Advertisement

Gold Bulletin

, Volume 50, Issue 1, pp 7–23 | Cite as

Amberlite XAD-1180 impregnation with Cyphos IL101 for the selective recovery of precious metals from HCl solutions

  • R. Navarro
  • M. A. Lira
  • I. Saucedo
  • A. Alatorre
  • E. Guibal
Original Paper

Abstract

The impregnation of Amberlite XAD-1180 with Cyphos IL101 (trihexyl(tetradecyl)phosphonium chloride ionic liquid, IL) confers to the resin highly efficient extraction properties for Au(III), Pd(II), and Pt(IV) in highly concentrated HCl solutions. Extraction isotherms (fitted by the Langmuir equation) show maximum extraction capacities proportional to IL loading. Increasing the IL loading has a limiting effect for extraction kinetics, which are controlled by the resistance to intraparticle diffusion: the complete filling of the porous volume of the extractant-impregnated resin (EIR) with the IL considerably hinders mass transfer of target metal ions. The EIRs are selective for precious metals (PGMs) over base metals (BMs), and the selection of appropriate eluents (HCl, HNO3, acidic thiourea) allows recovering almost selectively the three metals in pure or highly enriched proportions.

Keywords

Gold Platinum Palladium Trihexyl(tetradecyl)phosphonium chloride Amberlite XAD-1180 resin Extraction isotherm Uptake kinetics Stripping Intraparticle diffusion Resin recycling 

Notes

Acknowledgements

The authors acknowledge the financial support from Guanajuato University (CIIC 1,049/2016) and PRODEP, SEP (Project: “Recuperación de metales preciosos contenidos en disoluciones acuosas provenientes de fuentes secundarias”). Cytec (Canada) is acknowledged for the gift of Cyphos IL101 sample. The authors thank Guanajuato University-CONACYT National Laboratory for SEM-EDX analysis.

Supplementary material

13404_2016_190_MOESM1_ESM.docx (4.2 mb)
ESM 1 (DOCX 4351 kb).

References

  1. 1.
    Bigum M, Brogaard L, Christensen TH (2012) Metal recovery from high-grade WEEE: a life cycle assessment. J Hazard Mater 207–208:8–14. doi: 10.1016/j.jhazmat.2011.10.001 CrossRefGoogle Scholar
  2. 2.
    Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25(1):28–37. doi: 10.1016/j.mineng.2011.09.019 CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards. Procedia Environ Sci 16:560–568. doi: 10.1016/j.proenv.2012.10.077 CrossRefGoogle Scholar
  4. 4.
    Syed S (2012) Recovery of gold from secondary sources—a review. Hydrometallurgy 115–116:30–51. doi: 10.1016/j.hydromet.2011.12.012 CrossRefGoogle Scholar
  5. 5.
    Sheng PP, Etsell TH (2007) Recovery of gold from computer circuit board scrap using aqua regia. Waste Manage Res 25(4):380–383. doi: 10.1177/0734242x07076946 CrossRefGoogle Scholar
  6. 6.
    Gupta B, Singh I (2013) Extraction and separation of platinum, palladium and rhodium using Cyanex 923 and their recovery from real samples. Hydrometallurgy 134:11–18. doi: 10.1016/j.hydromet.2013.01.001 CrossRefGoogle Scholar
  7. 7.
    Jha MK, Gupta D, Lee J-C, Kumar V, Jeong J (2014) Solvent extraction of platinum using amine based extractants in different solutions: a review. Hydrometallurgy 142:60–69. doi: 10.1016/j.hydromet.2013.11.009 CrossRefGoogle Scholar
  8. 8.
    Lee J-c, Pandey BD (2012) Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manag 32(1):3–18. doi: 10.1016/j.wasman.2011.08.010 CrossRefGoogle Scholar
  9. 9.
    Alguacil FJ, Alonso M (2005) Liquid-liquid extraction of Au(I) by amberlite LA2 and its application to a polymer-immobilized liquid membrane system. Gold Bull 38(2):68–72. doi: 10.1007/BF03215235 CrossRefGoogle Scholar
  10. 10.
    Kolekar SS, Anuse MA (2001) Rapid solvent extraction of gold(III) with high molecular weight amine from organic acid solution. Gold Bull 34(2):50–55. doi: 10.1007/BF03214812 CrossRefGoogle Scholar
  11. 11.
    Alexandratos SD (2009) Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 48(1):388–398. doi: 10.1021/ie801242v CrossRefGoogle Scholar
  12. 12.
    Donia AM, Atia AA, Elwakeel KZ (2005) Gold(III) recovery using synthetic chelating resins with amine, thio and amine/mercaptan functionalities. Sep Purif Technol 42(2):111–116. doi: 10.1016/j.seppur.2004.06.009 CrossRefGoogle Scholar
  13. 13.
    Alguacil FJ, Adeva P, Alonso M (2005) Processing of residual gold (III) solutions via ion exchange. Gold Bull 38(1):9–13. doi: 10.1007/BF03215222 CrossRefGoogle Scholar
  14. 14.
    Parodi A, Vincent T, Pilsniak M, Trochimczuk AW, Guibal E (2008) Palladium and platinum binding on an imidazol containing resin. Hydrometallurgy 92(1–2):1–10. doi: 10.1016/j.hydromet.2008.02.005 CrossRefGoogle Scholar
  15. 15.
    Sun PP, Lee JY, Lee MS (2012) Separation of platinum(IV) and rhodium(III) from acidic chloride solution by ion exchange with anion resins. Hydrometallurgy 113–114:200–204. doi: 10.1016/j.hydromet.2011.12.009 CrossRefGoogle Scholar
  16. 16.
    Wołowicz A, Hubicki Z (2011) Investigation of macroporous weakly basic anion exchangers applicability in palladium(II) removal from acidic solutions—batch and column studies. Chem Eng J 174(2–3):510–521. doi: 10.1016/j.cej.2011.08.075 CrossRefGoogle Scholar
  17. 17.
    Marinho RS, da Silva CN, Afonso JC, da Cunha JWSD (2011) Recovery of platinum, tin and indium from spent catalysts in chloride medium using strong basic anion exchange resins. J Hazard Mater 192(3):1155–1160. doi: 10.1016/j.jhazmat.2011.06.021 CrossRefGoogle Scholar
  18. 18.
    Nguyen NV, Jeong J, Jha MK, Lee J-C, Osseo-Asare K (2010) Comparative studies on the adsorption of Au(III) from waste rinse water of semiconductor industry using various resins. Hydrometallurgy 105(1–2):161–167. doi: 10.1016/j.hydromet.2010.09.003 CrossRefGoogle Scholar
  19. 19.
    Hubicki Z, Wołowicz A, Leszczyńska M (2008) Studies of removal of palladium(II) ions from chloride solutions on weakly and strongly basic anion exchangers. J Hazard Mater 159(2–3):280–286. doi: 10.1016/j.jhazmat.2008.02.017 CrossRefGoogle Scholar
  20. 20.
    Pilśniak-Rabiega M, Trochimczuk AW (2014) Selective recovery of gold on functionalized resins. Hydrometallurgy 146:111–118. doi: 10.1016/j.hydromet.2014.03.016 CrossRefGoogle Scholar
  21. 21.
    Van Nguyen N, Lee J-C, Kim S-K, Jha MK, Chung K-S, Jeong J (2010) Adsorption of gold(III) from waste rinse water of semiconductor manufacturing industries using Amberlite XAD-7HP resin. Gold Bull 43(3):200–208. doi: 10.1007/BF03214987 CrossRefGoogle Scholar
  22. 22.
    Gurung M, Adhikari BB, Kawakita H, Ohto K, Inoue K, Alam S (2013) Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy 133:84–93. doi: 10.1016/j.hydromet.2012.12.003 CrossRefGoogle Scholar
  23. 23.
    Parajuli D, Kawakita H, Inoue K, Ohto K, Kajiyama K (2007) Persimmon peel gel for the selective recovery of gold. Hydrometallurgy 87(3–4):133–139. doi: 10.1016/j.hydromet.2007.02.006 CrossRefGoogle Scholar
  24. 24.
    Santos Sopena LA, Ruiz M, Pestov AV, Sastre AM, Yatluk Y, Guibal E (2011) N-(2-(2-Pyridyl)ethyl)chitosan (PEC) for Pd(II) and Pt(IV) sorption from HCl solutions. Cellulose 18(2):309–325. doi: 10.1007/s10570-010-9469-8 CrossRefGoogle Scholar
  25. 25.
    Kabay N, Cortina JL, Trochimczuk A, Streat M (2010) Solvent-impregnated resins (SIRs)—methods of preparation and their applications. React Funct Polym 70(8):484–496. doi: 10.1016/j.reactfunctpolym.2010.01.005 CrossRefGoogle Scholar
  26. 26.
    Kondo K, Sawada M, Matsumoto M (2014) Adsorption and separation of palladium and platinum with microcapsules containing tri-n-octylamine hydrochloride. J Water Process Eng 1:115–120. doi: 10.1016/j.jwpe.2014.04.002 CrossRefGoogle Scholar
  27. 27.
    Rovira M, Hurtado L, Cortina JL, Arnaldos J, Sastre AM (1998) Recovery of palladium(II) from hydrochloric acid solutions using impregnated resins containing Alamine 336. React Funct Polym 38(2–3):279–287. doi: 10.1016/S1381-5148(98)00038-8 CrossRefGoogle Scholar
  28. 28.
    Saitoh T, Nakane F, Hiraide M (2007) Preparation of trioctylamine-impregnated polystyrene-divinylbenzene porous resins for the collection of precious metals from water. React Funct Polym 67(3):247–252. doi: 10.1016/j.reactfunctpolym.2006.12.001 CrossRefGoogle Scholar
  29. 29.
    Saitoh T, Suzuki S, Hiraide M (2005) Solid phase extraction of some precious metals from hydrochloric acid to poly styrene-divinylbenzene porous resin impregnated with polyoxyethylene-type nonionic surfactant. J Chromatogr A 1097(1–2):179–182. doi: 10.1016/j.chroma.2005.10.002 CrossRefGoogle Scholar
  30. 30.
    Tong Y, Yang H, Li J, Yang Y (2013) Extraction of Au(III) by ionic liquid from hydrochloric acid medium. Sep Purif Technol 120:367–372. doi: 10.1016/j.seppur.2013.10.028 CrossRefGoogle Scholar
  31. 31.
    Lee J-M (2012) Extraction of noble metal ions from aqueous solution by ionic liquids. Fluid Phase Equilib 319:30–36. doi: 10.1016/j.fluid.2012.01.033 CrossRefGoogle Scholar
  32. 32.
    Whitehead JA, Lawrence GA, Owen MP, McCluskey A (2006) A new route to precious metal recovery and subsequent electrodeposition using ionic liquids. In: Proceedings - Electrochemical Society, p 901–910Google Scholar
  33. 33.
    Cieszynska A, Wiśniewski M (2012) Extractive recovery of palladium(II) from hydrochloric acid solutions with Cyphos®IL 104. Hydrometallurgy 113-114:79–85. doi: 10.1016/j.hydromet.2011.12.006 CrossRefGoogle Scholar
  34. 34.
    Cieszynska A, Wisniewski M (2010) Extraction of palladium(II) from chloride solutions with Cyphos ®IL 101/toluene mixtures as novel extractant. Sep Purif Technol 73(2):202–207. doi: 10.1016/j.seppur.2010.04.001 CrossRefGoogle Scholar
  35. 35.
    Fischer L, Falta T, Koellensperger G, Stojanovic A, Kogelnig D, Galanski M, Krachler R, Keppler BK, Hann S (2011) Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Res 45(15):4601–4614. doi: 10.1016/j.watres.2011.06.011 CrossRefGoogle Scholar
  36. 36.
    Stojanovic A, Kogelnig D, Fischer L, Hann S, Galanski M, Groessl M, Krachler R, Keppler BK (2010) Phosphonium and ammonium ionic liquids with aromatic anions: synthesis, properties, and platinum extraction. Aust J Chem 63(3):511–524. doi: 10.1071/CH09340 CrossRefGoogle Scholar
  37. 37.
    Mokhodoeva O, Myasoedova G, Kubrakova I, Nikulin A, Artyushin O, Odinets I (2010) New solid extractants for preconcentrating noble metals. J Anal Chem 65(1):12–16. doi: 10.1134/s106193481001003x CrossRefGoogle Scholar
  38. 38.
    Ciezynska A, Regel-Rosocka M, Wisniewski M (2007) Extraction of palladium(II) ions from chloride solutions with phosphonium ionic liquid Cyphos IL101. Pol J Chem Technol 9(2):99–101. doi: 10.2478/v10026-007-0037-4 Google Scholar
  39. 39.
    Regel-Rosocka M, Nowak L, Wisniewski M (2012) Removal of zinc(II) and iron ions from chloride solutions with phosphonium ionic liquids. Sep Purif Technol 97:158–163. doi: 10.1016/j.seppur.2012.01.035 CrossRefGoogle Scholar
  40. 40.
    Regel-Rosocka M, Wisniewski M, Borowiak-Resterna A, Cieszynska A, Sastre AM (2007) Selective extraction of palladium(II) from hydrochloric acid solutions with pyridinecarboxamides and ACORGA®CLX50. Sep Purif Technol 53(3):337–341. doi: 10.1016/j.seppur.2006.08.005 CrossRefGoogle Scholar
  41. 41.
    de los Rios AP, Hernandez-Fernandez FJ, Alguacil FJ, Lozano LJ, Ginesta A, Garcia-Diaz I, Sanchez-Segado S, Lopez FA, Godinez C (2012) On the use of imidazolium and ammonium-based ionic liquids as green solvents for the selective recovery of Zn(II), Cd(II), Cu(II) and Fe(III) from hydrochloride aqueous solutions. Sep Purif Technol 97:150–157. doi: 10.1016/j.seppur.2012.02.040 CrossRefGoogle Scholar
  42. 42.
    Cui L, Cheng F, Zhou J (2015) Behaviors and mechanism of iron extraction from chloride solutions using undiluted Cyphos IL 101. Ind Eng Chem Res 54(30):7534–7542. doi: 10.1021/acs.iecr.5b01546 CrossRefGoogle Scholar
  43. 43.
    Papaiconomou N, Svecova L, Bonnaud C, Cathelin L, Billard I, Chainet E (2015) Possibilities and limitations in separating Pt(IV) from Pd(II) combining imidazolium and phosphonium ionic liquids. Dalton Trans 44(46):20131–20138. doi: 10.1039/c5dt03791c CrossRefGoogle Scholar
  44. 44.
    van den Berg C, Roelands CPM, Bussmann P, Goetheer E, Verdoes D, van der Wielen LAM (2009) Preparation and analysis of high capacity polysulfone capsules. React Funct Polym 69(10):766–770. doi: 10.1016/j.reactfunctpolym.2009.06.008 CrossRefGoogle Scholar
  45. 45.
    Blahusiak M, Schlosser S, Annus J (2015) Separation of butyric acid in fixed bed column with solvent impregnated resin containing ammonium ionic liquid. React Funct Polym 87:29–36. doi: 10.1016/j.reactfunctpolym.2014.12.005 CrossRefGoogle Scholar
  46. 46.
    Blahušiak M, Schlosser Š, Marták J (2011) Extraction of butyric acid by a solvent impregnated resin containing ionic liquid. React Funct Polym 71(7):736–744. doi: 10.1016/j.reactfunctpolym.2011.04.002 CrossRefGoogle Scholar
  47. 47.
    Abdolmohammad-Zadeh H, Galeh-Assadi M, Shabkhizan S, Mousazadeh H (2011) Sol-gel processed pyridinium ionic liquid-modified silica as a new sorbent for separation and quantification of iron in water samples. Arabian J Chem DOI. doi: 10.1016/j.arabjc.2011.07.006 Google Scholar
  48. 48.
    Liu Y, Zhu L, Sun X, Chen J, Luo F (2009) Silica materials doped with bifunctional ionic liquid extractant for yttrium extraction. Ind Eng Chem Res 48(15):7308–7313. doi: 10.1021/ie900468c CrossRefGoogle Scholar
  49. 49.
    Negrea A, Lupa L, Ciopec M, Negrea P, Voda R, Ianasi C (2013) Study of different impregnation methods of inorganic supports with ionic liquids. J Environ Prot Ecol 14(4):1785–1793Google Scholar
  50. 50.
    Lupa L, Negrea A, Ciopec M, Negrea P (2013) Cs+ removal from aqueous solutions through adsorption onto florisil (R) impregnated with trihexyl(tetradecyl)phosphonium chloride. Molecules 18(10):12845–12856. doi: 10.3390/molecules181012845 CrossRefGoogle Scholar
  51. 51.
    Arias A, Saucedo I, Navarro R, Gallardo V, Martinez M, Guibal E (2011) Cadmium(II) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. React Funct Polym 71(11):1059–1070. doi: 10.1016/j.reactfunctpolym.2011.07.008 CrossRefGoogle Scholar
  52. 52.
    Gallardo V, Navarro R, Saucedo I, Avila M, Guibal E (2008) Zinc(II) extraction from hydrochloric acid solutions using amberlite XAD-7 impregnated with Cyphos IL 101 (tetradecyl(trihexyl)phosphonium chloride). Sep Sci Technol 43(9–10):2434–2459. doi: 10.1080/01496390802119002 CrossRefGoogle Scholar
  53. 53.
    Navarro R, Garcia E, Saucedo I, Guibal E (2012) Platinum(IV) recovery from HCl solutions using AMBERLITE XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. Sep Sci Technol 47(14–15):2199–2210. doi: 10.1080/01496395.2012.697522 Google Scholar
  54. 54.
    Navarro R, Saucedo I, Gonzalez C, Guibal E (2012) Amberlite XAD-7 impregnated with Cyphos IL-101 (tetraalkylphosphonium ionic liquid) for Pd(II) recovery from HCl solutions. Chem Eng J 185:226–235. doi: 10.1016/j.cej.2012.01.090 CrossRefGoogle Scholar
  55. 55.
    Navarro R, Saucedo I, Lira MA, Guibal E (2010) Gold(III) recovery from HCl solutions using Amberlite XAD-7 impregnated with an ionic liquid (Cyphos IL-101). Sep Sci Technol 45(12–13):1950–1962. doi: 10.1080/01496395.2010.493116 CrossRefGoogle Scholar
  56. 56.
    Hawkins CA, Momen MA, Garvey SL, Kestell J, Kaminski MD, Dietz ML (2015) Evaluation of solid-supported room-temperature ionic liquids containing crown ethers as media for metal ion separation and preconcentration. Talanta 135:115–123. doi: 10.1016/j.talanta.2014.12.019 CrossRefGoogle Scholar
  57. 57.
    Myasoedova GV, Molochnikova NP, Mokhodoeva OB, Myasoedov BF (2008) Application of ionic liquids for solid-phase extraction of trace elements. Anal Sci 24(10):1351–1353. doi: 10.2116/analsci.24.1351 CrossRefGoogle Scholar
  58. 58.
    Guibal E, Figuerola Piñol A, Ruiz M, Vincent T, Jouannin C, Sastre AM (2010) Immobilization of Cyphos ionic liquids in alginate capsules for Cd(II) sorption. Sep Sci Technol 45(12):1935–1949. doi: 10.1080/01496395.2010.493113 CrossRefGoogle Scholar
  59. 59.
    Vincent T, Parodi A, Guibal E (2008) Pt recovery using Cyphos IL-101 immobilized in biopolymer capsules. Sep Purif Technol 62(2):470–479. doi: 10.1016/j.seppur.2008.02.025 CrossRefGoogle Scholar
  60. 60.
    Vincent T, Parodi A, Guibal E (2008) Immobilization of Cyphos IL-101 in biopolymer capsules for the synthesis of Pd sorbents. React Funct Polym 68(7):1159–1169. doi: 10.1016/j.reactfunctpolym.2008.04.001 CrossRefGoogle Scholar
  61. 61.
    Navarro R, Ruiz P, Saucedo I, Guibal E (2014) Bismuth(III) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkylphosphonium ionic liquid. Sep Purif Technol 135:268–277. doi: 10.1016/j.seppur.2014.02.023 CrossRefGoogle Scholar
  62. 62.
    Lira MA, Navarro R, Saucedo I, Martinez M, Guibal E (2016) Influence of the textural characteristics of the support on Au(III) sorption from HCl solutions using Cyphos IL101-impregnated Amberlite resins. Chem Eng J 302:426–436. doi: 10.1016/j.cej.2016.05.059 CrossRefGoogle Scholar
  63. 63.
    Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62(7):1723–1732. doi: 10.1021/ja01864a025 CrossRefGoogle Scholar
  64. 64.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. doi: 10.1021/ja01269a023 CrossRefGoogle Scholar
  65. 65.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. doi: 10.1021/ja01145a126 CrossRefGoogle Scholar
  66. 66.
    de Boer JH (1958) The shape of capillaries. In: Everett DH, Stone FS (eds) The structure and properties of porous materials, vol 10. Vol Colston Papers. Butterworth, London, p 68Google Scholar
  67. 67.
    Puigdomenech I (2010) MEDUSA (Make equilibrium diagrams using sophisticated algorithms). 32 bit version edn. Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  68. 68.
    Cieszynska A, Wisniewski M (2011) Selective extraction of palladium(II) from hydrochloric acid solutions with phosphonium extractants. Sep Purif Technol 80(2):385–389. doi: 10.1016/j.seppur.2011.05.025 CrossRefGoogle Scholar
  69. 69.
    Liu Y, Liu YJ (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61(3):229–242. doi: 10.1016/j.seppur.2007.10.002 CrossRefGoogle Scholar
  70. 70.
    Tien C (1994) Adsorption calculations and modeling, Butterworth-Heinemann Series in Chemical Engineering. Butterworth-Heinemann, NewtonGoogle Scholar
  71. 71.
    Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  72. 72.
    Matsumiya M, Suda S, Tsunashima K, Sugiya M, Kishioka S-Y, Matsuura H (2008) Electrochemical behaviors of multivalent complexes in room temperature ionic liquids based on quaternary phosphonium cations. J Electroanal Chem 622(2):129–135. doi: 10.1016/j.jelechem.2008.04.021 CrossRefGoogle Scholar
  73. 73.
    Kazama R, Matsumiya M, Tsuda N, Tsunashima K (2013) Electrochemical analysis of diffusion behavior and nucleation mechanism for Dy(II) and Dy(III) in phosphonium-based ionic liquids. Electrochim Acta 113:269–279. doi: 10.1016/j.electacta.2013.09.082 CrossRefGoogle Scholar
  74. 74.
    Marcus Y (1997) Ion properties. Marcel Dekker, Inc, New YorkGoogle Scholar
  75. 75.
    Campos K, Vincent T, Bunio P, Trochimczuk A, Guibal E (2008) Gold recovery from HCl solutions using Cyphos IL-101 (a quaternary phosphonium ionic liquid) immobilized in biopolymer capsules. Solvent Extr Ion Exch 26(5):570–601. doi: 10.1080/07366290802301572 CrossRefGoogle Scholar
  76. 76.
    Marták J, Schlosser Š (2007) Extraction of lactic acid by phosphonium ionic liquids. Sep Purif Technol 57(3):483–494. doi: 10.1016/j.seppur.2006.09.013 CrossRefGoogle Scholar
  77. 77.
    Marták J, Schlosser Š (2016) New mechanism and model of butyric acid extraction by phosphonium ionic liquid. J Chem Eng Data 61(9):2979–2996. doi: 10.1021/acs.jced.5b01082 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.División de Ciencias Naturales y Exactas, Departamento de QuímicaUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Ecole des mines d’Alès, Centre des Matériaux des Mines d’Alès, C2MA/MPAAlès CedexFrance

Personalised recommendations