Loss of SPINT2 expression frequently occurs in glioma, leading to increased growth and invasion via MMP2

  • Márcia Santos Pereira
  • Sónia Pires Celeiro
  • Ângela Margarida Costa
  • Filipe Pinto
  • Sergey Popov
  • Gisele Caravina de Almeida
  • Júlia Amorim
  • Manuel Melo Pires
  • Célia Pinheiro
  • José Manuel Lopes
  • Mrinalini Honavar
  • Paulo Costa
  • José Pimentel
  • Chris Jones
  • Rui Manuel ReisEmail author
  • Marta Viana-PereiraEmail author
Original paper



High-grade gliomas (HGG) remain one of the most aggressive tumors, which is primarily due to its diffuse infiltrative nature. Serine proteases and metalloproteases are known to play key roles in cellular migration and invasion mechanisms. SPINT2, also known as HAI-2, is an important serine protease inhibitor that can affect MET signaling. SPINT2 has been found to be frequently downregulated in various tumors, whereby hypermethylation of its promoter appears to serve as a common mechanism. Here, we assessed the clinical relevance of SPINT2 expression and promoter hypermethylation in pediatric and adult HGG and explored its functional role.


A series of 371 adult and 77 pediatric primary HGG samples was assessed for SPINT2 protein expression (immunohistochemistry) and promoter methylation (methylation-specific PCR) patterns. After SPINT2 knockdown and knock-in in adult and pediatric HGG cell lines, a variety of in vitro assays was carried out to determine the role of SPINT2 in glioma cell viability and invasion, as well as their mechanistic associations with metalloprotease activities.


We found that SPINT2 protein expression was frequently absent in adult (85.3%) and pediatric (100%) HGG samples. The SPINT2 gene promoter was found to be hypermethylated in approximately half of both adult and pediatric gliomas. Through functional assays we revealed a suppressor activity of SPINT2 in glioma cell proliferation and viability, as well as in their migration and invasion. These functions appear to be mediated in part by MMP2 expression and activity.


We conclude that dysregulation of SPINT2 is a common event in both pediatric and adult HGG, in which SPINT2 may act as a tumor suppressor.


Glioma SPINT2 Hypermethylation Metalloproteases 



The authors thank Dr. Scholm for providing the 4/T0 vector.

Funding information

This work was funded by the Fundação para a Ciência e Tecnologia (FCT), Portugal ( (grants PTDC/SAU-ONC/115513/2009_FCOMP-01-0124-FEDER-015949 and PTDC/SAU-TOX/114549/2009 to RMR). This article has been developed under the scope of project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through FCT, under the scope of project UID/Multi/50026. MVP was recipient of a FCT Post-Doctoral fellowship (SFRH/BPD/104290/2014). SPC was recipient of a BOLSA LIGA PORTUGUESA CONTRA CANCRO (LPCC)/Fundação PT 2018 grant. AMC was recipient of fellow DL 57/2016/CP1360/CT0009. FP was recipient of a FCT Post-Doctoral fellowship (SFRH/BPD/115730/2016); CJ acknowledges NHS funding to the NIHR Biomedical Research Centre at The Royal Marsden and the ICR.

Compliance with ethical standards

Conflict of interests

The authors disclose no potential conflicts of interest.

Supplementary material

13402_2019_475_MOESM1_ESM.jpg (112 kb)
ESM 1 Fig. S1. Median expression intensity for SPINT2 mRNA levels in in silico analysis. a) Analysis of SPINT2 mRNA expression in Rembrandt database. SPINT2 is down-regulated compared with non-tumor tissues. b) Analysis of SPINT2 mRNA expression in TCGA database. The mRNA levels are showed in Log2 median values and normalized to normal brain. Each point corresponds to one patient. Only two patients present higher levels of SPINT2 than normal brain. (JPG 111 kb)
13402_2019_475_MOESM2_ESM.jpg (177 kb)
ESM 2 Fig. S2.SPINT2 mRNA, protein and methylation characterization of adult glioma cell lines. a)SPINT2 promoter methylation analysis by MSP (M-methylated and UM-unmethylated product) showed SPINT2 methylation in all adult glioma cell lines. b)SPINT2 mRNA expression analysis by RT-PCR, using as a reference gene β-Actin, showed a decrease in SPINT2 mRNA levels from normal brain (adult and fetal brain tissues and normal cell line, NHAi) to glioma cell lines. c) Immunocytochemistry and d) immunofluorescence for SPINT2 confirmed the low expression levels observed in RNA analysis. (JPG 177 kb)
13402_2019_475_MOESM3_ESM.jpg (98 kb)
ESM 3 Fig. S3. Modulation of SPINT2 expression in SPINT2-negative U87 adult glioma cell lines. a-c) U87 cell line transfected with empty vector (4/T0) or SPINT2 transcript (4/T0-SPINT2). mRNA and protein expression analysis confirmed the over-expression of SPINT2. DAPI stained nucleus in blue and SPINT2 was stained in green. DAPI/SPINT2 is the merge of both staining. (JPG 97 kb)
13402_2019_475_MOESM4_ESM.jpg (124 kb)
ESM 4 Fig. S4. Functional assays for U87 adult glioma cell line under over-expression of SPINT2. a) MTS, (b) BrdU, (c) Colonigenic assay, (d) Matrigel invasion assay, (e) quantitative PCR for MMP2 and (f) zymogram showed that over-expression of SPINT2 decreased viability, proliferation, colonies formation, invasion capacity and MMP2 activity and expression. *p < 0.05, **p < 0.01, *p < 0.001 (JPG 123 kb)
13402_2019_475_MOESM5_ESM.jpg (43 kb)
ESM 5 Figure S5_ The effect of SPINT2 on MMP2 activity through HGF-MET pathway. MMP2 activity was detected by zymogram using conditioned medium from a) SF188 and b) U87 glioma cells, supplemented or not with 100 ng of HGF for 24 h. The stimulation of MMP2 activity was only observed in SPINT2-negative cells. Zymograms are representative of 3 independent experiences. Cells with empty vector - 4/T0; Cells with SPINT2 transcript (4/T0-SPINT2); Pro-MMP2 – total form of MMP2; Cleaved-MMP2 – activated form of MMP2. (JPG 42 kb)
13402_2019_475_MOESM6_ESM.docx (14 kb)
ESM 6 (DOCX 14 kb)


  1. 1.
    R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J Clin 69, 7–34 (2019)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    N.G. Burnet, S.J. Jefferies, R.J. Benson, D.P. Hunt, F.P. Treasure, Years of life lost (YLL) from cancer is an important measure of population burden--and should be considered when allocating research funds. Br J Cancer 92, 241–245 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    T.A. Dolecek, J.M. Propp, N.E. Stroup, C. Kruchko, CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-Oncology 14(Suppl 5), v1–v49 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114, 97–109 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    D.N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131, 803–820 (2016)PubMedCrossRefGoogle Scholar
  6. 6.
    R. Stupp, M.E. Hegi, W.P. Mason, M.J. van den Bent, M.J. Taphoorn, R.C. Janzer, S.K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, P. Hau, A.A. Brandes, J. Gijtenbeek, C. Marosi, C.J. Vecht, K. Mokhtari, P. Wesseling, S. Villa, E. Eisenhauer, T. Gorlia, M. Weller, D. Lacombe, J.G. Cairncross, R.O. Mirimanoff, R. European Organisation for, T. Treatment of Cancer Brain, G. Radiation Oncology and G. National Cancer Institute of Canada Clinical Trials, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncology 10, 459–466 (2009)PubMedCrossRefGoogle Scholar
  7. 7.
    A. Claes, A.J. Idema, P. Wesseling, Diffuse glioma growth: a guerilla war. Acta Neuropathol 114, 443–458 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    R. Mentlein, K. Hattermann, J. Held-Feindt, Lost in disruption: role of proteases in glioma invasion and progression. Biochim Biophys Acta 1825, 178–185 (2012)PubMedGoogle Scholar
  9. 9.
    J.S. Rao, Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3, 489–501 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    D.K. Binder, M.S. Berger, Proteases and the biology of glioma invasion. J Neuro-Oncol 56, 149–158 (2002)CrossRefGoogle Scholar
  11. 11.
    C.W. Marlor, K.A. Delaria, G. Davis, D.K. Muller, J.M. Greve, P.P. Tamburini, Identification and cloning of human placental bikunin, a novel serine protease inhibitor containing two Kunitz domains. J Biol Chem 272, 12202–12208 (1997)PubMedCrossRefGoogle Scholar
  12. 12.
    K. Denda, T. Shimomura, T. Kawaguchi, K. Miyazawa, N. Kitamura, Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 1. J Biol Chem 277, 14053–14059 (2002)PubMedCrossRefGoogle Scholar
  13. 13.
    K.A. Delaria, D.K. Muller, C.W. Marlor, J.E. Brown, R.C. Das, S.O. Roczniak, P.P. Tamburini, Characterization of placental bikunin, a novel human serine protease inhibitor. J Biol Chem 272, 12209–12214 (1997)PubMedCrossRefGoogle Scholar
  14. 14.
    D. Kirchhofer, M. Peek, M.T. Lipari, K. Billeci, B. Fan, P. Moran, Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett 579, 1945–1950 (2005)PubMedCrossRefGoogle Scholar
  15. 15.
    R. Szabo, J.P. Hobson, K. List, A. Molinolo, C.Y. Lin, T.H. Bugge, Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. J Biol Chem 283, 29495–29504 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    R. Szabo, A.L. Rasmussen, A.B. Moyer, P. Kosa, J.M. Schafer, A.A. Molinolo, J.S. Gutkind, T.H. Bugge, c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene 30, 2003–2016 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    S. Hwang, H.E. Kim, M. Min, R. Raghunathan, I.P. Panova, R. Munshi, B. Ryu, Epigenetic silencing of SPINT2 promotes cancer cell motility via HGF-MET pathway activation in melanoma. J Invest Dermatol 135, 2283–2291 (2015)PubMedCrossRefGoogle Scholar
  18. 18.
    T. Fukushima, M. Kawaguchi, K. Yamamoto, F. Yamashita, A. Izumi, T. Kaieda, Y. Takezaki, H. Itoh, H. Takeshima, H. Kataoka, Aberrant methylation and silencing of the SPINT2 gene in high-grade gliomas. Cancer Sci 109, 2970–2979 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    M.S. Pereira, G.C. de Almeida, F. Pinto, M. Viana-Pereira, R.M. Reis, SPINT2 Deregulation in prostate carcinoma. J Histochem Cytochem 64, 32–41 (2016)CrossRefGoogle Scholar
  20. 20.
    T. Kawaguchi, L. Qin, T. Shimomura, J. Kondo, K. Matsumoto, K. Denda, N. Kitamura, Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem 272, 27558–27564 (1997)PubMedCrossRefGoogle Scholar
  21. 21.
    M. Del Rosso, G. Fibbi, M. Pucci, S. D'Alessio, A. Del Rosso, L. Magnelli, V. Chiarugi, Multiple pathways of cell invasion are regulated by multiple families of serine proteases. Clin Exp Metastasis 19, 193–207 (2002)PubMedCrossRefGoogle Scholar
  22. 22.
    C. Parr, W.G. Jiang, Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer 119, 1176–1183 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    K. Nakamura, A. Hongo, J. Kodama, Y. Hiramatsu, The role of hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2 in endometrial cancer. Int J Cancer 128, 2613–2624 (2011)PubMedCrossRefGoogle Scholar
  24. 24.
    C.H. Tsai, C.H. Teng, Y.T. Tu, T.S. Cheng, S.R. Wu, C.J. Ko, H.Y. Shyu, S.W. Lan, H.P. Huang, S.F. Tzeng, M.D. Johnson, C.Y. Lin, P.W. Hsiao, M.S. Lee, HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene 33, 4643–4652 (2014)PubMedCrossRefGoogle Scholar
  25. 25.
    C. Bergum, K. List, Loss of the matriptase inhibitor HAI-2 during prostate cancer progression. Prostate 70, 1422–1428 (2010)PubMedCrossRefGoogle Scholar
  26. 26.
    P.N. Kongkham, P.A. Northcott, Y.S. Ra, Y. Nakahara, T.G. Mainprize, S.E. Croul, C.A. Smith, M.D. Taylor, J.T. Rutka, An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res 68, 9945–9953 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    K. Nakamura, F. Abarzua, A. Hongo, J. Kodama, Y. Nasu, H. Kumon, Y. Hiramatsu, Hepatocyte growth factor activator inhibitor-2 (HAI-2) is a favorable prognosis marker and inhibits cell growth through the apoptotic pathway in cervical cancer. Ann Oncol 20, 63–70 (2009)PubMedCrossRefGoogle Scholar
  28. 28.
    W. Dong, X. Chen, J. Xie, P. Sun, Y. Wu, Epigenetic inactivation and tumor suppressor activity of HAI-2/SPINT2 in gastric cancer. Int J Cancer 127, 1526–1534 (2010)PubMedCrossRefGoogle Scholar
  29. 29.
    K. Fukai, O. Yokosuka, T. Chiba, Y. Hirasawa, M. Tada, F. Imazeki, H. Kataoka, H. Saisho, Hepatocyte growth factor activator inhibitor 2/placental bikunin (HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma. Cancer Res 63, 8674–8679 (2003)PubMedGoogle Scholar
  30. 30.
    J.M. Schuster, M. Longo, P.S. Nelson, Differential expression of bikunin (HAI-2/PB), a proposed mediator of glioma invasion, by demethylation treatment. J Neuro-Oncol 64, 219–225 (2003)CrossRefGoogle Scholar
  31. 31.
    M.R. Morris, D. Gentle, M. Abdulrahman, E.N. Maina, K. Gupta, R.E. Banks, M.S. Wiesener, T. Kishida, M. Yao, B. Teh, F. Latif, E.R. Maher, Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res 65, 4598–4606 (2005)PubMedCrossRefGoogle Scholar
  32. 32.
    E.J. Lee, P. Rath, J. Liu, D. Ryu, L. Pei, S.K. Noonepalle, A.Y. Shull, Q. Feng, N.S. Litofsky, D.C. Miller, D.C. Anthony, M.D. Kirk, J. Laterra, L. Deng, H.B. Xin, X. Wang, J.H. Choi, H. Shi, Identification ofg global DNA methylation signatures in glioblastoma-derived cancer stem cells. J Genet Genomics 42, 355–371 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    O. Martinho, C.C. Faloppa, C.S. Neto, A. Longatto-Filho, G. Baiocchi, I.W. da Cunha, F.A. Soares, J.H. Fregnani, R.M. Reis, Loss of RKIP expression during the carcinogenic evolution of endometrial cancer. J Clin Pathol 65, 122–128 (2012)PubMedCrossRefGoogle Scholar
  34. 34.
    O. Martinho, K. Simoes, A. Longatto-Filho, C.E. Jacob, B. Zilberstein, C. Bresciani, J. Gama-Rodrigues, I. Cecconello, V. Alves, R.M. Reis, Absence of RKIP expression is an independent prognostic biomarker for gastric cancer patients. Oncol Rep 29, 690–696 (2013)PubMedCrossRefGoogle Scholar
  35. 35.
    M. Viana-Pereira, A. Lee, S. Popov, D.A. Bax, S. Al-Sarraj, L.R. Bridges, J.N. Stavale, D. Hargrave, C. Jones, R.M. Reis, Microsatellite instability in pediatric high grade glioma is associated with genomic profile and differential target gene inactivation. PLoS One 6, e20588 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    D.A. Bax, S.E. Little, N. Gaspar, L. Perryman, L. Marshall, M. Viana-Pereira, T.A. Jones, R.D. Williams, A. Grigoriadis, G. Vassal, P. Workman, D. Sheer, R.M. Reis, A.D. Pearson, D. Hargrave, C. Jones, Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS One 4, e5209 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    R.J. Silva-Oliveira, V.A. Silva, O. Martinho, A. Cruvinel-Carloni, M.E. Melendez, M.N. Rosa, F.E. de Paula, L. de Souza Viana, A.L. Carvalho, R.M. Reis, Cytotoxicity of allitinib, an irreversible anti-EGFR agent, in a large panel of human cancer-derived cell lines: KRAS mutation status as a predictive biomarker. Cell Oncol 39, 253–263 (2016)CrossRefGoogle Scholar
  38. 38.
    C. Palena, D.E. Polev, K.Y. Tsang, R.I. Fernando, M. Litzinger, L.L. Krukovskaya, A.V. Baranova, A.P. Kozlov, J. Schlom, The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy. Clin Cancer Res 13, 2471–2478 (2007)PubMedCrossRefGoogle Scholar
  39. 39.
    A.M. Costa, F. Pinto, O. Martinho, M.J. Oliveira, P. Jordan, R.M. Reis, Silencing of the tumor suppressor gene WNK2 is associated with upregulation of MMP2 and JNK in gliomas. Oncotarget 6, 1422–1434 (2015)PubMedGoogle Scholar
  40. 40.
    F. Pinto, N. Pertega-Gomes, M.S. Pereira, J.R. Vizcaino, P. Monteiro, R.M. Henrique, F. Baltazar, R.P. Andrade, R.M. Reis, T-box transcription factor brachyury is associated with prostate cancer progression and aggressiveness. Clin Cancer Res 20, 4949–4961 (2014)PubMedCrossRefGoogle Scholar
  41. 41.
    O. Martinho, F. Pinto, S. Granja, V. Miranda-Goncalves, M.A. Moreira, L.F. Ribeiro, C. di Loreto, M.R. Rosner, A. Longatto-Filho, R.M. Reis, RKIP inhibition in cervical cancer is associated with higher tumor aggressive behavior and resistance to cisplatin therapy. PLoS One 8, e59104 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    S. Moniz, O. Martinho, F. Pinto, B. Sousa, C. Loureiro, M.J. Oliveira, L.F. Moita, M. Honavar, C. Pinheiro, M. Pires, J.M. Lopes, C. Jones, J.F. Costello, J. Paredes, R.M. Reis, P. Jordan, Loss of WNK2 expression by promoter gene methylation occurs in adult gliomas and triggers Rac1-mediated tumour cell invasiveness. Hum Mol Genet 22, 84–95 (2013)PubMedCrossRefGoogle Scholar
  43. 43.
    A.C. Bellail, S.B. Hunter, D.J. Brat, C. Tan, E.G. Van Meir, Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36, 1046–1069 (2004)PubMedCrossRefGoogle Scholar
  44. 44.
    R. Hamasuna, H. Kataoka, T. Moriyama, H. Itoh, M. Seiki, M. Koono, Regulation of matrix metalloproteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor (HGF/SF) in human glioma cells: HGF/SF enhances MMP-2 expression and activation accompanying up-regulation of membrane type-1 MMP. Int J Cancer 82, 274–281 (1999)PubMedCrossRefGoogle Scholar
  45. 45.
    L. Qin, K. Denda, T. Shimomura, T. Kawaguchi, N. Kitamura, Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 2. FEBS Lett 436, 111–114 (1998)PubMedCrossRefGoogle Scholar
  46. 46.
    N. Ahmadloo, A.A. Kani, M. Mohammadianpanah, H. Nasrolahi, S. Omidvari, A. Mosalaei, M. Ansari, Treatment outcome and prognostic factors of adult glioblastoma multiforme. J Egypt Natl Canc Inst 25, 21–30 (2013)PubMedCrossRefGoogle Scholar
  47. 47.
    R. Hamasuna, H. Kataoka, J.Y. Meng, H. Itoh, T. Moriyama, S. Wakisaka, M. Koono, Reduced expression of hepatocyte growth factor activator inhibitor type-2/placental bikunin (HAI-2/PB) in human glioblastomas: implication for anti-invasive role of HAI-2/PB in glioblastoma cells. Int J Cancer 93, 339–345 (2001)PubMedCrossRefGoogle Scholar
  48. 48.
    E.K. Tung, C.M. Wong, T.O. Yau, J.M. Lee, Y.P. Ching, I.O. Ng, HAI-2 is epigenetically downregulated in human hepatocellular carcinoma, and its Kunitz domain type 1 is critical for anti-invasive functions. Int J Cancer 124, 1811–1819 (2009)PubMedCrossRefGoogle Scholar
  49. 49.
    T. Chiba, O. Yokosuka, K. Fukai, Y. Hirasawa, M. Tada, R. Mikata, F. Imazeki, H. Taniguchi, A. Iwama, M. Miyazaki, T. Ochiai, H. Saisho, Identification and investigation of methylated genes in hepatoma. Eur J Cancer (Oxford, England: 1990) 41, 1185–1194 (2005)PubMedCrossRefGoogle Scholar
  50. 50.
    K. Nakamura, F. Abarzua, J. Kodama, A. Hongo, Y. Nasu, H. Kumon, Y. Hiramatsu, Expression of hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2) in ovarian cancer. Int J Oncol 34, 345–353 (2009)PubMedGoogle Scholar
  51. 51.
    M. Suzuki, H. Kobayashi, Y. Tanaka, Y. Hirashima, N. Kanayama, Y. Takei, Y. Saga, M. Suzuki, H. Itoh, T. Terao, Suppression of invasion and peritoneal carcinomatosis of ovarian cancer cell line by overexpression of bikunin. Int J Cancer 104, 289–302 (2003)PubMedCrossRefGoogle Scholar
  52. 52.
    D.M. Le, A. Besson, D.K. Fogg, K.S. Choi, D.M. Waisman, C.G. Goodyer, B. Rewcastle, V.W. Yong, Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 23, 4034–4043 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    S.R. Wu, C.H. Lin, H.P. Shih, C.J. Ko, H.Y. Lin, S.W. Lan, H.H. Lin, H.F. Tu, C.C. Ho, H.P. Huang, M.S. Lee, HAI-2 as a novel inhibitor of plasmin represses lung cancer cell invasion and metastasis. Br J Cancer 120, 499–511 (2019)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Márcia Santos Pereira
    • 1
    • 2
  • Sónia Pires Celeiro
    • 1
    • 2
  • Ângela Margarida Costa
    • 3
    • 4
  • Filipe Pinto
    • 1
    • 2
    • 3
    • 5
  • Sergey Popov
    • 6
  • Gisele Caravina de Almeida
    • 7
  • Júlia Amorim
    • 8
  • Manuel Melo Pires
    • 9
  • Célia Pinheiro
    • 10
  • José Manuel Lopes
    • 5
    • 11
  • Mrinalini Honavar
    • 12
  • Paulo Costa
    • 13
  • José Pimentel
    • 14
  • Chris Jones
    • 15
  • Rui Manuel Reis
    • 1
    • 2
    • 16
    Email author
  • Marta Viana-Pereira
    • 1
    • 2
    Email author
  1. 1.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.I3S - Instituto de Investigação e Inovação em SaúdePortoPortugal
  4. 4.INEB - Institute of Biomedical EngineeringPortoPortugal
  5. 5.IPATIMUP – Institute of Molecular Pathology and ImmunologyUniversity of PortoPortoPortugal
  6. 6.Department of Cellular PathologyUniversity Hospital of WalesCardiffUnited Kingdom
  7. 7.Department of PathologyBarretos Cancer HospitalS. PauloBrazil
  8. 8.Department of OncologyHospital de BragaBragaPortugal
  9. 9.Unity of NeuropathologyCentro Hospitalar Universitário PortoPortoPortugal
  10. 10.Department of NeurosurgeryCentro Hospitalar Universitário PortoPortoPortugal
  11. 11.Department of PathologyHospital São JoãoPortoPortugal
  12. 12.Department of PathologyHospital Pedro HispanoMatosinhosPortugal
  13. 13.Department of RadiotherapyHospital de BragaBragaPortugal
  14. 14.Laboratory of NeuropathologyHospital de Santa MariaLisbonPortugal
  15. 15.Divisions of Molecular Pathology and Cancer TherapeuticsInstitute of Cancer ResearchLondonUnited Kingdom
  16. 16.Molecular Oncology Research Center, Barretos Cancer HospitalBarretos, São PauloBrazil

Personalised recommendations