Gold Bulletin

, Volume 50, Issue 1, pp 33–41 | Cite as

Effect of Au content on the enhanced photocatalytic efficiency of mesoporous Au/TiO2 nanocomposites in UV and sunlight

Original Paper

Abstract

Detoxification of harmful dyes through nonconventional catalytic processes is getting thrust in light of environmental remediation. Current work reveals synthesis of gold–titania (Au/TiO2) mesoporous nanostructure and its enhanced photocatalytic performance for degradation of alizarin dye. Optically, Au/TiO2 shows a characteristic surface plasmonic absorption band at 520 nm, whereas X-ray diffraction (XRD) pattern reveals the anatase phase of TiO2 with fcc unit cell structure and tetragonal geometry. X-ray photon spectroscopy depicts (Au 4f7/2 at 84.0 and Au 4f5/2 at 87.7 eV) the elemental state of gold (Au0). Specific surface area was witnessed to decrease with increase of Au content (169, 141, 130, and 119 m2/g for 1, 2, 3, and 4 wt%, respectively). The mesoporous Au/TiO2 nanocomposite showed higher catalytic performance in comparison to commercial nano-TiO2 (P25), which is credited to better charge delocalization at metal semiconductor interface. The reusability studies of the photocatalyst exhibited more than 98% degradation of the dye even after 10 consecutive cycles.

Keywords

Nanocomposites HDP Alizarin dye Photocatalysis 

Notes

Acknowledgements

Authors are thankful to DST (Grant No. SB/FT/CS-178/2013), New Delhi, for financial assistance.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yu J, Qi L, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125CrossRefGoogle Scholar
  2. 2.
    Li H, Bian Z, Zhu J, Zhang D, Li G, Huo Y, Lu Y (2007) Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407CrossRefGoogle Scholar
  3. 3.
    Xiaobo C (2009) Titanium dioxide nanomaterials and their energy applications. Chinese J Catal 30:839–851CrossRefGoogle Scholar
  4. 4.
    Wang X, Blackford M, Prince K, Caruso RA (2012) Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity. ACS Appl Mater Inter 4:476–482CrossRefGoogle Scholar
  5. 5.
    Hamal DB, Klabunde KJ (2007) Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J Colliod Inter Sci 311:514–522CrossRefGoogle Scholar
  6. 6.
    Primo A, Corma A, García H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910CrossRefGoogle Scholar
  7. 7.
    Wang X, Caruso RA (2011) Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles. J Mater Chem 21:20–28CrossRefGoogle Scholar
  8. 8.
    Tada H, Kiyonaga T, Naya SI (2009) Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem Soc Rev 38:1849–1858CrossRefGoogle Scholar
  9. 9.
    Gomes Silva C, Juárez R, Marino T, Molinari R, García H (2010) Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J Am Chem Soc 133:595–602CrossRefGoogle Scholar
  10. 10.
    Kimura K, Naya SI, Jin-nouchi Y, Tada H (2012) TiO2 crystal form-dependence of the Au/TiO2 plasmon photocatalyst’s activity. J Phys Chem C 116:7111–7117CrossRefGoogle Scholar
  11. 11.
    Nishijima Y, Ueno K, Kotake Y, Murakoshi K, Inoue H, Misawa H (2012) Near infrared plasmon-assisted water oxidation. J Phys Chem Lett 3:1248–1252CrossRefGoogle Scholar
  12. 12.
    Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315CrossRefGoogle Scholar
  13. 13.
    Wang H, You T, Shi W, Li J, Guo L (2012) Au/TiO2/au as a plasmonic coupling photocatalyst. J Phys Chem C 116:6490–6494CrossRefGoogle Scholar
  14. 14.
    Revol G, McCallum T, Morin M, Gagosz F, Barriault L (2013) Photoredox transformations with dimeric gold complexes. Angew Chem Int Ed 52:13342–13345CrossRefGoogle Scholar
  15. 15.
    Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi ASK (2015) A highly efficient gold-catalyzed photoredox α-C (sp3) H alkynylation of tertiary aliphatic amines with sunlight. Angew Chem Int Ed 54:6046–6050CrossRefGoogle Scholar
  16. 16.
    Lu Y, Yu H, Chen S, Quan X, Zhao H (2012) Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environ Sci Technol 46:1724–1730CrossRefGoogle Scholar
  17. 17.
    Seh ZW, Liu S, Low M, Zhang SY, Liu Z, Mlayah A, Han MY (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24:2310–2314CrossRefGoogle Scholar
  18. 18.
    Li J, Zeng HC (2006) Preparation of monodisperse Au/TiO2 nanocatalysts via self-assembly. Chem Mater 18:4270–4277CrossRefGoogle Scholar
  19. 19.
    Yogi C, Kojima K, Takai T, Wada N (2009) Photocatalytic degradation of methylene blue by Au-deposited TiO2 film under UV irradiation. J Mater Sci 44:821–827CrossRefGoogle Scholar
  20. 20.
    Li WC, Comotti M, Schüth F (2006) Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation. J Catal 237:190–196CrossRefGoogle Scholar
  21. 21.
    Hidalgo MC, Maicu M, Navío JA, Colón G (2009) Effect of sulfate pretreatment on gold-modified TiO2 for photocatalytic applications. J Phys Chem C 113:12840–12847CrossRefGoogle Scholar
  22. 22.
    Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637CrossRefGoogle Scholar
  23. 23.
    Iliev V, Tomova D, Bilyarska L, Tyuliev G (2007) Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J Mol Catal A Chem 263:32–38CrossRefGoogle Scholar
  24. 24.
    Chen D, Huang F, Cheng YB, Caruso RA (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater 21:2206–2210CrossRefGoogle Scholar
  25. 25.
    Tran ND, Besson M, Descorme C (2011) TiO2-supported gold catalysts in the catalytic wet air oxidation of succinic acid: influence of the preparation, the storage and the pre-treatment conditions. New J Chem 35:2095–2104CrossRefGoogle Scholar
  26. 26.
    Addamo M, Augugliaro V, Di Paola A, García-López E, Loddo V, Marcì G, Schiavello M (2004) Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO2 catalysts. J Phys Chem B 108:3303–3310CrossRefGoogle Scholar
  27. 27.
    Cui F, Hua Z, Wei C, Li J, Gao Z, Shi J (2009) Highly dispersed Au nanoparticles incorporated mesoporous TiO2 thin films with ultrahigh Au content. J Mater Chem 19:7632–7637CrossRefGoogle Scholar
  28. 28.
    Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley A, Prati L, Hutchings GJ (2007) Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catal Today 122:317–324CrossRefGoogle Scholar
  29. 29.
    Pizzio LR (2005) Mesoporous titania: effect of thermal treatment on the texture and acidic properties. Mater Lett 59:994–997CrossRefGoogle Scholar
  30. 30.
    Chen Y, Wang H, Liu CJ, Zeng Z, Zhang H, Zhou C, Yang Y (2012) Formation of monometallic Au and Pd and bimetallic Au–Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol. J Catal 289:105–117CrossRefGoogle Scholar
  31. 31.
    Niwa M, Iwamoto M, Segawa KI (1986) Temperature-programmed desorption of ammonia on zeolites. Influence of the experimental conditions on the acidity measurement. Bull Chem Soc Jpn 59:3735–3739CrossRefGoogle Scholar
  32. 32.
    Yang H, Tang D, Lu X, Yuan Y (2009) Superior performance of gold supported on titanium-containing hexagonal mesoporous molecular sieves for gas-phase epoxidation of propylene with use of H2 and O2. J Phys Chem C 113:8186–8193CrossRefGoogle Scholar
  33. 33.
    Yu JG, Su YR, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater 17:1984–1990CrossRefGoogle Scholar
  34. 34.
    Flego C, Carluccio L, Rizzo C, Perego C (2001) Synthesis of mesoporous SiO2–ZrO2 mixed oxides by sol–gel method. Catal Commun 2:43–48CrossRefGoogle Scholar
  35. 35.
    Du M, Zhan G, Yang X, Wang H, Lin W, Zhou Y, Jia L (2011) Ionic liquid-enhanced immobilization of biosynthesized Au nanoparticles on TS-1 toward efficient catalysts for propylene epoxidation. J Catal 283:192–201CrossRefGoogle Scholar
  36. 36.
    Basu S, Pande S, Jana S, Bolisetty S, Pal T (2008) Controlled interparticle spacing for surface-modified gold nanoparticle aggregates. Langmuir 24:5562–5568CrossRefGoogle Scholar
  37. 37.
    Yu J, Yue L, Liu S, Huang B, Zhang X (2009) Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres. J Colloid Interf Sci 334:58–64CrossRefGoogle Scholar
  38. 38.
    Zhong X, Feng Y, Lieberwirth I, Knoll W (2006) Facile synthesis of morphology controlled platinum nanocrystals. Chem Mater 18:2468–2471CrossRefGoogle Scholar
  39. 39.
    Zwijnenburg A, Goossens A, Sloof WG, Crajé MW, van der Kraan AM, Jos de Jongh L, Moulijn JA (2002) XPS and Mössbauer characterization of Au/TiO2 propene epoxidation catalysts. J Phys Chem B 106:9853–9862CrossRefGoogle Scholar
  40. 40.
    Boudart M, Djéga-Mariadassou G (1984) In kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton N. J, p. 26CrossRefGoogle Scholar
  41. 41.
    Kumar A, Kumar VP, Kumar BP, Vishwanathan V, Chary KV (2014) Vapor phase oxidation of benzyl alcohol over gold nanoparticles supported on mesoporous TiO2. Catal Lett 144:1450–1459CrossRefGoogle Scholar
  42. 42.
    Kumar A, Kumar VP, Vishwanathan V, Chary KV (2015) Synthesis, characterization, and reactivity of Au/MCM-41 catalysts prepared by homogeneous deposition precipitation (HDP) method for vapor phase oxidation of benzyl alcohol. Mater Res Bull 61:105–112CrossRefGoogle Scholar
  43. 43.
    Xiang Q, Yu J, Cheng B, Ong HC (2010) Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres. Chem 5:1466–1474Google Scholar
  44. 44.
    Sharma M, Das D, Baruah A, Jain A, Ganguli AK (2014) Design of porous silica supported tantalum oxide hollow spheres showing enhanced photocatalytic activity. Langmuir 30:3199–3208CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia
  2. 2.Department of ChemistryIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations