nanoparticles. Surf Coat Tech 228:S137–S141. doi:10.1016/j.surfcoat.2012.07.006 CrossRefGoogle Scholar
  12. 12.
    Johansson P, Xu H, Käll M (2005) Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys Rev B 72:035427. doi:10.1103/PhysRevB.72.035427 CrossRefGoogle Scholar
  13. 13.
    Sha MY, Xu H, Natan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130:17214–17215. doi:10.1021/ja804494m CrossRefGoogle Scholar
  14. 14.
    Li JL, Gu M (2010) Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials 31:9492–9498. doi:10.1016/j.biomaterials.2010.08.068 CrossRefGoogle Scholar
  15. 15.
    Gryczynski I, Malicka J, Shen Y et al (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106:2191–2195. doi:10.1021/jp013013n CrossRefGoogle Scholar
  16. 16.
    Zhang T, Lu G, Shen H et al (2014) Plasmonic-enhanced two-photon fluorescence with single gold nanoshell. Sci China Ser G 57:1038–1045. doi:10.1007/s11433-014-5460-y CrossRefGoogle Scholar
  17. 17.
    Richter J, Steinbrück A, Pertsch T et al (2012) Plasmonic Core–Shell nanowires for enhanced second-harmonic generation. Plasmonics 8:115–120. doi:10.1007/s11468-012-9429-2 CrossRefGoogle Scholar
  18. 18.
    Richter J, Steinbrück A, Zilk M et al (2014) Core-shell potassium niobate nanowires for enhanced nonlinear optical effects. Nanoscale 6:5200–5207. doi:10.1039/c3nr05685f CrossRefGoogle Scholar
  19. 19.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  20. 20.
    Kuo WS, Chang CN, Chang YT et al (2010) Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew Chem Int Ed 122:2771–2775. doi:10.1002/ange.200906927 CrossRefGoogle Scholar
  21. 21.
    Dickerson EB, Dreaden EC, Huang X et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66. doi:10.1016/j.canlet.2008.04.026 CrossRefGoogle Scholar
  22. 22.
    Vankayala R, Huang YK, Kalluru P et al (2014) First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 10:1612–1622. doi:10.1002/smll.201302719 CrossRefGoogle Scholar
  23. 23.
    Kannadorai RK, Chiew GGY, Luo KQ, Liu Q (2015) Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy. Cancer Lett 357:152–159. doi:10.1016/j.canlet.2014.11.022 CrossRefGoogle Scholar
  24. 24.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  25. 25.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRefGoogle Scholar
  26. 26.
    Bonacina L (2013) Nonlinear nanomedecine: harmonic nanoparticles toward targeted diagnosis and therapy. Mol Pharmaceut 10:783–792. doi:10.1021/mp300523e CrossRefGoogle Scholar
  27. 27.
    Taleb A, Petit C, Pileni MP (1997) Synthesis of highly synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959CrossRefGoogle Scholar
  28. 28.
    Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393CrossRefGoogle Scholar
  29. 29.
    Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882. doi:10.1002/smll.200500014 CrossRefGoogle Scholar
  30. 30.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods ( NRs ) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  31. 31.
    Sharma V, Park K, Srinivasarao M (2009) Shape separation of gold nanorods using centrifugation. P Natl Acad Sci USA 106:4981–4985. doi:10.1073/pnas.0800599106 CrossRefGoogle Scholar
  32. 32.
    Jana NR, Rammohun R, Mahavidyalaya R (2003) Nanorod shape separation using surfactant assisted self-assembly. Chem Commun 1950–1951Google Scholar
  33. 33.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668. doi:10.1021/nl052396o CrossRefGoogle Scholar
  34. 34.
    Wei GT, Liu FK, Wang CR (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71:2085–2091. doi:10.1021/ac990044u CrossRefGoogle Scholar
  35. 35.
    Khanal BP, Zubarev ER (2010) Purification of high aspect ratio gold nanorods: complete removal of platelets. J Am Chem Soc 130:12634–12635. doi:10.1021/Ja806043p CrossRefGoogle Scholar
  36. 36.
    Chang SS, Shih CW, Chen CD et al (1999) The shape transition of gold nanorods. Langmuir 15:701–709. doi:10.1021/la980929l CrossRefGoogle Scholar
  37. 37.
    Dogic Z, Philipse AP, Fraden S, Dhont JKG (2000) Concentration-dependent sedimentation of colloidal rods. J Chem Phys 113:8368–8380. doi:10.1063/1.1308107 CrossRefGoogle Scholar
  38. 38.
    Peterson J (1964) Hydrodynamic alignment of rodlike macromolecules during ultra centrifugation. J Chem Phys 40:2680–2686CrossRefGoogle Scholar
  39. 39.
    Johnson CJ, Dujardin E, Davis SA et al (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770. doi:10.1039/b200953f CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institut des nanotechnologies de Lyon, Ecole Centrale de LyonUniversité de LyonEcullyFrance
  2. 2.CNRS, Institut Lumière MatièreUniversité de Lyon, Université Claude Bernard Lyon 1LyonFrance

Personalised recommendations