Advertisement

A positive feedback loop involving the LINC00346/β-catenin/MYC axis promotes hepatocellular carcinoma development

  • Nuobei Zhang
  • Xin ChenEmail author
Original paper
  • 36 Downloads

Abstract

Purpose

In recent years, long noncoding RNAs (lncRNAs) have received increasing attention as important regulators of cancer development. As yet, however, a large fraction of them has not been characterized in detail, and the functional role of LINC00346 in hepatocellular carcinoma (HCC) has remained unclear.

Methods

The role of LINC00346 in HCC development was investigated using both in vitro and in vivo assays. Interactions between LINC00346, miR-542-3p and WDR18 were assessed using luciferase reporter, RT-qPCR and Western blotting assays. Loss- and gain-of-function experiments were performed to assess the roles of LINC00346, miR-542-3p and WDR18 in HCC cell viability, proliferation, migration and invasion.

Results

We found that LINC00346 was upregulated in primary HCC tissues and HCC-derived cell lines and that LINC00346 may promote HCC cell viability, proliferation, migration and invasion. Furthermore, we found that LINC00346 may regulate WDR18 expression via competitively binding to miR-542-3p. This miRNA was found to be downregulated in primary HCC tissues and to act as a tumor suppressor that can inhibit HCC cell viability, proliferation, migration and invasion. In contrast, WDR18 was found to be upregulated in primary HCC tissues and to act as an oncogene. Additional functional studies indicated that WDR18 can activate the Wnt/β-catenin signaling pathway and its downstream effectors in HCC cells. We also found that LINC00346, through competitive sponging of miR-542-3p, may enhance the expression of WDR18 and activate the Wnt/β-catenin signaling pathway in HCC cells. Finally, a positive feedback loop involving LINC00346, β-catenin and MYC in HCC cells was uncovered.

Conclusions

Our results indicate an oncogenic role of LINC00346 in HCC cells via a positive feedback loop involving LINC00346, β-catenin and MYC, and they may be instrumental for the design of novel HCC biomarkers and/or therapeutic strategies.

Keywords

Hepatocellular carcinoma LINC00346 miR-542-3p WDR18 Wnt/β-catenin signaling pathway 

Abbreviations

MTT

1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan

HCC

Hepatocellular carcinoma

lncRNA

long non-coding RNA

FBS

Fetal bovine serum

RT-qPCR

Real-time quantitative PCR

DMEM

Dulbecco’s Modified Eagle Medium

RPMI

Roswell Park Memorial Institute

Notes

Acknowledgments

We thank the Second Affiliated Hospital of Nanchang University for providing the 90 paired HCC and adjacent normal liver tissues. This work was supported by the National Natural Science Foundation of China (No.81760427).

Compliance with ethical standards

Conflict of interest

None declared.

Supplementary material

13402_2019_478_MOESM1_ESM.docx (408 kb)
ESM 1 (DOCX 408 kb)

References

  1. 1.
    J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. Parkin, M. Piñeros, A. Znaor, F. Bray, Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144, 1941–1953 (2019)PubMedCrossRefGoogle Scholar
  2. 2.
    F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394–424 (2018)CrossRefGoogle Scholar
  3. 3.
    R.L. Siegel, K.D. Miller, A.J. Dvm, Cancer statistics, 2018. CA Cancer J Clin 68, 7–30 (2018)PubMedCrossRefGoogle Scholar
  4. 4.
    W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. CA Cancer J Clin 66, 115–132 (2016)PubMedCrossRefGoogle Scholar
  5. 5.
    D. Pulte, J. Weberpals, C.C. Schröder, K. Emrich, B. Holleczek, A. Katalinic, S. Luttmann, E. Sirri, L. Jansen, H. Brenner, Survival of patients with hepatobiliary tract and duodenal cancer sites in Germany and the United States in the early 21st century. Int J Cancer 143, 324–332 (2018)PubMedCrossRefGoogle Scholar
  6. 6.
    S. Pascual, I. Herrera, J. Irurzun, New advances in hepatocellular carcinoma. World J Hepatol 8, 421–438 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    J.S. Mattick, J.L. Rinn, Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22, 5–7 (2015)PubMedCrossRefGoogle Scholar
  8. 8.
    C.P. Ponting, P.L. Oliver, W. Reik, Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009)CrossRefGoogle Scholar
  9. 9.
    J.E. Wilusz, S. Hongjae, D.L. Spector, Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev 23, 1494–1504 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    M.K. Iyer, Y.S. Niknafs, R. Malik, U. Singhal, A. Sahu, Y. Hosono, T.R. Barrette, J.R. Prensner, J.R. Evans, S. Zhao, The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47, 199–208 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    E.A. Gibb, E.A. Vucic, K.S.S. Enfield, G.L. Stewart, K.M. Lonergan, J.Y. Kennett, D.D. Becker-Santos, C.E. Macaulay, L. Stephen, C.J. Brown, Human cancer long non-coding RNA transcriptomes. PLoS One 6, e25915 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    A. Schmitt, H. Chang, Long noncoding RNAs in Cancer pathways. Cancer Cell 29, 452–463 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    M.T. Qiu, J.W. Hu, R. Yin, L. Xu, Long noncoding RNA: An emerging paradigm of cancer research. Tumour Biol 34, 613–620 (2013)PubMedCrossRefGoogle Scholar
  14. 14.
    L. Nie, H.J. Wu, J.M. Hsu, S.S. Chang, A.M. Labaff, C.W. Li, Y. Wang, J.L. Hsu, M.C. Hung, Long non-coding RNAs: Versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res 4, 127–150 (2012)PubMedPubMedCentralGoogle Scholar
  15. 15.
    G. Yang, X. Lu, L. Yuan, LncRNA: A link between RNA and cancer. Biochim Biophys Acta 1839, 1097–1109 (2014)PubMedCrossRefGoogle Scholar
  16. 16.
    M.L. Pecero, J. Salvador-Bofill, S. Molina-Pinelo, Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer. Cell Oncol 42, 1–12 (2019)CrossRefGoogle Scholar
  17. 17.
    R. Castro-Oropeza, J. Melendez-Zajgla, V. Maldonado, K. Vazquez-Santillan, The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol 41, 585–603 (2018)CrossRefGoogle Scholar
  18. 18.
    P.J. Batista, H.Y. Chang, Long noncoding RNAs: Cellular address codes in development and disease. Cell 152, 1298–1307 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    R. Spizzo, M.I. Almeida, A. Colombatti, G.A. Calin, Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene 31, 4577–4587 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    T. Hung, H.Y. Chang, Long noncoding RNA in genome regulation: Prospects and mechanisms. RNA Biol 7, 582–585 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Y. Chen, F. Zhao, D. Cui, R. Jiang, J. Chen, Q. Huang, J. Shi, HOXD-AS1/miR-130a sponge regulates glioma development by targeting E2F8. Int J Cancer 142, 2313–2322 (2018)PubMedCrossRefGoogle Scholar
  22. 22.
    T. Yvonne, R. John, P. Pier Paolo, The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352 (2014)CrossRefGoogle Scholar
  23. 23.
    K.C. Wang, H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell 43, 904–914 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Y. Shi, X. Yang, X. Xue, D. Sun, P. Cai, Q. Song, B. Zhang, L. Qin, HANR promotes hepatocellular carcinoma progression via miR-214/EZH2/TGF-β axis. Biochem Biophys Res Commun 506, 189–193 (2018)PubMedCrossRefGoogle Scholar
  25. 25.
    Y. Wang, L. Sun, L. Wang, Z. Liu, Q. Li, B. Yao, C. Wang, T. Chen, K. Tu, Q. Liu, Long non-coding RNA DSCR8 acts as a molecular sponge for miR-485-5p to activate Wnt/β-catenin signal pathway in hepatocellular carcinoma. Cell Death Dis 9, 851 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    S.C. Gupta, Y.N. Tripathi, Potential of long non-coding RNAs in cancer patients: From bio-markers to therapeutic targets. Int J Cancer 140, 1955–1967 (2017)CrossRefGoogle Scholar
  27. 27.
    W. Shi, C. Zhang, Z. Ning, Y. Hua, Y. Li, L. Chen, L. Liu, Z. Chen, Z. Meng, Long non-coding RNA LINC00346 promotes pancreatic cancer growth and gemcitabine resistance by sponging miR-188-3p to derepress BRD4 expression. J Exp Clin Cancer Res 38, 60 (2019)PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    H. Liu, J. Li, P. Koirala, X. Ding, B. Chen, Y. Wang, Z. Wang, C. Wang, X. Zhang, Y.Y. Mo, Long non-coding RNAs as prognostic markers in human breast cancer. Oncotarget 7, 20584–20596 (2016)PubMedPubMedCentralGoogle Scholar
  29. 29.
    T. Ye, W. Ding, N. Wang, H. Huang, Y. Pan, A. Wei, Long noncoding RNA linc00346 promotes the malignant phenotypes of bladder cancer. Biochem Biophys Res Commun 491, 79–84 (2017)PubMedCrossRefGoogle Scholar
  30. 30.
    Z. Jian, F. Dahua, J. Zhixiang, G.G. Chen, P.B.S. Lai, Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma. PLoS One 10, e0141042 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    H. Li, X. Zhao, C. Li, C. Sheng, Z. Bai, Integrated analysis of lncRNA-associated ceRNA network reveals potential biomarkers for the prognosis of hepatitis B virus-related hepatocellular carcinoma. Cancer Manag Res 11, 877–897 (2017)CrossRefGoogle Scholar
  32. 32.
    W. Liu, S. Wang, Q. Sun, Z. Yang, M. Liu, H. Tang, DCLK1 promotes epithelial-mesenchymal transition via the PI3K/Akt/NF-κB pathway in colorectal cancer. Int J Cancer 142, 2068–2079 (2018)PubMedCrossRefGoogle Scholar
  33. 33.
    J. Yang, F. Han, W. Liu, H. Chen, X. Hao, X. Jiang, L. Yin, Y. Huang, J. Cao, H. Zhang, J. Liu, ALX4, an epigenetically down regulated tumor suppressor, inhibits breast cancer progression by interfering Wnt/β-catenin pathway. J Exp Clin Cancer Res 36, 170 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    L. Yao, Y. Sun, W. Sun, T. Xu, C. Ren, X. Fan, L. Sun, L. Liu, J. Feng, J. Ma, L. Wang, High phosphorus level leads to aortic calcification via β-catenin in chronic kidney disease. Am J Nephrol 41, 28–36 (2015)PubMedCrossRefGoogle Scholar
  35. 35.
    J. Sun, T. Zhang, M. Cheng, L. Hong, C. Zhang, M. Xie, P. Sun, R. Fan, Z. Wang, L. Wang, J. Zhong, TRIM29 facilitates the epithelial-to-mesenchymal transition and the progression of colorectal cancer via the activation of the Wnt/beta-catenin signaling pathway. J Exp Clin Cancer Res 38, 104 (2019)PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    J.J. Chan, Y. Tay, Noncoding RNA:RNA regulatory networks in Cancer. Int J Mol Sci 19, E1310 (2018)PubMedCrossRefGoogle Scholar
  37. 37.
    X.P. Wang, J. Yao, J. Guan, Z.Q. Zhou, Z.Y. Zhang, J. Yang, MicroRNA-542-3p functions as a tumor suppressor via directly targeting survivin in hepatocellular carcinoma. Biomed Pharmacother 99, 817–824 (2018)PubMedCrossRefGoogle Scholar
  38. 38.
    T. Zhang, W. Liu, W. Meng, H. Zhao, Q. Yang, S.J. Gu, C.C. Xiao, C.C. Jia, B.S. Fu, Downregulation of miR-542-3p promotes cancer metastasis through activating TGF-beta/Smad signaling in hepatocellular carcinoma. Onco Targets Ther 11, 1929–1939 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    W. Wu, S. Dang, Q. Feng, J. Liang, Y. Wang, N. Fan, MicroRNA-542-3p inhibits the growth of hepatocellular carcinoma cells by targeting FZD7/Wnt signaling pathway. Biochem Biophys Res Commun 482, 100–105 (2017)PubMedCrossRefGoogle Scholar
  40. 40.
    J. Tao, Z. Liu, Y. Wang, L. Wang, B. Yao, Q. Li, C. Wang, K. Tu, Q. Liu, MiR-542-3p inhibits metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by targeting UBE3C. Biomed Pharmacother 93, 420–428 (2017)PubMedCrossRefGoogle Scholar
  41. 41.
    D.P. Bartel, MicroRNAs : Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol 40, 303–339 (2017)CrossRefGoogle Scholar
  43. 43.
    V. Vilchez, L. Turcios, F. Marti, R. Gedaly, Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol 22, 823–832 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    W. Kim, S.K. Khan, J. Gvozdenovic-Jeremic, Y. Kim, J. Dahlman, H. Kim, O. Park, T. Ishitani, E.-H. Jho, B. Gao, Y. Yang, Hippo signaling interactions with Wnt/β-catenin and notch signaling repress liver tumorigenesis. J Clin Invest 127, 137–152 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Z. Yin, W. Xu, H. Xu, J. Zheng, Y. Gu, Overexpression of HDAC6 suppresses tumor cell proliferation and metastasis by inhibition of the canonical Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncol Lett 16, 7082–7090 (2018)PubMedPubMedCentralGoogle Scholar
  46. 46.
    S. Banskota, S. Dahal, E. Kwon, D.Y. Kim, J.A. Kim, Beta-catenin gene promoter hypermethylation by reactive oxygen species correlates with the migratory and invasive potentials of colon cancer cells. Cell Oncol 41, 569–580 (2018)CrossRefGoogle Scholar
  47. 47.
    T.P. Xu, P. Ma, W.Y. Wang, Y. Shuai, Y.F. Wang, T. Yu, R. Xia, Y.Q. Shu, KLF5 and MYC modulated LINC00346 contributes to gastric cancer progression through acting as a competing endogeous RNA and indicates poor outcome. Cell Death Differ (2019).  https://doi.org/10.1038/s41418-41018-40236-y
  48. 48.
    C. Wu, H.F. Zhang, N. Gupta, A. Alshareef, Q. Wang, Y.H. Huang, J.T. Lewis, D.N. Douglas, N.M. Kneteman, R. Lai, A positive feedback loop involving the Wnt/beta-catenin/MYC/Sox2 axis defines a highly tumorigenic cell subpopulation in ALK-positive anaplastic large cell lymphoma. J Hematol Oncol 9, 120 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    J.R. Prensner, A.M. Chinnaiyan, The emergence of lncRNAs in cancer biology. Cancer Discov 1, 391–407 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    O. Wapinski, H.Y. Chang, Long noncoding RNAs and human disease. Trends Cell Biol 21, 354–361 (2011)PubMedCrossRefGoogle Scholar
  51. 51.
    F. Wang, J.G. Chen, L.L. Wang, Z.Z. Yan, S.P. Chen, X.G. Wang, Up-regulation of LINC00346 inhibits proliferation of non-small cell lung cancer cells through mediating JAK-STAT3 signaling pathway. Eur Rev Med Pharmacol Sci 21, 5135–5142 (2017)PubMedGoogle Scholar
  52. 52.
    W. Qian, X. Cai, Q. Qian, W. Peng, J. Yu, X. Zhang, L. Tian, C. Wang, lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial–mesenchymal transition by competitively binding miR-141-3p. Cell Death Dis 10, 129 (2019)PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    C. Lin, Y. Zhang, Y. Chen, Y. Bai, Long noncoding RNA LINC01234 promotes serine hydroxymethyltransferase 2 expression and proliferation by competitively binding miR-642a-5p in colon cancer. Cell Death Dis 10, 137 (2019)PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    T. Jia-Ling, K. Michael, The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators. Adv Drug Deliv Rev 62, 1149–1155 (2010)CrossRefGoogle Scholar
  55. 55.
    H. Clevers, R. Nusse, Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012)PubMedCrossRefGoogle Scholar
  56. 56.
    T. Zhan, N. Rindtorff, M. Boutros, Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    R. Nusse, H. Clevers, Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017)PubMedCrossRefGoogle Scholar
  58. 58.
    P. Han, J.-W. Li, B.-M. Zhang, J.-C. Lv, Y.-M. Li, X.-Y. Gu, Z.-W. Yu, Y.-H. Jia, X.-F. Bai, L. Li, Y.-L. Liu, B.-B. Cui, The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol Cancer 16, 9 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    K. Zhang, P. Liu, H. Tang, X. Xie, Y. Kong, C. Song, X. Qiu, X. Xiao, AFAP1-AS1 promotes epithelial-mesenchymal transition and tumorigenesis through Wnt/β-catenin signaling pathway in triple-negative breast cancer. Front Pharmacol 9, 1248 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    M. Moumen, A. Chiche, C. Decraene, V. Petit, A. Gandarillas, M.A. Deugnier, M.A. Glukhova, M.M. Faraldo, Myc is required for beta-catenin-mediated mammary stem cell amplification and tumorigenesis. Mol Cancer 12, 1476–4598 (2013)CrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  1. 1.Department of GastroenterologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
  2. 2.Department of Nuclear MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina

Personalised recommendations