Skip to main content

Advertisement

Log in

Inhibition of the bromodomain and extra-terminal family of epigenetic regulators as a promising therapeutic approach for gastric cancer

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Epigenetic dysregulation is a common characteristic of cancers, including gastric cancer (GC), and contributes to cancer development and progression. Although the efficacy of BET (an epigenetic regulator) inhibition has been demonstrated in various cancer types, predictive genetic markers of its efficacy in GC are currently lacking. Therefore, we aimed to identify markers that predict the response of BET inhibition in GC and, suggest an effective treatment regimen through combined therapy.

Methods

The effect of BET inhibition was evaluated using iBET-151, a small-molecule inhibitor of BET proteins, in a large panel (n = 49) of GC cell lines and xenograft mouse models. Comprehensive genetic information was used to identify cell lines sensitive to iBET-151. Flow cytometry, Western blotting, and colony-formation and migration assays were used to evaluate the effects of iBET-151 and/or paclitaxel. The synergistic effect of iBET-151 and paclitaxel was evaluated using an organoid model.

Results

We found that iBET-151 showed a modest growth-inhibitory effect in GC cells (73%, 36/49). iBET-151 inhibited tumorigenicity in vitro and significantly promoted cell cycle arrest and apoptosis. Based on comprehensive genetic information analysis in relation to BET family expression, we found that BRD4 was highly expressed in the iBET-151-sensitive cell lines. We also identified WNT5B and IRS2 as potential biomarkers that are predictive for sensitivity to iBET-151. In GC xenograft model mice, iBET-151 significantly decreased tumor volumes and Ki-67 and BRD4 expression. Combination treatment showed that iBET-151 increased the sensitivity of GC cells to paclitaxel in approximately 70% of the cell lines (34/49) tested. iBET-151 plus paclitaxel significantly promoted cell cycle arrest and apoptosis and suppressed c-Myc, Bcl-2 and Bcl-xL expression. In GC organoids, iBET-151 and paclitaxel showed a synergistic effect.

Conclusions

Collectively, our data suggest that iBET-151 is a potential therapeutic agent for GC, especially in combination with paclitaxel, and that WNT5B and IRS2 may predict iBET-151 sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

BET :

Bromodomain and Extra-terminal

BRD4 :

Bromodomain-containing protein 4

CI :

Combination index

CIN :

Chromosomal instability

EBV :

Epstein–Barr virus

GC :

Gastric cancer

GS :

Genomic stability

IC50 :

Half-maximal inhibitory concentration

MSI-H :

High microsatellite instability

SD :

standard deviation

References

  1. H.J. Kim, S.K. Kang, W.S. Kwon, T.S. Kim, I. Jeong, H.C. Jeung, M. Kragh, I.D. Horak, H.C. Chung, S.Y. Rha, Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor. Int J Cancer 143, 151–159 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. J.A. Ajani, J. Lee, T. Sano, Y.Y. Janjigian, D. Fan, S. Song, Gastric adenocarcinoma. Nat Rev Dis Primers 3, 17036 (2017)

    Article  PubMed  Google Scholar 

  3. D.G. Fu, Epigenetic alterations in gastric cancer (review). Mol Med Rep 12, 3223–3230 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Hong, Y.J. Won, Y.R. Park, K.W. Jung, H.J. Kong, E.S. Lee, R., Community of Population-Based Regional Cancer, Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2017. Cancer Res Treat 52, 335–350 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  5. A.R. Poh, R.J. O'Donoghue, M. Ernst, T.L. Putoczki, Mouse models for gastric cancer: Matching models to biological questions. J Gastroenterol Hepatol 31, 1257–1272 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  6. H.K. Ahn, J. Jang, J. Lee, P. Se Hoon, J.O. Park, Y.S. Park, H.Y. Lim, K.M. Kim, W.K. Kang, P21-activated kinase 4 overexpression in metastatic gastric cancer patients. Transl Oncol 4, 345–349 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Y.L. Ang, W.P. Yong, P. Tan, Translating gastric cancer genomics into targeted therapies. Crit Rev Oncol Hematol 100, 141–146 (2016)

    Article  PubMed  Google Scholar 

  8. C.S. Fuchs, J. Tomasek, C.J. Yong, F. Dumitru, R. Passalacqua, C. Goswami, H. Safran, L.V. dos Santos, G. Aprile, D.R. Ferry, B. Melichar, M. Tehfe, E. Topuzov, J.R. Zalcberg, I. Chau, W. Campbell, C. Sivanandan, J. Pikiel, M. Koshiji, et al., Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383, 31–39 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. S. Kim, B.K. Kaang, Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med 49, e281 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  10. K. Mukherjee, R. Fischer, A. Vilcinskas, Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front Zool 9, 25 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Biswas, C.M. Rao, Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur J Pharmacol 837, 8–24 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. J. Shi, C.R. Vakoc, The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54, 728–736 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. R. Sanchez, M.M. Zhou, The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 12, 659–665 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. W. Fiskus, S. Sharma, J. Qi, J.A. Valenta, L.J. Schaub, B. Shah, K. Peth, B.P. Portier, M. Rodriguez, S.G. Devaraj, M. Zhan, J. Sheng, S.P. Iyer, J.E. Bradner, K.N. Bhalla, Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol Cancer Ther 13, 1142–1154 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. G. Andrieu, A.H. Tran, K.J. Strissel, G.V. Denis, BRD4 regulates breast Cancer dissemination through Jagged1/Notch1 signaling. Cancer Res 76, 6555–6567 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Orenay-Boyacioglu, E. Kasap, E. Gerceker, H. Yuceyar, U. Demirci, F. Bilgic, M. Korkmaz, Expression profiles of histone modification genes in gastric cancer progression. Mol Biol Rep 45, 2275–2282 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. S.H. Lee, J. Kim, W.H. Kim, Y.M. Lee, Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28, 184–194 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. A. Portela, M. Esteller, Epigenetic modifications and human disease. Nat Biotechnol 28, 1057–1068 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. Z. Du, X. Song, F. Yan, J. Wang, Y. Zhao, S. Liu, Genome-wide transcriptional analysis of BRD4-regulated genes and pathways in human glioma U251 cells. Int J Oncol 52, 1415–1426 (2018)

  20. Z. Liu, P. Wang, H. Chen, E.A. Wold, B. Tian, A.R. Brasier, J. Zhou, Drug discovery targeting Bromodomain-containing protein 4. J Med Chem 60, 4533–4558 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Lin, X. Huang, T. Uziel, P. Hessler, D.H. Albert, L.A. Roberts-Rapp, K.F. McDaniel, W.M. Kati, Y. Shen, HEXIM1 as a robust Pharmacodynamic marker for monitoring target engagement of BET family Bromodomain inhibitors in tumors and surrogate tissues. Mol Cancer Ther 16, 388–396 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. E. Wadhwa, T. Nicolaides, Bromodomain inhibitor review: Bromodomain and extra-terminal family protein inhibitors as a potential new therapy in central nervous system tumors. Cureus 8, e620 (2016)

    PubMed  PubMed Central  Google Scholar 

  23. L. Wang, S. Matkar, G. Xie, C. An, X. He, X. Kong, X. Liu, X. Hua, BRD4 inhibitor IBET upregulates p27kip/cip protein stability in neuroendocrine tumor cells. Cancer Biol Ther 18, 229–236 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Picaud, D. Da Costa, A. Thanasopoulou, P. Filippakopoulos, P.V. Fish, M. Philpott, O. Fedorov, P. Brennan, M.E. Bunnage, D.R. Owen, J.E. Bradner, P. Taniere, B. O'Sullivan, S. Muller, J. Schwaller, T. Stankovic, S. Knapp, PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains. Cancer Res 73, 3336–3346 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J.E. Delmore, G.C. Issa, M.E. Lemieux, P.B. Rahl, J. Shi, H.M. Jacobs, E. Kastritis, T. Gilpatrick, R.M. Paranal, J. Qi, M. Chesi, A.C. Schinzel, M.R. McKeown, T.P. Heffernan, C.R. Vakoc, P.L. Bergsagel, I.M. Ghobrial, P.G. Richardson, R.A. Young, W.C. Hahn, K.C. Anderson, A.L. Kung, J.E. Bradner, C.S. Mitsiades, BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Zuber, J. Shi, E. Wang, A.R. Rappaport, H. Herrmann, E.A. Sison, D. Magoon, J. Qi, K. Blatt, M. Wunderlich, M.J. Taylor, C. Johns, A. Chicas, J.C. Mulloy, S.C. Kogan, P. Brown, P. Valent, J.E. Bradner, S.W. Lowe, C.R. Vakoc, RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. W.W. Lockwood, K. Zejnullahu, J.E. Bradner, H. Varmus, Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci U S A 109, 19408–19413 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Z. Zhang, P. Ma, Y. Jing, Y. Yan, M.C. Cai, M. Zhang, S. Zhang, H. Peng, Z.L. Ji, W. Di, Z. Gu, W.Q. Gao, G. Zhuang, BET Bromodomain inhibition as a therapeutic strategy in ovarian cancer by downregulating FoxM1. Theranostics 6, 219–230 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I.A. Asangani, V.L. Dommeti, X. Wang, R. Malik, M. Cieslik, R. Yang, J. Escara-Wilke, K. Wilder-Romans, S. Dhanireddy, C. Engelke, M.K. Iyer, X. Jing, Y.M. Wu, X. Cao, Z.S. Qin, S. Wang, F.Y. Feng, A.M. Chinnaiyan, Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. V. Sahai, K. Kumar, L.M. Knab, C.R. Chow, S.S. Raza, D.J. Bentrem, K. Ebine, H.G. Munshi, BET bromodomain inhibitors block growth of pancreatic cancer cells in three-dimensional collagen. Mol Cancer Ther 13, 1907–1917 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. Filippakopoulos, J. Qi, S. Picaud, Y. Shen, W.B. Smith, O. Fedorov, E.M. Morse, T. Keates, T.T. Hickman, I. Felletar, M. Philpott, S. Munro, M.R. McKeown, Y. Wang, A.L. Christie, N. West, M.J. Cameron, B. Schwartz, T.D. Heightman, N. La Thangue, C.A. French, O. Wiest, A.L. Kung, S. Knapp, J.E. Bradner, Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C.J. Ott, N. Kopp, L. Bird, R.M. Paranal, J. Qi, T. Bowman, S.J. Rodig, A.L. Kung, J.E. Bradner, D.M. Weinstock, BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 120, 2843–2852 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Shu, C.Y. Lin, H.H. He, R.M. Witwicki, D.P. Tabassum, J.M. Roberts, M. Janiszewska, S.J. Huh, Y. Liang, J. Ryan, E. Doherty, H. Mohammed, H. Guo, D.G. Stover, M.B. Ekram, J. Brown, C. D'Santos, I.E. Krop, D. Dillon, M. McKeown, C. Ott, J. Qi, M. Ni, P.K. Rao, M. Duarte, S.Y. Wu, C.M. Chiang, L. Anders, R.A. Young, E. Winer, A. Letai, W.T. Barry, J.S. Carroll, H. Long, M. Brown, X.S. Liu, C.A. Meyer, J.E. Bradner, K. Polyak, Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 529, 413–417 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Pastori, M. Daniel, C. Penas, C.H. Volmar, A.L. Johnstone, S.P. Brothers, R.M. Graham, B. Allen, J.N. Sarkaria, R.J. Komotar, C. Wahlestedt, N.G. Ayad, BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics 9, 611–620 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M.M. Coude, T. Braun, J. Berrou, M. Dupont, S. Bertrand, A. Masse, E. Raffoux, R. Itzykson, M. Delord, M.E. Riveiro, P. Herait, A. Baruchel, H. Dombret, C. Gardin, BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget 6, 17698–17712 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  36. S. Zhou, S. Zhang, L. Wang, S. Huang, Y. Yuan, J. Yang, H. Wang, X. Li, P. Wang, L. Zhou, J. Yang, Y. Xu, H. Gao, Y. Zhang, Y. Lv, X. Zou, BET protein inhibitor JQ1 downregulates chromatin accessibility and suppresses metastasis of gastric cancer via inactivating RUNX2/NID1 signaling. Oncogenesis 9, 33 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Ba, H. Long, Z. Yan, S. Wang, Y. Wu, Y. Tu, Y. Gong, S. Cui, BRD4 promotes gastric cancer progression through the transcriptional and epigenetic regulation of c-MYC. J Cell Biochem 119, 973–982 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. Y.-J. Bang, R.-H. Xu, K. Chin, K.-W. Lee, S.H. Park, S.Y. Rha, L. Shen, S. Qin, N. Xu, S.-A. Im, G. Locker, P. Rowe, X. Shi, D. Hodgson, Y.-Z. Liu, N. Boku, Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 18, 1637–1651 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. K. Shitara, M. Özgüroğlu, Y.-J. Bang, M. Di Bartolomeo, M. Mandalà, M.-H. Ryu, L. Fornaro, T. Olesiński, C. Caglevic, H.C. Chung, K. Muro, E. Goekkurt, W. Mansoor, R.S. McDermott, E. Shacham-Shmueli, X. Chen, C. Mayo, S.P. Kang, A. Ohtsu, C.S. Fuchs, Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 392, 123–133 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. J. Shi, T.J. Mitchison, Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic. Endocr Relat Cancer 24, T83–T96 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D.W.G., Guideline Committee of the Korean Gastric Cancer Association and P. review, Korean practice guideline for gastric Cancer 2018: An evidence-based, multi-disciplinary approach. J Gastric Cancer 19, 1–48 (2019)

    Article  Google Scholar 

  42. E. Chun, K.Y. Lee, Bcl-2 and Bcl-xL are important for the induction of paclitaxel resistance in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 315, 771–779 (2004)

    Article  CAS  PubMed  Google Scholar 

  43. Z. Tang, C. Li, B. Kang, G. Gao, C. Li, Z. Zhang, GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45, W98–W102 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Foucquier, M. Guedj, Analysis of drug combinations: Current methodological landscape. Pharmacol Res Perspect 3, e00149 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cancer genome atlas research network, comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014)

    Article  Google Scholar 

  46. A. Chaidos, V. Caputo, K. Gouvedenou, B. Liu, I. Marigo, M.S. Chaudhry, A. Rotolo, D.F. Tough, N.N. Smithers, A.K. Bassil, T.D. Chapman, N.R. Harker, O. Barbash, P. Tummino, N. Al-Mahdi, A.C. Haynes, L. Cutler, B. Le, A. Rahemtulla, I. Roberts, M. Kleijnen, J.J. Witherington, N.J. Parr, R.K. Prinjha, A. Karadimitriset, Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood 123, 697–705 (2014)

    Article  CAS  PubMed  Google Scholar 

  47. A. Alvarez-Trotta, Z. Wang, E. Shersher, B. Li, J. Long, I. Lohse, C. Wahlestedt, W. El-Rifai, D.J. Robbins, A.J. Capobianco, The bromodomain inhibitor IBET-151 attenuates vismodegib-resistant esophageal adenocarcinoma growth through reduction of GLI signaling. Oncotarget 11, 3174–3187 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  48. V. Moreno, J.M. Sepulveda, M. Vieito, T. Hernandez-Guerrero, B. Doger, O. Saavedra, O. Ferrero, R. Sarmiento, M. Arias, J. De Alvaro, J. Di Martino, M. Zuraek, T. Sanchez-Perez, I. Aronchik, E.H. Filvaroff, M. Lamba, B. Hanna, Z. Nikolova, I. Brana, Phase I study of CC-90010, a reversible, oral BET inhibitor in patients with advanced solid tumors and relapsed/refractory non-Hodgkin's lymphoma. Ann Oncol 31, 780–788 (2020)

  49. K.C. Helming, X. Wang, B.G. Wilson, F. Vazquez, J.R. Haswell, H.E. Manchester, Y. Kim, G.V. Kryukov, M. Ghandi, A.J. Aguirre, Z. Jagani, Z. Wang, L.A. Garraway, W.C. Hahn, C.W. Roberts, ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med 20, 251–254 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Berns, J.J. Caumanns, E.M. Hijmans, A.M.C. Gennissen, T.M. Severson, B. Evers, G.B.A. Wisman, G. Jan Meersma, C. Lieftink, R.L. Beijersbergen, H. Itamochi, A.G.J. van der Zee, S. de Jong, R. Bernards, ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene 37, 4611–4625 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. H. Zhou, S. Tan, H. Li, X. Lin, Expression and significance of EBV, ARID1A and PIK3CA in gastric carcinoma. Mol Med Rep 19, 2125–2136 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. T. Murayama, N. Gotoh, Drug resistance mechanisms of cancer stem-like cells and their therapeutic potential as drug targets. Cancer Drug Resistance (2019). https://doi.org/10.20517/cdr.2019.36

  53. Q. Zhang, H. Fan, H. Liu, J. Jin, S. Zhu, L. Zhou, H. Liu, F. Zhang, P. Zhan, T. Lv, Y. Song, WNT5B exerts oncogenic effects and is negatively regulated by miR-5587-3p in lung adenocarcinoma progression. Oncogene 39, 1484–1497 (2020)

    Article  CAS  PubMed  Google Scholar 

  54. R. Boutros, V. Lobjois, B. Ducommun, CDC25 phosphatases in cancer cells: Key players? Good targets? Nat Rev Cancer 7, 495–507 (2007)

    Article  CAS  PubMed  Google Scholar 

  55. Y. Yokoyama, H. Zhu, J.H. Lee, A.V. Kossenkov, S.Y. Wu, J.M. Wickramasinghe, X. Yin, K.C. Palozola, A. Gardini, L.C. Showe, K.S. Zaret, Q. Liu, D. Speicher, J.R. Conejo-Garcia, J.E. Bradner, Z. Zhang, A.K. Sood, T. Ordog, B.G. Bitler, R. Zhang, BET inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian Cancer. Cancer Res 76, 6320–6330 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. J. Kondo, M. Inoue, Application of Cancer organoid model for drug screening and personalized therapy. Cells 8 (2019)

Download references

Acknowledgments

We thank all members of the CMRC lab for discussion. We thank Hyun Jeong Kim, Ka Ram Ahn, Chanmi Lee, Sarah Lee and Sarah Park for advice and comments on the article. We also thank Yoonseok Yu (CBSBio. Com, Korea) for bioinformatics support and GlaxoSmithKline Biologicals SA. for providing iBET-151. This work was supported by a National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(2020R1A2B5B02001452) and the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea(HA15C0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Young Rha.

Ethics declarations

Ethics approval

This study was approved by the Institutional Review Board of Severance Hospital (No. 4–2014-0638).

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 924 kb)

ESM 2

(XLSX 9 kb)

ESM 3

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.K., Bae, H.J., Kwon, W.S. et al. Inhibition of the bromodomain and extra-terminal family of epigenetic regulators as a promising therapeutic approach for gastric cancer. Cell Oncol. 44, 1387–1403 (2021). https://doi.org/10.1007/s13402-021-00647-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00647-4

Keywords

Navigation