Advertisement

Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast and ovarian carcinoma by targeting their stem cell compartment

  • Ada Koschorke
  • Simona Faraci
  • Debora Giani
  • Claudia Chiodoni
  • Egidio Iorio
  • Rossella Canese
  • Mario P. Colombo
  • Alessia Lamolinara
  • Manuela Iezzi
  • Michael Ladomery
  • Claudio Vernieri
  • Filippo de Braud
  • Massimo Di Nicola
  • Elda Tagliabue
  • Lorenzo Castagnoli
  • Serenella M. PupaEmail author
Original paper
  • 167 Downloads

Abstract

Purpose

Isothiocyanates elicit anticancer effects by targeting cancer stem cells (CSCs). Here, we tested the antitumor activity of phenethyl-isothiocyanate (PEITC), either alone or in combination with trastuzumab, in HER2-positive tumor models.

Methods

We assessed the in vitro anticancer activity of PEITC, alone or combined with trastuzumab, in HER2-positive BT474, SKBR3, HCC1954 and SKOV3 cancer cells by measuring their sphere forming efficiency (SFE). The expression of the human/rodent CSC biomarkers aldehyde-dehydrogenase (ALDH) and CD29High/CD24+/Sca1Low was evaluated by cytofluorimetric analysis. The expression of wild type HER2 (WTHER2), its splice variant d16HER2 and NOTCH was analysed by quantitative RT-PCR and Western blotting. The in vivo activity of PEITC and trastuzumab was evaluated in mice orthotopically implanted with MI6 tumor cells transgenic for the human d16HER2 splice isoform. Magnetic resonance imaging/spectroscopy and immunohistochemistry were used to assess morpho-functional and metabolic profiles of treated versus untreated mice.

Results

We found that PEITC significantly impaired the SFE of HER2-positive human cancer cells by decreasing their ALDH-positive compartments. The anti-CSC activity of PEITC was demonstrated by a reduced expression/activation of established cancer-stemness biomarkers. Similar results were obtained with MI6 cells, where PEITC, alone or in combination with trastuzumab, significantly inhibited their SFE. We also found that PEITC hampered the in vivo growth of MI6 nodules by inducing hemorrhagic and necrotic intra-tumor areas and, in combination with trastuzumab, by significantly reducing spontaneous tumor development in d16HER2 transgenic mice.

Conclusions

Our results indicate that PEITC targets HER2-positive CSCs and that its combination with trastuzumab may pave the way for a novel therapeutic strategy for HER2-positive tumors.

Keywords

Breast cancer HER2 d16HER2 isoform Cancer stem cells Phenethyl isothiocyanate  Trastuzumab 

Notes

Acknowledgments

The authors thank Mrs. C. Ghirelli for technical assistance, the Flow Cytometry and Cell Sorting Facility for their support in the cytofluorimetric analyses, Dr. P. Casalini for her support in the ImageJ analyses, Mrs. L. Mameli, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, for secretarial assistance and Dr. M. Borghi, Istituto Superiore di Sanità, Rome, for her contribution to the in vivo MRI study. This work was funded by grants from the Associazione Italiana Ricerca Cancro (AIRC; call 2010) 10352 to S.M. Pupa and Ministero Italiano della Salute RF-2009-1532281 to S.M. Pupa.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13402_2019_464_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)
13402_2019_464_MOESM2_ESM.docx (13 kb)
ESM 2 (DOCX 12 kb)
13402_2019_464_MOESM3_ESM.pdf (27 kb)
Supplementary Figure 1 Susceptibility of human HER2-positive BC cell lines to PEITC treatment. Cell growth of BT474, SKBR3, HCC1954, MDAMB231 and SKOV3 cell lines cultured under 2D conditions evaluated by SRB assay. MDAMB231 cell line was used as positive control for in vitro PEITC activity. Cells (3,000/well) were cultured and treated per 24, 48 and 72 h in presence of increasing concentrations of PEITC diluted in DMSO. (PDF 26 kb)
13402_2019_464_MOESM4_ESM.pdf (231 kb)
Supplementary Figure 2 Representative plots of ALDH-positive cells in BT474, SKBR3, HCC1954 and SKOV3 targets upon treatment with PEITC (12 μM) for 72 h. (PDF 231 kb)
13402_2019_464_MOESM5_ESM.pdf (102 kb)
Supplementary Figure 3 Susceptibility of MI6 cells to PEITC treatment. Cell growth of MI6 cell line cultured under 2D conditions evaluated by SRB assay. Cells (5,000/well) were cultured and treated per 24, 48 and 72 h in presence of increasing concentrations of PEITC diluted in DMSO. (PDF 102 kb)
13402_2019_464_MOESM6_ESM.pdf (99 kb)
Supplementary Figure 4 Representative images of morphology and size of MI6 mammospheres formed after 7 days in presence or not of T, PEITC and PEITC-T combination. Magnification 10X. (PDF 99 kb)
13402_2019_464_MOESM7_ESM.pdf (117 kb)
Supplementary Figure 5 Multiparametric FACS analysis of the CD29High/CD24+ SCA1Low stem cell subset in MI6 treated with DMSO, T, PEITC, and their combination (PEITC+T). (PDF 117 kb)

References

  1. 1.
    S. Parakh, H.K. Gan, A.C. Parslow, I.J.G. Burvenich, A.W. Burgess, A.M. Scott, Evolution of anti-HER2 therapies for cancer treatment. Cancer Treat. Rev. 59, 1–21 (2017).  https://doi.org/10.1016/j.ctrv.2017.06.005 CrossRefPubMedGoogle Scholar
  2. 2.
    B.N. Rexer, C.L. Arteaga, Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: Mechanisms and clinical implications. Crit. Rev. Oncog. 17, 1–16 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    S. Loibl, L. Gianni, HER2-positive breast cancer. Lancet 389, 2415–2429 (2017).  https://doi.org/10.1016/S0140-6736(16)32417-5 CrossRefGoogle Scholar
  4. 4.
    P. Samadi, S. Saki, F.K. Dermani, M. Pourjafar, M. Saidijam, Emerging ways to treat breast cancer: Will promises be met? Cell. Oncol. (Dordr). 41(605–621), 605–621 (2018).  https://doi.org/10.1007/s13402-018-0409-1
  5. 5.
    T. Triulzi, G.V. Bianchi, E. Tagliabue, Predictive biomarkers in the treatment of HER2-positive breast cancer: An ongoing challenge. Future Oncol. 12, 1413–1428 (2016).  https://doi.org/10.2217/fon-2015-0025 CrossRefPubMedGoogle Scholar
  6. 6.
    C.T. Jordan, M.L. Guzman, M. Noble, Cancer stem cells. N. Engl. J. Med. 355, 1253–1261 (2006).  https://doi.org/10.1056/NEJMra061808 CrossRefPubMedGoogle Scholar
  7. 7.
    H. Korkaya, S. Liu, M.S. Wicha, Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Invest. 121, 3804–3809 (2011).  https://doi.org/10.1172/JCI57099 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    H. Korkaya, M.S. Wicha, Breast cancer stem cells: we've got them surrounded. Clin. Cancer Res. 19, 511–513 (2013).  https://doi.org/10.1158/1078-0432.CCR-12-3450 CrossRefPubMedGoogle Scholar
  9. 9.
    R. Castro-Oropeza, J. Melendez-Zajgla, V. Maldonado, K. Vazquez-Santillan, The emerging role of lncRNAs in the regulation of cancer stem cells. Cell. Oncol. (Dordr) 41(585–603), 585–603 (2018).  https://doi.org/10.1007/s13402-018-0406-4
  10. 10.
    H. Korkaya, M.S. Wicha, HER2 and breast cancer stem cells: more than meets the eye. Cancer Res. 73, 3489–3493 (2013).  https://doi.org/10.1158/0008-5472.CAN-13-0260 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    S. Annett, T. Robson, Targeting cancer stem cells in the clinic: Current status and perspectives. Pharmacol. Ther. 187, 13–30 (2018).  https://doi.org/10.1016/j.pharmthera.2018.02.001 CrossRefPubMedGoogle Scholar
  12. 12.
    S.G. Pohl, N. Brook, M. Agostino, F. Arfuso, A.P. Kumar, A. Dharmarajan, Wnt signaling in triple-negative breast cancer. Oncogenesis 6, e310 (2017).  https://doi.org/10.1038/oncsis.2017.14 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    N. Shafee, C.R. Smith, S. Wei, Y. Kim, G.B. Mills, G.N. Hortobagyi, E.J. Stanbridge, E.Y. Lee, Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res. 68, 3243–3250 (2008).  https://doi.org/10.1158/0008-5472.CAN-07-5480 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    D. Hambardzumyan, M. Squatrito, E.C. Holland, Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10, 454–456 (2006).  https://doi.org/10.1016/j.ccr.2006.11.008 CrossRefPubMedGoogle Scholar
  15. 15.
    L. Castagnoli, V. Cancila, S.L. Romero-Cordoba, S. Faraci, G. Talarico, B. Belmonte, M.V. Iorio, T. Volpari, C. Chiodoni, A. Hidalgo-Miranda, E. Tagliabue, C. Tripodo, S. Sangaletti, M. Di Nicola, S.M. Pupa, WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene 38, 4047–4060 (2019).  https://doi.org/10.1038/s41388-019-0700-2 CrossRefPubMedGoogle Scholar
  16. 16.
    H. Korkaya, A. Paulson, F. Iovino, M.S. Wicha, HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27, 6120–6130 (2008).  https://doi.org/10.1038/onc.2008.207 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    A. Magnifico, L. Albano, S. Campaner, D. Delia, F. Castiglioni, P. Gasparini, G. Sozzi, E. Fontanella, S. Ménard, E. Tagliabue, Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to Trastuzumab. Clin. Cancer Res. 15, 2010–2021 (2009).  https://doi.org/10.1158/1078-0432.CCR-08-1327 CrossRefPubMedGoogle Scholar
  18. 18.
    G. Farnie, R.L. Johnson, K.E. Williams, R.B. Clarke, N.J. Bundred, Lapatinib inhibits stem/progenitor proliferation in preclinical in vitro models of ductal carcinoma in situ (DCIS). Cell Cycle 13, 418–425 (2014).  https://doi.org/10.4161/cc.27201 CrossRefPubMedGoogle Scholar
  19. 19.
    L. Castagnoli, G.C. Ghedini, A. Koschorke, T. Triulzi, M. Dugo, P. Gasparini, P. Casalini, A. Palladini, M. Iezzi, A. Lamolinara, P.L. Lollini, P. Nanni, C. Chiodoni, E. Tagliabue, S.M. Pupa, Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer. Oncogene 36, 1721–1732 (2017).  https://doi.org/10.1038/onc.2016.338 CrossRefPubMedGoogle Scholar
  20. 20.
    K.Y. Kwong, M.C. Hung, A novel splice variant of HER2 with increased transformation activity. Mol. Carcinog. 23, 62–68 (1998)CrossRefPubMedGoogle Scholar
  21. 21.
    F. Castiglioni, E. Tagliabue, M. Campiglio, S.M. Pupa, A. Balsari, S. Ménard, Role of exon-16-deleted HER2 in breast carcinomas. Endocr. Relat. Cancer 13, 221–232 (2006).  https://doi.org/10.1677/ERC.1.01047 CrossRefPubMedGoogle Scholar
  22. 22.
    D. Mitra, M.J. Brumlik, S.U. Okamgba, Y. Zhu, T.T. Duplessis, J.G. Parvani, S.M. Lesko, E. Brogi, F.E. Jones, An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance. Mol. Cancer Ther. 8, 2152–2162 (2009).  https://doi.org/10.1158/1535-7163.MCT-09-0295 CrossRefPubMedGoogle Scholar
  23. 23.
    C.C. Volpi, F. Pietrantonio, A. Gloghini, G. Fuca, S. Giordano, S. Corso, G. Pruneri, M. Antista, C. Cremolini, E. Fasano, S. Saggio, S. Faraci, M. Di Bartolomeo, F. De Braud, M. Di Nicola, E. Tagliabue, S.M. Pupa, L. Castagnoli, The landscape of d16HER2 splice variant expression across HER2-positive cancers. Sci. Rep. 9, 3545 (2019).  https://doi.org/10.1038/s41598-019-40310-5 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    C. Marchini, F. Gabrielli, M. Iezzi, S. Zanobi, M. Montani, L. Pietrella, C. Kalogris, A. Rossini, V. Ciravolo, L. Castagnoli, E. Tagliabue, S.M. Pupa, P. Musiani, P. Monaci, S. Ménard, A. Amici, The human splice variant delta16HER2 induces rapid tumor onset in a reporter transgenic mouse. PLoS One 6, e18727 (2011).  https://doi.org/10.1371/journal.pone.0018727 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    L. Castagnoli, M. Iezzi, G.C. Ghedini, V. Ciravolo, G. Marzano, A. Lamolinara, R. Zappasodi, P. Gasparini, M. Campiglio, A. Amici, C. Chiodoni, A. Palladini, P. Lollini, T. Triulzi, S. Ménard, P. Nanni, E. Tagliabue, S.M. Pupa, Activated d16HER2 homodimers and Src kinase mediate optimal efficacy for trastuzumab. Cancer Res. 74, 6248–6259 (2014).  https://doi.org/10.1158/0008-5472.CAN-14-0983 CrossRefPubMedGoogle Scholar
  26. 26.
    A. Alajati, N. Sausgruber, N. Aceto, S. Duss, S. Sarret, H. Voshol, D. Bonenfant, M. tires-Alj, Mammary tumor formation and metastasis evoked by a HER2 splice variant. Cancer Res. 73, 5320–5327 (2013).  https://doi.org/10.1158/0008-5472.CAN-12-3186 CrossRefPubMedGoogle Scholar
  27. 27.
    L. Castagnoli, E. Iorio, M. Dugo, A. Koschorke, S. Faraci, R. Canese, P. Casalini, P. Nanni, C. Vernieri, M. Di Nicola, D. Morelli, E. Tagliabue, S.M. Pupa, Intra-tumor lactate levels reflect HER2 addiction status in HER2-positive breast cancer. J. Cell. Physiol. 234, 1768–1779 (2019).  https://doi.org/10.1002/jcp.27049 CrossRefPubMedGoogle Scholar
  28. 28.
    M.R. Doherty, J.M. Smigiel, D.J. Junk, M.W. Jackson, Cancer stem cell plasticity drives therapeutic resistance. Cancers (Basel) 8 (2016).  https://doi.org/10.3390/cancers8010008
  29. 29.
    P. Gupta, B. Kim, S.H. Kim, S.K. Srivastava, Molecular targets of isothiocyanates in cancer: Recent advances. Mol. Nutr. Food Res. 58, 1685–1707 (2014).  https://doi.org/10.1002/mnfr.201300684 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Y. Li, T. Zhang, H. Korkaya, S. Liu, H.F. Lee, B. Newman, Y. Yu, S.G. Clouthier, S.J. Schwartz, M.S. Wicha, D. Sun, Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res. 16, 2580–2590 (2010).  https://doi.org/10.1158/1078-0432.CCR-09-2937 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cel. 144, 646–674 (2011).  https://doi.org/10.1016/j.cell.2011.02.013
  32. 32.
    P. Gupta, S.E. Wright, S.H. Kim, S.K. Srivastava, Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochim. Biophys. Acta 1846, 405–424 (2014).  https://doi.org/10.1016/j.bbcan.2014.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    K.S. Satyan, N. Swamy, D.S. Dizon, R. Singh, C.O. Granai, L. Brard, Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: Role of caspase and MAPK activation. Gynecol. Oncol. 103, 261–270 (2006).  https://doi.org/10.1016/j.ygyno.2006.03.002 CrossRefPubMedGoogle Scholar
  34. 34.
    P. Gupta, S.K. Srivastava, Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models. BMC Med. 10, 80 (2012).  https://doi.org/10.1186/1741-7015-10-80 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    G.C. Ghedini, V. Ciravolo, M. Tortoreto, S. Giuffre, F. Bianchi, M. Campiglio, M. Mortarino, M. Figini, A. Coliva, M.L. Carcangiu, M. Zambetti, T. Piazza, S. Ferrini, S. Menard, E. Tagliabue, S.M. Pupa, Shed HER2 extracellular domain in HER2-mediated tumor growth and in trastuzumab susceptibility. J. Cell. Physiol. 225, 256–265 (2010).  https://doi.org/10.1002/jcp.22257 CrossRefPubMedGoogle Scholar
  36. 36.
    F.L. Shaw, H. Harrison, K. Spence, M.P. Ablett, B.M. Simoes, G. Farnie, R.B. Clarke, A detailed mammosphere assay protocol for the quantification of breast stem cell activity. J. Mammary Gland Biol. Neoplasia 17, 111–117 (2012).  https://doi.org/10.1002/jcp.22257 CrossRefPubMedGoogle Scholar
  37. 37.
    F. Granata, E. Iorio, G. Carpinelli, M. Giannini, F. Podo, Phosphocholine and phosphoethanolamine during chick embryo myogenesis: A (31)P-NMR study. Biochim. Biophys. Acta 1483, 334–342 (2000)CrossRefPubMedGoogle Scholar
  38. 38.
    M.E. Pisanu, A. Ricci, L. Paris, E. Surrentino, L. Liliac, M. Bagnoli, S. Canevari, D. Mezzanzanica, F. Podo, E. Iorio, R. Canese, Monitoring response to cytostatic cisplatin in a HER2(+) ovary cancer model by MRI and in vitro and in vivo MR spectroscopy. Br. J. Cancer 110, 625–635 (2014).  https://doi.org/10.1038/bjc.2013.758 CrossRefPubMedGoogle Scholar
  39. 39.
    C. Ginestier, M.H. Hur, E. Charafe-Jauffret, F. Monville, J. Dutcher, M. Brown, J. Jacquemier, P. Viens, C.G. Kleer, S. Liu, A. Schott, D. Hayes, D. Birnbaum, M.S. Wicha, G. Dontu, ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).  https://doi.org/10.1016/j.stem.2007.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    A.T. Baker, A. Zlobin, C. Osipo, Notch-EGFR/HER2 bidirectional crosstalk in breast Cancer. Front. Oncol. 4, 360 (2014).  https://doi.org/10.3389/fonc.2014.00360 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Z.H. Liu, X.M. Dai, B. Du, Hes1: A key role in stemness, metastasis and multidrug resistance. Cancer Biol. Ther. 16, 353–359 (2015).  https://doi.org/10.1080/15384047.2015.1016662
  42. 42.
    H.C. Thoeny, B.D. Ross, Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J. Magn. Reson. Imaging 32, 2–16 (2010).  https://doi.org/10.1002/jmri.22167 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    M. Shackleton, F. Vaillant, K.J. Simpson, J. Stingl, G.K. Smyth, M.L. sselin-Labat, L. Wu, G.J. Lindeman, J.E. Visvader, Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).  https://doi.org/10.1038/nature04372 CrossRefPubMedGoogle Scholar
  44. 44.
    E. Iorio, M. Di Vito, F. Spadaro, C. Ramoni, E. Lococo, R. Carnevale, L. Lenti, R. Strom, F. Podo, Triacsin C inhibits the formation of 1H NMR-visible mobile lipids and lipid bodies in HuT 78 apoptotic cells. Biochim. Biophys. Acta 1634, 1–14 (2003)CrossRefPubMedGoogle Scholar
  45. 45.
    M. Tiefenthaler, A. Amberger, N. Bacher, B.L. Hartmann, R. Margreiter, R. Kofler, G. Konwalinka, Increased lactate production follows loss of mitochondrial membrane potential during apoptosis of human leukaemia cells. Br. J. Haematol. 114, 574–580 (2001)CrossRefPubMedGoogle Scholar
  46. 46.
    G. Xu, J. Shen, Y. Ou, X, M. Sasahara, X. Su, Cancer stem cells: The 'heartbeat' of gastric cancer. J. Gastroenterol. 48, 781–797 (2013).  https://doi.org/10.1007/s00535-012-0712-y CrossRefPubMedGoogle Scholar
  47. 47.
    S. Palmer, Diet, nutrition, and cancer. Prog. Food Nutr. Sci. 9, 283–341 (1985)PubMedGoogle Scholar
  48. 48.
    D.T. Verhoeven, R.A. Goldbohm, P.G.H. van Verhagen, P.A. Van den Brandt, Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomark. Prev. 5, 733–748 (1996)Google Scholar
  49. 49.
    J.V. Higdon, B. Delage, D.E. Williams, R.H. Dashwood, Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 55, 224–236 (2007).  https://doi.org/10.1016/j.phrs.2007.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    C.B. Ambrosone, S.E. McCann, J.L. Freudenheim, J.R. Marshall, Y. Zhang, P.G. Shields, Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J. Nutr. 134, 1134–1138 (2004)CrossRefPubMedGoogle Scholar
  51. 51.
    D.A. Boggs, J.R. Palmer, L.A. Wise, D. Spiegelman, M.J. Stampfer, L.L. ms-Campbell, L. Rosenberg, Fruit and vegetable intake in relation to risk of breast cancer in the Black Women's Health Study. Am. J. Epidemiol. 172, 1268–1279 (2010).  https://doi.org/10.1093/aje/kwq293 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Y. Chen, Y. Li, X.Q. Wang, Y. Meng, Q. Zhang, J.Y. Zhu, J.Q. Chen, W.S. Cao, X.Q. Wang, C.F. Xie, X.T. Li, S.S. Geng, J.S. Wu, C.Y. Zhong, H.Y. Han, Phenethyl isothiocyanate inhibits colorectal cancer stem cells by suppressing Wnt/beta-catenin pathway. Phytother. Res. 32, 2447–2455 (2018).  https://doi.org/10.1002/ptr.6183 CrossRefPubMedGoogle Scholar
  53. 53.
    G. Dontu, K.W. Jackson, E. McNicholas, M.J. Kawamura, W.M. Abdallah, M.S. Wicha, Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605–R615 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    A. Marusyk, K. Polyak, Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).  https://doi.org/10.1016/j.bbcan.2009.11.002 CrossRefPubMedGoogle Scholar
  55. 55.
    J.P. Burnett, G. Lim, Y. Li, R.B. Shah, R. Lim, H.J. Paholak, S.P. McDermott, L. Sun, Y. Tsume, S. Bai, M.S. Wicha, D. Sun, T. Zhang, Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett. 394, 52–64 (2017).  https://doi.org/10.1016/j.canlet.2017.02.023 CrossRefPubMedGoogle Scholar
  56. 56.
    G. Kallifatidis, V. Rausch, B. Baumann, A. Apel, B.M. Beckermann, A. Groth, J. Mattern, Z. Li, A. Kolb, G. Moldenhauer, P. Altevogt, T. Wirth, J. Werner, P. Schemmer, M.W. Buchler, A.V. Salnikov, I. Herr, Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58, 949–963 (2009).  https://doi.org/10.1136/gut.2008.149039 CrossRefPubMedGoogle Scholar
  57. 57.
    Arpino, G., Ferrero, J. M., de la Haba-Rodriguez J., Easton, V., Schuhmacher, C., Restuccia, E. et al. Primary analysis of PERTAIN: a randomized, two-arm, open-label, multicenter phase II trial assessing the efficacy and safety of pertuzumab given in combination with trastuzumab plus an aromatase inhibitor in first-line patients with HER2-positive and hormone receptor-positive metastatic or locally advanced breast cancer. San Antonio Breast Cancer Symposium; December 6–10, 2016 San Antonio, Texas. 2017Google Scholar
  58. 58.
    S.R.D. Johnston, R. Hegg, S.A. Im, I.H. Park, O. Burdaeva, G. Kurteva, M.F. Press, S. Tjulandin, H. Iwata, S.D. Simon, S. Kenny, S. Sarp, M.A. Izquierdo, L.S. Williams, W.J. Gradishar, Phase III, randomized study of dual human epidermal growth factor receptor 2 (HER2) blockade with Lapatinib plus Trastuzumab in combination with an aromatase inhibitor in postmenopausal women with HER2-Positive, hormone receptor-positive metastatic Breast Cancer: ALTERNATIVE. J. Clin. Oncol. 36, 741–748 (2018).  https://doi.org/10.1200/JCO.2017.74.7824 CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Ada Koschorke
    • 1
  • Simona Faraci
    • 1
  • Debora Giani
    • 1
  • Claudia Chiodoni
    • 2
  • Egidio Iorio
    • 3
  • Rossella Canese
    • 3
  • Mario P. Colombo
    • 2
  • Alessia Lamolinara
    • 4
  • Manuela Iezzi
    • 4
  • Michael Ladomery
    • 5
  • Claudio Vernieri
    • 6
    • 7
  • Filippo de Braud
    • 6
    • 8
  • Massimo Di Nicola
    • 9
  • Elda Tagliabue
    • 1
  • Lorenzo Castagnoli
    • 1
  • Serenella M. Pupa
    • 1
    Email author
  1. 1.Molecular Targeting Unit, Department of ResearchAmadeoLab, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  2. 2.Molecular Immunology Unit, Department of ResearchFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  3. 3.Core Facilities, NMR and MRI UnitIstituto Superiore di SanitàRomeItaly
  4. 4.Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met)G. D’Annunzio UniversityChieti-PescaraItaly
  5. 5.Faculty of Health and Applied SciencesUniversity of the West of EnglandBristolUK
  6. 6.Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  7. 7.IFOM, FIRC Institute of Molecular OncologyUniversità degli Studi di MilanoMilanItaly
  8. 8.Department of Oncology and Hemato-OncologyUniversità degli Studi di MilanoMilanItaly
  9. 9.Unit of Immunotherapy and Anticancer Innovative Therapeutics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly

Personalised recommendations