Cellular Oncology

, Volume 42, Issue 4, pp 491–504 | Cite as

The ERBB receptor inhibitor dacomitinib suppresses proliferation and invasion of pancreatic ductal adenocarcinoma cells

  • Majid MomenyEmail author
  • Fatemeh Esmaeili
  • Sepideh Hamzehlou
  • Hassan Yousefi
  • Sepehr Javadikooshesh
  • Vasimeh Vahdatirad
  • Zivar Alishahi
  • Seyedeh H. Mousavipak
  • Davood Bashash
  • Ahmad R. Dehpour
  • Seyyed M. Tavangar
  • Javad Tavakkoly-Bazzaz
  • Peiman Haddad
  • Farzaneh Kordbacheh
  • Kamran Alimoghaddam
  • Ardeshir Ghavamzadeh
  • Seyed H. GhaffariEmail author
Original paper



Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is the fourth most common cause of cancer-related death in the USA. Local progression, early tumor dissemination and low efficacy of current treatments are the major reasons for its high mortality rate. The ERBB family is over-expressed in PDAC and plays essential roles in its tumorigenesis; however, single-targeted ERBB inhibitors have shown limited activity in this disease. Here, we examined the anti-tumor activity of dacomitinib, a pan-ERBB receptor inhibitor, on PDAC cells.


Anti-proliferative effects of dacomitinib were determined using a cell proliferation assay and crystal violet staining. Annexin V/PI staining, radiation therapy and cell migration and invasion assays were carried out to examine the effects of dacomitinib on apoptosis, radio-sensitivity and cell motility, respectively. Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analyses were applied to elucidate the molecular mechanisms underlying the anti-tumor activity of dacomitinib.


We found that dacomitinib diminished PDAC cell proliferation via inhibition of FOXM1 and its targets Aurora kinase B and cyclin B1. Moreover, we found that dacomitinib induced apoptosis and potentiated radio-sensitivity via inhibition of the anti-apoptotic proteins survivin and MCL1. Treatment with dacomitinib attenuated cell migration and invasion through inhibition of the epithelial-to-mesenchymal transition (EMT) markers ZEB1, Snail and N-cadherin. In contrast, we found that the anti-tumor activity of single-targeted ERBB agents including cetuximab (anti-EGFR mAb), trastuzumab (anti-HER2 mAb), H3.105.5 (anti-HER3 mAb) and erlotinib (EGFR small molecule inhibitor) were marginal.


Our findings indicate that dacomitinib-mediated blockade of the ERBB receptors yields advantages over single-targeted ERBB inhibition and provide a rationale for further investigation of the therapeutic potential of dacomitinib in the treatment of ERBB-driven PDAC.


Pancreatic ductal adenocarcinoma The ERBB family Dacomitinib Radio-sensitivity 



This study was financially supported by a grant from the Hematology/Oncology and Stem Cell Transplantation Research Centre, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Technical assistance of Ms. Azam Zaghal is gratefully acknowledged.

Author contributions

M.M. designed the study; F.E., H.Y., S.J., Z.A., S.H.M., D.B. and F.K. conducted the research; A.R.D., S.M.T., J.T., P.H., K.A. and A.G. analyzed the data; M.M., S.H. and V.V. wrote the paper; M.M. and S.H.G. were primarily responsible for the final content. All authors have reviewed and approved the final manuscript.

Compliance with ethical standards

Competing interests

The authors declare no conflict of interest.

Supplementary material

13402_2019_448_MOESM1_ESM.docx (978 kb)
ESM 1 (DOCX 977 kb)


  1. 1.
    R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018)CrossRefGoogle Scholar
  2. 2.
    L. Rahib, B.D. Smith, R. Aizenberg, A.B. Rosenzweig, J.M. Fleshman, L.M. Matrisian, Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014)CrossRefPubMedGoogle Scholar
  3. 3.
    I. Garrido-Laguna, M. Hidalgo, Pancreatic cancer: From state-of-the-art treatments to promising novel therapies. Nat. Rev. Clin. Oncol. 12, 319–334 (2015)CrossRefPubMedGoogle Scholar
  4. 4.
    J. Zhang, L. Zhang, C. Li, C. Yang, L. Li, S. Song, H. Wu, F. Liu, L. Wang, J. Gu, LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients. Cell. Oncol. 41, 73–84 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Giulietti, G. Occhipinti, G. Principato, F. Piva, Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cell. Oncol. 40, 181–192 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Brückner, Surgical treatment of medial surgical neck fractures. Zeitschrift fur arztliche Fortbildung 59, 790 (1965)PubMedGoogle Scholar
  7. 7.
    D. Li and E.M. O’Reilly, in Seminars in oncology, (Elsevier, 2015), p. 134–143Google Scholar
  8. 8.
    D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014)CrossRefPubMedGoogle Scholar
  9. 9.
    M.J. Moore, D. Goldstein, J. Hamm, A. Figer, J.R. Hecht, S. Gallinger, H.J. Au, P. Murawa, D. Walde, R.A. Wolff, Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada clinical trials group. J. Clin. Oncol. 25, 1960–1966 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    H.Q. Xiong, A. Rosenberg, A. LoBuglio, W. Schmidt, R.A. Wolff, J. Deutsch, M. Needle, J.L. Abbruzzese, Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: A multicenter phase II trial. J. Clin. Oncol. 22, 2610–2616 (2004)CrossRefPubMedGoogle Scholar
  11. 11.
    J. Harder, G. Ihorst, V. Heinemann, R. Hofheinz, M. Moehler, P. Buechler, G. Kloeppel, C. Röcken, M. Bitzer, S. Boeck, Multicentre phase II trial of trastuzumab and capecitabine in patients with HER2 overexpressing metastatic pancreatic cancer. Br. J. Cancer 106, 1033–1038 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    J.S. de Bono, E.K. Rowinsky, The ErbB receptor family: A therapeutic target for cancer. Trends Mol. Med. 8, S19–S26 (2002)CrossRefPubMedGoogle Scholar
  13. 13.
    W.J. Gullick, The epidermal growth factor system of ligands and receptors in cancer. Eur. J. Cancer 45, 205–210 (2009)CrossRefPubMedGoogle Scholar
  14. 14.
    A. Citri, Y. Yarden, EGF–ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    C.L. Arteaga, J.A. Engelman, ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25, 282–303 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Y. Yarden, M.X. Sliwkowski, Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001)CrossRefPubMedGoogle Scholar
  17. 17.
    R.K. Schmidt-Ullrich, J.N. Contessa, G. Lammering, G. Amorino, P.-S. Lin, ERBB receptor tyrosine kinases and cellular radiation responses. Oncogene 22, 5855–5865 (2003)Google Scholar
  18. 18.
    N. Ioannou, A.M. Seddon, A. Dalgleish, D. Mackintosh, H. Modjtahedi, Expression pattern and targeting of HER family members and IGF-IR in pancreatic cancer. Front. Biosci. (Landmark Ed) 17, 2698–2724 (2012)Google Scholar
  19. 19.
    S. Ueda, S. Ogata, H. Tsuda, N. Kawarabayashi, M. Kimura, Y. Sugiura, S. Tamai, O. Matsubara, K. Hatsuse, H. Mochizuki, The correlation between cytoplasmic overexpression of epidermal growth factor receptor and tumor aggressiveness: Poor prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas 29, e1–e8 (2004)Google Scholar
  20. 20.
    K. Tobita, H. Kijima, S. Dowaki, H. Kashiwagi, Y. Ohtani, Y. Oida, H. Yamazaki, M. Nakamura, Y. Ueyama, M. Tanaka, Epidermal growth factor receptor expression in human pancreatic cancer: Significance for liver metastasis. Int. J. Mol. Med. 11, 305–309 (2003)PubMedGoogle Scholar
  21. 21.
    A. Pryczynicz, K. Guzińska-Ustymowicz, A. Kemona, J. Czyżewska, Expression of EGF and EGFR strongly correlates with metastasis of pancreatic ductal carcinoma. Anticancer Res. 28, 1399–1404 (2008)PubMedGoogle Scholar
  22. 22.
    H. Safran, M. Steinhoff, S. Mangray, R. Rathore, T.C. King, L. Chai, K. Berzein, T. Moore, D. Iannitti, P. Reiss, Overexpression of the HER-2/neu oncogene in pancreatic adenocarcinoma. Am. J. Clin. Oncol. 24, 496–499 (2001)CrossRefPubMedGoogle Scholar
  23. 23.
    A.J. Saxby, A. Nielsen, C.J. Scarlett, A. Clarkson, A. Morey, A. Gill, R.C. Smith, Assessment of HER-2 status in pancreatic adenocarcinoma: Correlation of immunohistochemistry, quantitative real-time RT-PCR, and FISH with aneuploidy and survival. Am. J. Surg. Pathol. 29, 1125–1134 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    T. Hirakawa, B. Nakata, R. Amano, K. Kimura, S. Shimizu, G. Ohira, N. Yamada, M. Ohira, K. Hirakawa, HER3 overexpression as an independent indicator of poor prognosis for patients with curatively resected pancreatic cancer. Oncology 81, 192–198 (2011)Google Scholar
  25. 25.
    H.U. Graber, H. Friess, B. Kaufmann, D. Willi, A. Zimmermann, M. Korc, M.W. Büchler, ErbB-4 mRNA expression is decreased in non-metastatic pancreatic cancer. Int. J. Cancer 84, 24–27 (1999)CrossRefPubMedGoogle Scholar
  26. 26.
    A.J. Gonzales, K.E. Hook, I.W. Althaus, P.A. Ellis, E. Trachet, A.M. Delaney, P.J. Harvey, T.A. Ellis, D.M. Amato, J.M. Nelson, Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol. Cancer Ther. 7, 1880–1889 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Y.-L. Wu, Y. Cheng, X. Zhou, K.H. Lee, K. Nakagawa, S. Niho, F. Tsuji, R. Linke, R. Rosell, J. Corral, Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol. 18, 1454–1466 (2017)CrossRefPubMedGoogle Scholar
  28. 28.
    T.S. Mok, Y. Cheng, X. Zhou, K.H. Lee, K. Nakagawa, S. Niho, M. Lee, R. Linke, R. Rosell, J. Corral, Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non–small-cell lung cancer and EGFR-activating mutations. J. Clin. Oncol. 36, 2244–2250 (2018)CrossRefPubMedGoogle Scholar
  29. 29.
    J.A. Engelman, K. Zejnullahu, C.-M. Gale, E. Lifshits, A.J. Gonzales, T. Shimamura, F. Zhao, P.W. Vincent, G.N. Naumov, J.E. Bradner, PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 67, 11924–11932 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    H.-J. Nam, K.A. Ching, J. Kan, H.-P. Kim, S.-W. Han, S.-A. Im, T.-Y. Kim, J.G. Christensen, D.-Y. Oh, Y.-J. Bang, Evaluation of the antitumor effects and mechanisms of PF00299804, a pan-HER inhibitor, alone or in combination with chemotherapy or targeted agents in gastric cancer. Mol. Cancer Ther. 11, 439–451 (2012)CrossRefPubMedGoogle Scholar
  31. 31.
    X. Wang, D. Goldstein, P.J. Crowe, J.-L. Yang, Antitumour effects and mechanisms of action of the panHER inhibitor, dacomitinib, alone and in combination with the STAT3 inhibitor, S3I-201, in human sarcoma cell lines. Int. J. Oncol. 52, 2143–2154 (2018)PubMedGoogle Scholar
  32. 32.
    F. Ather, H. Hamidi, M.S. Fejzo, S. Letrent, R.S. Finn, F. Kabbinavar, C. Head, S.G. Wong, Dacomitinib, an irreversible Pan-ErbB inhibitor significantly abrogates growth in head and neck cancer models that exhibit low response to cetuximab. PLoS One 8, e56112 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    M. Momeny, G. Zarrinrad, F. Moghaddaskho, A. Poursheikhani, G. Sankanian, A. Zaghal, S. Mirshahvaladi, F. Esmaeili, H. Eyvani, F. Barghi, Dacomitinib, a pan-inhibitor of ErbB receptors, suppresses growth and invasive capacity of chemoresistant ovarian carcinoma cells. Sci. Rep. 7, 4204 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    T.-C. Chou, Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010)CrossRefPubMedGoogle Scholar
  35. 35.
    M. Momeny, J.M. Saunus, F. Marturana, A.E.M. Reed, D. Black, G. Sala, S. Iacobelli, J.D. Holland, D. Yu, L. Da Silva, Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget 6, 3932 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Y. Binenbaum, S. Na’ara, Z. Gil, Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist. Updat. 23, 55–68 (2015)CrossRefPubMedGoogle Scholar
  37. 37.
    X. Wang, K.M. Batty, P.J. Crowe, D. Goldstein, J.-L. Yang, The potential of panHER inhibition in cancer. Front. Oncol. 5, 2 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    S. Lu, F. Concha-Benavente, G. Shayan, R.M. Srivastava, S.P. Gibson, L. Wang, W.E. Gooding, R.L. Ferris, STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV+ status in head and neck cancer. Oral Oncol. 78, 186–193 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    F. Vanderhoeven, A.L. Redondo, A.L. Martinez, L.M. Vargas-Roig, A.M. Sanchez, M.I. Flamini, Synergistic antitumor activity by combining trastuzumab with retinoic acid in HER2 positive human breast cancer cells. Oncotarget 9, 26527 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    J. Laoukili, M.R. Kooistra, A. Brás, J. Kauw, R.M. Kerkhoven, A. Morrison, H. Clevers, R.H. Medema, FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat. Cell Biol. 7, 126–136 (2005)CrossRefPubMedGoogle Scholar
  41. 41.
    J. Li, R. Wang, P.G. Schweickert, A. Karki, Y. Yang, Y. Kong, N. Ahmad, S.F. Konieczny, X. Liu, Plk1 inhibition enhances the efficacy of gemcitabine in human pancreatic cancer. Cell Cycle 15, 711–719 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    M. van Engeland, F.C. Ramaekers, B. Schutte, C.P. Reutelingsperger, A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24, 131–139 (1996)CrossRefPubMedGoogle Scholar
  43. 43.
    J. Berthelet, L. Dubrez, Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells 2, 163–187 (2013)Google Scholar
  44. 44.
    J.K. Brunelle, A. Letai, Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci. 122, 437–441 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    J.P. Thiery, Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002)CrossRefPubMedGoogle Scholar
  46. 46.
    A.D. Rhim, E.T. Mirek, N.M. Aiello, A. Maitra, J.M. Bailey, F. McAllister, M. Reichert, G.L. Beatty, A.K. Rustgi, R.H. Vonderheide, EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    N.M. Aiello, T. Brabletz, Y. Kang, M.A. Nieto, R.A. Weinberg, B.Z. Stanger, Upholding a role for EMT in pancreatic cancer metastasis. Nature 547, E7 (2017)Google Scholar
  48. 48.
    P. Zhou, B. Li, F. Liu, M. Zhang, Q. Wang, Y. Liu, Y. Yao, D. Li, The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer. Mol. Cancer 16, 52 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    A. Appert-Collin, P. Hubert, G. Crémel, A. Bennasroune, Role of ErbB receptors in cancer cell migration and invasion. Front. Pharmacol. 6, 283 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    K.S. Spencer, D. Graus-Porta, J. Leng, N.E. Hynes, R.L. Klemke, ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases. J. Cell Biol. 148, 385–397 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    M.E. Feigin, S.K. Muthuswamy, ErbB receptors and cell polarity: New pathways and paradigms for understanding cell migration and invasion. Exp. Cell Res. 315, 707–716 (2009)CrossRefPubMedGoogle Scholar
  52. 52.
    N. Silvestris, V. Longo, F. Cellini, M. Reni, A. Bittoni, I. Cataldo, S. Partelli, M. Falconi, A. Scarpa, O. Brunetti, Neoadjuvant multimodal treatment of pancreatic ductal adenocarcinoma. Crit. Rev. Oncol. Hematol. 98, 309–324 (2016)CrossRefPubMedGoogle Scholar
  53. 53.
    E. Fokas, C. Eccles, N. Patel, K.-Y. Chu, S. Warren, W.G. McKenna, T. Brunner, Comparison of four target volume definitions for pancreatic cancer. Strahlenther. Onkol. 189, 407–416 (2013)CrossRefPubMedGoogle Scholar
  54. 54.
    P.J. Loehrer Sr., Y. Feng, H. Cardenes, L. Wagner, J.M. Brell, D. Cella, P. Flynn, R.K. Ramanathan, C.H. Crane, S.R. Alberts, Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: An eastern cooperative oncology group trial. J. Clin. Oncol. 29, 4105–4112 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    G. Tortora, T. Gelardi, F. Ciardiello, R. Bianco, The rationale for the combination of selective EGFR inhibitors with cytotoxic drugs and radiotherapy. Int. J. Biol. Markers 22, 47–52 (2007)CrossRefPubMedGoogle Scholar
  56. 56.
    J. Maurel, M. Martin-Richard, C. Conill, M. Sánchez, L. Petriz, A. Ginès, R. Miquel, R. Gallego, R. Cajal, C. Ayuso, Phase I trial of gefitinib with concurrent radiotherapy and fixed 2-h gemcitabine infusion, in locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 66, 1391–1398 (2006)CrossRefPubMedGoogle Scholar
  57. 57.
    L. Zhang, S. Yuan, Expression of c-erbB-2 oncogene protein, epidermal growth factor receptor, and TGF-beta1 in human pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat. Dis. Int. 1, 620–623 (2002)Google Scholar
  58. 58.
    M.E. Valsecchi, M. McDonald, J.R. Brody, T. Hyslop, B. Freydin, C.J. Yeo, C. Solomides, S.C. Peiper, A.K. Witkiewicz, Epidermal growth factor receptor and insulinlike growth factor 1 receptor expression predict poor survival in pancreatic ductal adenocarcinoma. Cancer 118, 3484–3493 (2012)Google Scholar
  59. 59.
    A. Pryczynicz, K. Guzińska-Ustymowicz, J. Czyzewska, A. Kemona, Expression of epidermal growth factors and apoptosis markers in pancreatic ductal adenocarcinoma. Folia Histochem. Cytobiol. 47, 667–671 (2009)PubMedGoogle Scholar
  60. 60.
    Y. Yamanaka, H. Friess, M. Kobrin, M. Buchler, H. Beger, M. Korc, Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res. 13, 565–569 (1993)PubMedGoogle Scholar
  61. 61.
    M. Dong, Y. Nio, K. Guo, K. Tamura, Y. Tian, Y. Dong, Epidermal growth factor and its receptor as prognostic indicators in Chinese patients with pancreatic cancer. Anticancer Res. 18, 4613–4619 (1998)PubMedGoogle Scholar
  62. 62.
    Z. Zhu, J. Kleeff, H. Friess, L. Wang, A. Zimmermann, Y. Yarden, M.W. Büchler, M. Korc, Epiregulin is up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem. Biophys. Res. Commun. 273, 1019–1024 (2000)CrossRefPubMedGoogle Scholar
  63. 63.
    L. Faloppi, K. Andrikou, S. Cascinu, Cetuximab: Still an option in the treatment of pancreatic cancer? Expert. Opin. Biol. Ther. 13, 791–801 (2013)CrossRefPubMedGoogle Scholar
  64. 64.
    K. Kimura, T. Sawada, M. Komatsu, M. Inoue, K. Muguruma, T. Nishihara, Y. Yamashita, N. Yamada, M. Ohira, K. Hirakawa, Antitumor effect of trastuzumab for pancreatic cancer with high HER-2 expression and enhancement of effect by combined therapy with gemcitabine. Clin. Cancer Res. 12, 4925–4932 (2006)CrossRefPubMedGoogle Scholar
  65. 65.
    Z. Huang, C. Brdlik, P. Jin, H.M. Shepard, A pan-HER approach for cancer therapy: Background, current status and future development. Expert. Opin. Biol. Ther. 9, 97–110 (2009)CrossRefPubMedGoogle Scholar
  66. 66.
    H.J. Jacobsen, T.T. Poulsen, A. Dahlman, I. Kjær, K. Koefoed, J.W. Sen, D. Weilguny, B. Bjerregaard, C.R. Andersen, I.D. Horak, Pan-HER, an antibody mixture simultaneously targeting EGFR, HER2, and HER3, effectively overcomes tumor heterogeneity and plasticity. Clin. Cancer Res. 21, 4110–4122 (2015)CrossRefPubMedGoogle Scholar
  67. 67.
    N. Tebbutt, M.W. Pedersen, T.G. Johns, Targeting the ERBB family in cancer: Couples therapy. Nat. Rev. Cancer 13, 663–673 (2013)CrossRefPubMedGoogle Scholar
  68. 68.
    M. Martin, F.A. Holmes, B. Ejlertsen, S. Delaloge, B. Moy, H. Iwata, G. von Minckwitz, S.K. Chia, J. Mansi, C.H. Barrios, Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-years analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1688–1700 (2017)CrossRefPubMedGoogle Scholar
  69. 69.
    K.L. Reckamp, G. Giaccone, D.R. Camidge, S.M. Gadgeel, F.R. Khuri, J.A. Engelman, M. Koczywas, A. Rajan, A.K. Campbell, D. Gernhardt, A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non–small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer 120, 1145–1154 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    M. Hidalgo, Pancreatic cancer. N. Engl. J. Med. 362, 1605–1617 (2010)CrossRefPubMedGoogle Scholar
  71. 71.
    G. Disibio, S.W. French, Metastatic patterns of cancers: Results from a large autopsy study. Arch. Pathol. Lab. Med. 132, 931–939 (2008)PubMedGoogle Scholar
  72. 72.
    A. Aghdassi, M. Sendler, A. Guenther, J. Mayerle, C.-O. Behn, C.-D. Heidecke, H. Friess, M. Büchler, M. Evert, M.M. Lerch, Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61, 439–448 (2012)CrossRefPubMedGoogle Scholar
  73. 73.
    B. Hotz, M. Arndt, S. Dullat, S. Bhargava, H.-J. Buhr, H.G. Hotz, Epithelial to mesenchymal transition: Expression of the regulators snail, slug, and twist in pancreatic cancer. Clin. Cancer Res. 13, 4769–4776 (2007)CrossRefPubMedGoogle Scholar
  74. 74.
    Z.-G. Chang, J.-M. Wei, C.-F. Qin, K. Hao, X.-D. Tian, K. Xie, X.-H. Xie, Y.-M. Yang, Suppression of the epidermal growth factor receptor inhibits epithelial–mesenchymal transition in human pancreatic cancer PANC-1 cells. Dig. Dis. Sci. 57, 1181–1189 (2012)CrossRefPubMedGoogle Scholar
  75. 75.
    M.G. Binker, M.J. Binker-Cosen, A.A. Binker-Cosen, L.I. Cosen-Binker, Microenvironmental factors and extracellular matrix degradation in pancreatic cancer. JOP 15, 280–285 (2014)PubMedGoogle Scholar
  76. 76.
    M. Buck, D.G. Karustis, N. Day, K. Honn, B.F. Sloane, Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem. J. 282, 273–278 (1992)CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    J.S. Rao, Molecular mechanisms of glioma invasiveness: The role of proteases. Nat. Rev. Cancer 3, 489–501 (2003)CrossRefPubMedGoogle Scholar
  78. 78.
    M. Momeny, M. Malehmir, M. Zakidizaji, R. Ghasemi, H. Ghadimi, M.A. Shokrgozar, A.H. Emami, S. Nafissi, A. Ghavamzadeh, S.H. Ghaffari, Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa B-mediated induction of matrix metalloproteinase 9. Anti-Cancer Drugs 21, 252–260 (2010)CrossRefPubMedGoogle Scholar
  79. 79.
    D. Brix, K. Clemmensen, T. Kallunki, When good turns bad: Regulation of invasion and metastasis by ErbB2 receptor tyrosine kinase. Cells 3, 53–78 (2014)Google Scholar
  80. 80.
    A. Arlt, S.S. Müerköster, H. Schäfer, Targeting apoptosis pathways in pancreatic cancer. Cancer Lett. 332, 346–358 (2013)CrossRefPubMedGoogle Scholar
  81. 81.
    S. Fulda, Apoptosis pathways and their therapeutic exploitation in pancreatic cancer. J. Cell. Mol. Med. 13, 1221–1227 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    R. Hamacher, R.M. Schmid, D. Saur, G. Schneider, Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol. Cancer 7, 64 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    H.-T. Guan, X.-H. Xue, Z.-J. Dai, X.-J. Wang, A. Li, Z.-Y. Qin, Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity. World J. Gastroenterol. 12, 2901–2907 (2006)Google Scholar
  84. 84.
    S.-H. Wei, K. Dong, F. Lin, X. Wang, B. Li, J.-j. Shen, Q. Zhang, R. Wang, H.-Z. Zhang, Inducing apoptosis and enhancing chemosensitivity to gemcitabine via RNA interference targeting mcl-1 gene in pancreatic carcinoma cell. Cancer Chemother. Pharmacol. 62, 1055–1064 (2008)CrossRefPubMedGoogle Scholar
  85. 85.
    R.B. Lopes, R. Gangeswaran, I.A. McNeish, Y. Wang, N.R. Lemoine, Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int. J. Cancer 120, 2344–2352 (2007)CrossRefPubMedGoogle Scholar
  86. 86.
    N. Ioannou, A. Dalgleish, A. Seddon, D. Mackintosh, U. Guertler, F. Solca, H. Modjtahedi, Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells. Br. J. Cancer 105, 1554–1562 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    P. Seshacharyulu, M.P. Ponnusamy, S. Rachagani, I. Lakshmanan, D. Haridas, Y. Yan, A.K. Ganti, S.K. Batra, Targeting EGF-receptor (s)-STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget 6, 5164 (2015)CrossRefPubMedGoogle Scholar
  88. 88.
    F. Huguet, M. Fernet, N. Giocanti, V. Favaudon, A.K. Larsen, Afatinib, an irreversible EGFR family inhibitor, shows activity toward pancreatic cancer cells, alone and in combination with radiotherapy, independent of KRAS status. Target. Oncol. 11, 371–381 (2016)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Majid Momeny
    • 1
    Email author
  • Fatemeh Esmaeili
    • 2
  • Sepideh Hamzehlou
    • 2
    • 3
  • Hassan Yousefi
    • 4
  • Sepehr Javadikooshesh
    • 5
  • Vasimeh Vahdatirad
    • 2
  • Zivar Alishahi
    • 2
    • 3
  • Seyedeh H. Mousavipak
    • 2
    • 3
  • Davood Bashash
    • 6
  • Ahmad R. Dehpour
    • 7
    • 8
  • Seyyed M. Tavangar
    • 9
  • Javad Tavakkoly-Bazzaz
    • 3
  • Peiman Haddad
    • 10
  • Farzaneh Kordbacheh
    • 11
  • Kamran Alimoghaddam
    • 2
  • Ardeshir Ghavamzadeh
    • 2
  • Seyed H. Ghaffari
    • 2
    Email author
  1. 1.Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland
  2. 2.Hematology/Oncology and Stem Cell Transplantation Research CenterTehran University of Medical SciencesTehranIran
  3. 3.Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
  4. 4.Department of Biochemistry and Molecular BiologyLouisiana State University Health Sciences CenterNew OrleansUSA
  5. 5.Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
  6. 6.Department of Hematology and Blood Banking, Faculty of Allied MedicineShahid Beheshti University of Medical SciencesTehranIran
  7. 7.Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
  8. 8.Experimental Medicine Research CenterTehran University of Medical SciencesTehranIran
  9. 9.Department of Pathology, School of MedicineTehran University of Medical SciencesTehranIran
  10. 10.Radiation Oncology Research Center, Cancer InstituteTehran University of Medical SciencesTehranIran
  11. 11.Cancer and Vascular Biology Group, ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia

Personalised recommendations