Skip to main content

Advertisement

Log in

Cancer‐associated fibroblasts secrete hypoxia‐induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The tumor microenvironment (TME) is known to play a prominent role in the pathology of head and neck squamous cell carcinoma (HNSCC). Cancer-associated fibroblasts (CAFs) have been reported to regulate tumor progression, and serglycin (SRGN), one of the paracrine cytokines of CAFs, has been reported to play an important role in various signaling pathways. Hypoxia is a distinct feature of the HNSCC TME. Here, we investigated the mechanism underlying CAF-secreted SRGN leading to HNSCC progression under hypoxia.

Methods

Immunohistochemical staining was used to detect SRGN expression in clinical HNSCC samples, after which its relation with patient survival was assessed. CAFs were isolated and SRGN expression and secretion by CAFs under normoxia and hypoxia were confirmed using qRT-PCR and ELISA assays, respectively. HNSCC sphere-forming abilities, stemness-related gene expression, and chemoresistance were assessed with or without SRGN treatment. A Wnt/β-catenin pathway inhibitor (PNU-75,654) was used to block its activation, after which nuclear translocation of β-catenin in the presence of SRGN with or without PNU-75,654 was evaluated. shRNAs were used to stably knock down SRGN expression in CAFs. HNSCC tumor cells with or without (SRGN silenced) CAFs were inoculated submucosally in nude mice after which tumor weights and sizes were determined to assess the effects of CAFs and SRGN on tumor growth.

Results

We found that SRGN was expressed in both HNSCC tumor and stroma cells, and that high SRGN expression in the stroma cells, but not in the tumor cells, was significantly related to a poor patient survival. After the extraction of CAFs and normal fibroblasts (NFs) from paired tumor samples and adjacent normal tissues, respectively, we found that the expression of CAF-specific genes, including fibroblast activation protein (FAP) and alpha-smooth muscle actin (α-SMA), was clearly upregulated compared to the expression in NFs. The hypoxia marker HIF-1α was found to be expressed in tumor stroma cells. Hypoxyprobe immunofluorescence staining confirmed stromal hypoxia in an orthotopic tongue cancer mouse model. Using qRT-PCR and ELISA we found that a hypoxic TME upregulated SRGN expression and secretion by CAFs. SRGN markedly enhanced the sphere-forming ability, stemness-related gene expression and chemoresistance of HNSCC tumor cells. SRGN activated the Wnt/β-catenin pathway and promoted β-catenin nuclear translocation. An in vivo study confirmed that CAFs can accelerate HNSCC tumor growth, and that this effect can be counteracted by SRGN silencing.

Conclusions

Our data indicate that a hypoxic tumor stroma can lead to upregulation of SRGN expression. SRGN secreted by CAFs can promote β-catenin nuclear translocation to activate downstream signaling pathways, leading to enhanced HNSCC cell stemness, chemoresistance and accelerated tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and analyzed in the current study are available from the corresponding author upon reasonable request.

Abbreviations

TME:

tumor microenvironment

HNSCC:

head and neck squamous cell carcinoma

CAF:

cancer-associated fibroblast

NF:

normal fibroblast

SRGN:

serglycin

FAP:

fibroblast activation protein

α-SMA:

alpha-smooth muscle actin

HIF-1α:

hypoxia inducible factor 1 alpha

ECM:

extracellular matrix

TGF-β:

transforming growth factor beta

EMT/EndMT:

epithelial/endothelial-mesenchymal transition

CD44:

cluster of differentiation 44

NPC:

nasopharyngeal carcinoma

TCGA:

the Cancer Genome Atlas

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020 [J]. CA Cancer J. Clin. 70(1), 7–30 (2020)

    Article  PubMed  Google Scholar 

  2. S. Kulsum, H.V. Sudheendra, R. Pandian, D.R. Ravindra, G.R. Siddappa, N. Chevour, P. Ramachandran, B. Sagar, M. Jayaprakash, A. Mehta, A. Kekatpure, V. Hedne, N. Kuriakose, M.A. Suresh, Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition [J]. Mol. Carcinog. 56(2), 694–711 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. M.B. Meads, R.A. Gatenby, W.S. Dalton, Environment-mediated drug resistance- a major contributor to minimal residual disease [J]. Nat. Rev. Cancer 9, 665–674 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. S. Koontongkaew, The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas [J]. J. Cancer 4(1), 66–83 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. Wu, Y. Dai, Tumor microenvironment and therapeutic response [J]. Cancer Lett. 387, 61–68 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. R. Kalluri, The biology and function of fibroblasts in cancer [J]. Nat. Rev. Cancer 16(9), 582–598 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. K.E. Richards, A.E. Zeleniak, M.L. Fishel, J. Wu, L.E. Littlepage, R. Hill, Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells [J]. Oncogene 36(13), 1770–1778 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. G.S. Karagiannis, T. Poutahidis, S.E. Erdman, R. Kirsch, R.H. Riddell, E.P. Diamandis, Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue [J]. Mol. Cancer Res. 10(11), 1403–1418 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Q. Xiao, D. Zhou, A.A. Rucki, J. Williams, J. Zhou, G. Mo, A. Murphy, K. Fujiwara, J. Kleponis, B. Salman, C.L. Wolfgang, R.A. Anders, S. Zheng, E.M. Jaffee, L. Zheng, Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation [J]. Cancer Res. 76(18), 5395–5404 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. E.Y. Lau, J. Lo, B.Y. Cheng, M.K. Ma, J.M. Lee, J.K. Ng, S. Chai, C.H. Lin, S.Y. Tsang, S. Ma, I.O. Ng, T.K. Lee, Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling [J]. Cell Rep. 15(6), 1175–1189 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. J. Ren, L. Ding, D. Zhang, G. Shi, Q. Xu, S. Shen, Y. Wang, T. Wang, Y. Hou, Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19 [J]. Theranostics 8(14), 3932–3948 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S.F. Chen, S. Nieh, S.W. Jao, M.Z. Wu, C.L. Liu, Y.C. Chang, Y.S. Lin, The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma [J]. J. Pathol. 231(2), 180–189 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. A. Purushothaman, B.P. Toole, Serglycin proteoglycan is required for multiple myeloma cell adhesion, in vivo growth, and vascularization [J]. J. Biol. Chem. 289(9), 5499–5509 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S.O. Kolset, G. Pejler, Serglycin: a structural and functional chameleon with wide impact on immune cells [J]. J. Immunol. 187(10), 4927–4933 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. N. Binmadi, A. Elsissi, N. Elsissi, Expression of cell adhesion molecule CD44 in mucoepidermoid carcinoma and its association with the tumor behavior [J]. Head Face Med. 12, 8 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  16. J.Y. Guo, C.H. Chiu, M.J. Wang, F.A. Li, J.Y. Chen, Proteoglycan serglycin promotes non-small cell lung cancer cell migration through the interaction of its glycosaminoglycans with CD44 [J]. J. Biomed. Sci. 27(1), 2 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. X.J. Li, C.K. Ong, Y. Cao, Y.Q. Xiang, J.Y. Shao, A. Ooi, L.X. Peng, W.H. Lu, Z. Zhang, D. Petillo, L. Qin, Y.N. Bao, F.J. Zheng, C.S. Chia, N.G. Iyer, T.B. Kang, Y.X. Zeng, K.C. Soo, J.M. Trent, B.T. Teh, C.N. Qian, Serglycin is a theranostic target in nasopharyngeal carcinoma that promotes metastasis [J]. Cancer Res. 71(8), 3162–3172 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. J.Y. Guo, H.S. Hsu, S.W. Tyan, F.Y. Li, J.Y. Shew, W.H. Lee, J.Y. Chen, Serglycin in tumor microenvironment promotes non-small cell lung cancer aggressiveness in a CD44-dependent manner [J]. Oncogene 36(17), 2457–2471 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. Z. Zhang, Y. Deng, G. Zheng, X. Jia, Y. Xiong, K. Luo, Q. Qiu, N. Qiu, J. Yin, M. Lu, H. Liu, Y. Gu, Z. He, SRGN-TGFbeta2 regulatory loop confers invasion and metastasis in triple-negative breast cancer [J]. Oncogenesis 6(7), e360 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Z. Zhang, N. Qiu, J. Yin, J. Zhang, H. Liu, W. Guo, M. Liu, T. Liu, D. Chen, K. Luo, H. Li, Z. He, J. Liu, G. Zheng, SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression [J]. Theranostics 10(10), 4290–4307 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Qi, W. Xu, J. Xie, Y. Wang, S. Han, Z. Wei, Y. Ni, Y. Dong, W. Han, Metformin sensitizes the response of oral squamous cell carcinoma to cisplatin treatment through inhibition of NF-κB/HIF-1α signal axis [J]. Sci. Rep. 20(6), 35788 (2016)

    Article  Google Scholar 

  22. S. Han, W. Xu, Z. Wang, X. Qi, Y. Wang, Y. Ni, H. Shen, Q. Hu, W. Han, Crosstalk between the HIF-1 and Toll-like receptor/nuclear factor-κB pathways in the oral squamous cell carcinoma microenvironment [J]. Oncotarget 7(25), 37773–37789 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  23. F. Casciello, F. Al-Ejeh, M. Miranda, G. Kelly, E. Baxter, K. Windloch, F. Gannon, J.S. Lee, G9a-mediated repression of CDH10 in hypoxia enhances breast tumour cell motility and associates with poor survival outcome [J]. Theranostics 10(10), 4515–4529 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Zhou, X. Dong, P. Xiu, X. Wang, J. Yang, L. Li, Z. Li, P. Sun, X. Shi, J. Zhong, Meloxicam, a selective COX-2 inhibitor, mediates Hypoxia-Inducible Factor- (HIF-) 1α signaling in hepatocellular carcinoma [J]. Oxid. Med. Cell Longev. 2020, 7079308 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  25. X. Yin, S. Han, C. Song, H. Zou, Z. Wei, W. Xu, J. Ran, C. Tang, Y. Wang, Y. Cai, Q. Hu, W. Han, Metformin enhances gefitinib efficacy by interfering with interactions between tumor-associated macrophages and head and neck squamous cell carcinoma cells [J]. Cell. Oncol. (Dordr) 42(4), 459–475 (2019)

    Article  CAS  Google Scholar 

  26. K.Y. Aguilera, R.A. Brekken, Hypoxia Studies with Pimonidazole in vivo [J]. Bio. Protoc. 4, 19 (2014)

    Article  Google Scholar 

  27. B. Li, M. Ren, X. Zhou, Q. Han, L. Cheng, Targeting tumor-associated macrophages in head and neck squamous cell carcinoma [J]. Oral Oncol. 106, 104723 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment [J]. Cancer Cell 21(3), 309–322 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. N. Erez, S. Glanz, Y. Raz, C. Avivi, I. Barshack, Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors [J]. Biochem. Biophys. Res. Commun. 437(3), 397–402 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. I.G. Schauer, A.K. Sood, S. Mok, J. Liu, Cancer-associated fibroblasts and their putative role in potentiating the initiation and development of epithelial ovarian cancer [J]. Neoplasia 13(5), 393–405 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Leca, S. Martinez, S. Lac, J. Nigri, V. Secq, M. Rubis, C. Bressy, A. Serge, M.N. Lavaut, N. Dusetti, C. Loncle, J. Roques, D. Pietrasz, C. Bousquet, S. Garcia, S. Granjeaud, M. Ouaissi, J.B. Bachet, C. Brun, J.L. Iovanna, P. Zimmermann, S. Vasseur, R. Tomasini, Cancer-associated fibroblast-derived annexin A6 + extracellular vesicles support pancreatic cancer aggressiveness [J]. J. Clin. Invest. 126(11), 4140–4156 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  32. A. Skliris, K.E. Happonen, E. Terpos, V. Labropoulou, M. Borset, D. Heinegard, A.M. Blom, A.D. Theocharis, Serglycin inhibits the classical and lectin pathways of complement via its glycosaminoglycan chains: implications for multiple myeloma [J]. Eur. J. Immunol. 41(2), 437–449 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. B.P. Schick, H.C. Ho, K.C. Brodbeck, C.W. Wrigley, J. Klimas, Serglycin proteoglycan expression and synthesis in embryonic stem cells [J]. Biochim. Biophys. Acta 1593(2–3), 259–67 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. G. Pejler, M. Abrink, S. Wernersson, Serglycin proteoglycan: regulating the storage and activities of hematopoietic proteases [J]. Biofactors 35(1), 61–68 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. S. Blatt, M. Kruger, T. Ziebart, K. Sagheb, E. Schiegnitz, E. Goetze, B. Al-Nawas, A.M. Pabst, Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: A review of the literature [J]. J. Craniomaxillofac. Surg. 45(5), 722–730 (2017)

    Article  PubMed  Google Scholar 

  36. M. Najafi, B. Farhood, K. Mortezaee, Cancer stem cells (CSCs) in cancer progression and therapy [J]. J. Cell. Physiol. 234(6), 8381–8395 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. L. Cortes-Dericks, R.A. Schmid, CD44 and its ligand hyaluronan as potential biomarkers in malignant pleural mesothelioma: evidence and perspectives [J]. Respir. Res. 18(1), 58 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  38. L. Ma, L. Dong, P. Chang, CD44v6 engages in colorectal cancer progression [J]. Cell Death Dis. 10(1), 30 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. D. Spiegelberg, J. Nilvebrant, CD44v6-targeted imaging of head and neck squamous cell carcinoma: antibody-based approaches [J]. Contrast Media Mol. Imaging 2017, 2709547 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  40. A.M. Baschnagel, N. Tonlaar, M. Eskandari, T. Kumar, L. Williams, A. Hanna, B.L. Pruetz, G.D. Wilson, Combined CD44, c-MET, and EGFR expression in p16-positive and p16-negative head and neck squamous cell carcinomas [J]. J. Oral Pathol. Med. 46(3), 208–213 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. T. Tamatani, N. Takamaru, G. Ohe, K. Akita, T. Nakagawa, Y. Miyamoto, Expression of CD44, CD44v9, ABCG2, CD24, Bmi-1 and ALDH1 in stage I and II oral squamous cell carcinoma and their association with clinicopathological factors [J]. Oncol. Lett. 16(1), 1133–1140 (2018)

    PubMed  PubMed Central  Google Scholar 

  42. A. Ouhtit, B. Rizeq, H.A. Saleh, M.M. Rahman, H. Zayed, Novel CD44-downstream signaling pathways mediating breast tumor invasion [J]. Int. J. Biol. Sci. 14(13), 1782–1790 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. H. Emich, D. Chapireau, I. Hutchison, I. Mackenzie, The potential of CD44 as a diagnostic and prognostic tool in oral cancer [J]. J. Oral Pathol. Med. 44(6), 393–400 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Jiangsu provincial key research and development plan [BE2017741], the Jiangsu provincial natural science foundation [BK20180136, BK20180138], the Nanjing Cancer Clinical Medical Center, the Project of Invigorating Health Care through Science, the Technology and Education Jiangsu Provincial Medical Youth Talent program [QNRC2016121] and the Fundamental Research Funds for the Central Universities [021414380442].

Author information

Authors and Affiliations

Authors

Contributions

WH and JQX conceived and designed the study. JQX and QXF designed and conducted the majority of the experiments, and interpreted and analyzed the data. WYF performed some of the experiments and wrote the manuscript. XTY, SWH and YC performed some of the experiments and analyzed the data. WGX carried out the bio-informatics analysis. YFW and XFQ assisted in writing the manuscript. WH and JQX reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yufeng Wang or Wei Han.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethics approval and consent to participate

All experiments were approved by the Ethics Review Board of the Nanjing Stomatological Hospital (approval number: 2016-NKL036). All animal experiments and experimental protocols were in accordance with the animal care and use committee of the medical school of Nanjing University. All patients involved in this study provided written informed consent.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Qi, X., Wang, Y. et al. Cancer‐associated fibroblasts secrete hypoxia‐induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway. Cell Oncol. 44, 661–671 (2021). https://doi.org/10.1007/s13402-021-00592-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00592-2

Keywords

Navigation