Advertisement

Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition

  • Afsane Bahrami
  • Muhammed Majeed
  • Amirhossein SahebkarEmail author
Review

Abstract

Background

Epithelial-to-mesenchymal transition (EMT) is involved in tumor progression, invasion, migration and metastasis. EMT is a process by which polarized epithelial cells acquire motile mesothelial phenotypic features. This process is initiated by disassembly of cell-cell contacts through the loss of epithelial markers and replacement of these markers by mesenchymal markers. Reconstruction of the cytoskeleton and degradation of the tumor basement membrane ensures the spread of invasive malignant tumor cells to distant locations. Accumulating evidence indicates that curcumin, as a well-known phytochemical, can inhibit EMT/metastasis through various mechanisms and pathways in human tumors.

Conclusions

In this review, we summarize the mechanisms by which curcumin may affect EMT in cells under pathological conditions to understand its potential as a novel anti-tumor agent. Curcumin can exert chemo-preventive effects by inhibition and reversal of the EMT process through both TGF-β-dependent (e.g. in hepatoma and retinal pigment epithelial cancer) and -independent (e.g. in oral cancer, colorectal cancer, pancreatic cancer, hepatocellular carcinoma, breast cancer, melanoma, prostate cancer, bladder cancer, thyroid cancer and lung cancer) pathways. Curcumin can also mitigate chemoresistance through EMT suppression and promotion of the antiproliferative effects of conventional chemotherapeutics. Therefore, curcumin has the potential to be used as a novel adjunctive agent to prevent tumor metastasis, which may at least partly be attributed to its hampering of the EMT process.

Keywords

Turmeric, Curcumin E-cadherin Vimentin TGF-β Smad pathway 

Notes

Funding

This project has been supported by a grant from the Cancer Research Center of the Cancer Institute of Iran (Shams cancer charity, Grant No: 37312-202-01-97). This project was also financially supported by grant No. 960206 of the Biotechnology Development Council of the Islamic Republic of Iran.

Compliance with ethical standards

Conflict of interests

Muhammed Majeed is the founder of Sabinsa Corporation and Sami Labs Ltd. Other authors have no direct competing interests to declare.

References

  1. 1.
    A. Bahrami, A. Hesari, M. Khazaei, S.M. Hassanian, G.A. Ferns, A. Avan, The therapeutic potential of targeting the BRAF mutation in patients with colorectal cancer. J Cell Physiol. 233, 2162–2169 (2018)CrossRefPubMedGoogle Scholar
  2. 2.
    F. Bocci, H. Levine, J.N. Onuchic and M.K. Jolly Deciphering the dynamics of epithelial-mesenchymal transition and cancer stem cells in tumor progression, arXiv preprint arXiv:1808.09113, (2018)Google Scholar
  3. 3.
    J.P. Thiery, H. Acloque, R.Y. Huang, M.A. Nieto, Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    M. Diepenbruck, G. Christofori, Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 43, 7–13 (2016)CrossRefPubMedGoogle Scholar
  5. 5.
    L. Ombrato, I. Malanchi, The EMT universe: space between cancer cell dissemination and metastasis initiation. Crit Rev Oncog. 19, 349–361 (2014)Google Scholar
  6. 6.
    H. Zheng, Y. Kang, Multilayer control of the EMT master regulators. Oncogene 33, 1755 (2014)CrossRefPubMedGoogle Scholar
  7. 7.
    M. Guarino, Epithelial–mesenchymal transition and tumour invasion. Int J Biochem Cell Biol. 39, 2153–2160 (2007)CrossRefPubMedGoogle Scholar
  8. 8.
    A. Natalwala, R. Spychal, C. Tselepis, Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract. World J Gastroenterol. 14, 3792 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Y. Wang, B.P. Zhou, Epithelial-mesenchymal transition—a hallmark of breast cancer metastasis. Cancer Hallm. 1, 38–49 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    A. Fortunato, The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells. Cell Oncol. 40, 367–378 (2017)CrossRefGoogle Scholar
  11. 11.
    A.Y.-L. Lee, C.-C. Fan, Y.-A. Chen, C.-W. Cheng, Y.-J. Sung, C.-P. Hsu, T.-Y. Kao, Curcumin inhibits invasiveness and epithelial-mesenchymal transition in oral squamous cell carcinoma through reducing matrix metalloproteinase 2, 9 and modulating p53-E-cadherin pathway. Integr Cancer Ther. 14, 484–490 (2015)CrossRefPubMedGoogle Scholar
  12. 12.
    Z. Zhang, H. Chen, C. Xu, L. Song, L. Huang, Y. Lai, Y. Wang, H. Chen, D. Gu, L. Ren, Curcumin inhibits tumor epithelial-mesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells. Oncol Rep. 35, 2615–2623 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    C.-C. Chen, M. Sureshbabul, H.-W. Chen, Y.-S. Lin, J.-Y. Lee, Q.-S. Hong, Y.-C. Yang, S.-L. Yu, Curcumin suppresses metastasis via Sp-1, FAK inhibition, and E-cadherin upregulation in colorectal cancer. Evid Based Complement Alternat Med. 2013, 541695 (2013)PubMedPubMedCentralGoogle Scholar
  14. 14.
    Q. Wang, C. Qu, F. Xie, L. Chen, L. Liu, X. Liang, X. Wu, P. Wang, Z. Meng, Curcumin suppresses epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells by inhibiting cancer-associated fibroblasts. Am J Cancer Res. 7, 125 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    B. Bao, S. Ali, A. Ahmad, A.S. Azmi, Y. Li, S. Banerjee, D. Kong, S. Sethi, A. Aboukameel, S.B. Padhye, Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PloS one 7, e50165 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    X.-D. Sun, X.-E. Liu, D.-S. Huang, Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncol Rep. 29, 2401–2407 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    W. Li, Z. Jiang, X. Xiao, Z. Wang, Z. Wu, Q. Ma, L. Cao, Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-κB pathway in pancreatic cancer cells. Int J Oncol. 52, 1593–1602 (2018)Google Scholar
  18. 18.
    D. Kong, F. Zhang, J. Shao, L. Wu, X. Zhang, L. Chen, Y. Lu, S. Zheng, Curcumin inhibits cobalt chloride-induced epithelial-to-mesenchymal transition associated with interference with TGF-β/Smad signaling in hepatocytes. Lab Invest. 95, 1234 (2015)CrossRefPubMedGoogle Scholar
  19. 19.
    W. Duan, Y. Chang, R. Li, Q. Xu, J. Lei, C. Yin, T. Li, Y. Wu, Q. Ma, X. Li, Curcumin inhibits hypoxia inducible factor-1α-induced epithelial-mesenchymal transition in HepG2 hepatocellular carcinoma cells. Mol Med Rep. 10, 2505–2510 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    M.-T. Cao, H.-F. Liu, Z.-G. Liu, P. Xiao, J.-J. Chen, Y. Tan, X.-X. Jiang, Z.-C. Jiang, Y. Qiu, H.-J. Huang, Curcumin downregulates the expression of Snail via suppressing Smad2 pathway to inhibit TGF-β1-induced epithelial-mesenchymal transitions in hepatoma cells. Oncotarget 8, 108498 (2017)PubMedPubMedCentralGoogle Scholar
  21. 21.
    C.-F. Tsai, T.-H. Hsieh, J.-N. Lee, C.-Y. Hsu, Y.-C. Wang, K.-K. Kuo, H.-L. Wu, C.-C. Chiu, E.-M. Tsai, P.-L. Kuo, Curcumin suppresses phthalate-induced metastasis and the proportion of cancer stem cell (CSC)-like cells via the inhibition of AhR/ERK/SK1 signaling in hepatocellular carcinoma. J Agric Food Chem. 63, 10388–10398 (2015)CrossRefPubMedGoogle Scholar
  22. 22.
    S. Mukherjee, M. Mazumdar, S. Chakraborty, A. Manna, S. Saha, P. Khan, P. Bhattacharjee, D. Guha, A. Adhikary, S. Mukhjerjee, Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther. 5, 116 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    M. Gallardo, G.M. Calaf, Curcumin and epithelial-mesenchymal transition in breast cancer cells transformed by low doses of radiation and estrogen. Int J Oncol. 48, 2534–2542 (2016)CrossRefPubMedGoogle Scholar
  24. 24.
    T. Huang, Z. Chen, L. Fang, Curcumin inhibits LPS-induced EMT through downregulation of NF-κB-Snail signaling in breast cancer cells. Oncol Rep. 29, 117–124 (2013)CrossRefPubMedGoogle Scholar
  25. 25.
    P. Zhang, H. Bai, G. Liu, H. Wang, F. Chen, B. Zhang, P. Zeng, C. Wu, C. Peng, C. Huang, MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett. 234, 151–161 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    H.J. Hu, X.L. Lin, M.H. Liu, X.J. Fan, W.W. Zou, Curcumin mediates reversion of HGF-induced epithelial-mesenchymal transition via inhibition of c-Met expression in DU145 cells. Oncol Lett. 11, 1499–1505 (2016)CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Du, Q. Long, L. Zhang, Y. Shi, X. Liu, X. Li, B. Guan, Y. Tian, X. Wang, L. Li, Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling. Int J Oncol. 47, 2064–2072 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Z. Liang, W. Xie, R. Wu, H. Geng, L. Zhao, C. Xie, X. Li, M. Zhu, W. Zhu, J. Zhu, Inhibition of tobacco smoke-induced bladder MAPK activation and epithelial-mesenchymal transition in mice by curcumin. Int J Clin Exp Pathol. 8, 4503 (2015)PubMedPubMedCentralGoogle Scholar
  29. 29.
    L. Zhang, X. Cheng, Y. Gao, C. Zhang, J. Bao, H. Guan, H. Yu, R. Lu, Q. Xu, Y. Sun, Curcumin inhibits metastasis in human papillary thyroid carcinoma BCPAP cells via down-regulation of the TGF-β/Smad2/3 signaling pathway. Exp Cell Res. 341, 157–165 (2016)CrossRefPubMedGoogle Scholar
  30. 30.
    C.-Y. Zhang, L. Zhang, H.-X. Yu, J.-D. Bao, R.-R. Lu, Curcumin inhibits the metastasis of K1 papillary thyroid cancer cells via modulating E-cadherin and matrix metalloproteinase-9 expression. Biotechnol Lett. 35, 995–1000 (2013)CrossRefPubMedGoogle Scholar
  31. 31.
    Z. Liang, R. Wu, W. Xie, M. Zhu, C. Xie, X. Li, J. Zhu, W. Zhu, J. Wu, S. Geng, Curcumin reverses tobacco smoke-induced epithelial-mesenchymal transition by suppressing the MAPK pathway in the lungs of mice. Mol Med Rep. 17, 2019–2025 (2018)PubMedGoogle Scholar
  32. 32.
    D. Jiao, J. Wang, W. Lu, X. Tang, J. Chen, H. Mou, Q.-y. Chen, Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol Ther Oncolytics. 3 (2016)Google Scholar
  33. 33.
    J.-H. Xu, H.-P. Yang, X.-D. Zhou, H.-J. Wang, L. Gong, C.-L. Tang, Role of Wnt inhibitory factor-1 in inhibition of bisdemethoxycurcumin mediated epithelial-to-mesenchymal transition in highly metastatic lung cancer 95D cells. Chin Med J. 128, 1376 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    S. Shanmuganathan, V.N. Sumantran, N. Angayarkanni, Epigallocatechin gallate & curcumin prevent transforming growth factor beta 1-induced epithelial to mesenchymal transition in ARPE-19 cells. Indian J Med Res. 146, S85 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    S. Xu, B. Jiang, H. Wang, C. Shen, H. Chen, L. Zeng, Curcumin suppresses intestinal fibrosis by inhibition of PPARγ-mediated epithelial-mesenchymal transition. Evid Based Complement Alternat Med. 2017, 7876064 (2017)PubMedPubMedCentralGoogle Scholar
  36. 36.
    F.-q. Zhu, M.-j. Chen, M. Zhu, R.-s. Zhao, W. Qiu, X. Xu, H. Liu, H.-w. Zhao, R.-j. Yu, X.-f. Wu, Curcumin suppresses epithelial–mesenchymal transition of renal tubular epithelial cells through the inhibition of Akt/mTOR Pathway. Biol Pharm Bull. 40, 17–24 (2017)CrossRefPubMedGoogle Scholar
  37. 37.
    R. Li, Y. Wang, Y. Liu, Q. Chen, W. Fu, H. Wang, H. Cai, W. Peng, X. Zhang, Curcumin inhibits transforming growth factor-β1-induced EMT via PPARγ pathway, not Smad pathway in renal tubular epithelial cells. PloS one 8, e58848 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Z. Wang, Y. Li, A. Ahmad, A.S. Azmi, D. Kong, S. Banerjee, F.H. Sarkar, Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Res Updates 13, 109–118 (2010)CrossRefGoogle Scholar
  39. 39.
    Z. Wang, Y. Li, D. Kong, F.H. Sarkar, The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Current Drug Targets 11, 745–751 (2010)Google Scholar
  40. 40.
    R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest. 119, 1420–1428 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    A. Singh, J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Y. Liu, Z. Dong, H. Liu, J. Zhu, F. Liu, G. Chen, Transition of mesothelial cell to fibroblast in peritoneal dialysis: EMT, stem cell or bystander? Peritoneal Dialysis International 35, 14–25 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    J.P. Thiery, Epithelial–mesenchymal transitions in tumour progression. Nature Rev Cancer 2, 442 (2002)CrossRefGoogle Scholar
  44. 44.
    M. Yousefi, R. Nosrati, A. Salmaninejad, S. Dehghani, A. Shahryari, A. Saberi, Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol. 41, 123–140 (2018)CrossRefGoogle Scholar
  45. 45.
    M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol. 40, 419–441 (2017)CrossRefGoogle Scholar
  46. 46.
    J.P. Thiery, J.P. Sleeman, Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 7, 131 (2006)CrossRefPubMedGoogle Scholar
  47. 47.
    Y. Liu, Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 15, 1–12 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    H. Hugo, M.L. Ackland, T. Blick, M.G. Lawrence, J.A. Clements, E.D. Williams, E.W. Thompson, Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol. 213, 374–383 (2007)CrossRefPubMedGoogle Scholar
  49. 49.
    V.H. Haase, Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 76, 492–499 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    J.M. Lee, S. Dedhar, R. Kalluri, E.W. Thompson, The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell. Biol. 172, 973–981 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    J. Jiang, Y.-l. Tang, X.-h. Liang, EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 11, 714–723 (2011)CrossRefPubMedGoogle Scholar
  52. 52.
    T. Brabletz, A. Jung, S. Spaderna, F. Hlubek, T. Kirchner, Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5, 744 (2005)CrossRefPubMedGoogle Scholar
  53. 53.
    M. Al-Hajj, M.F. Clarke, Self-renewal and solid tumor stem cells. Oncogene 23, 7274 (2004)CrossRefPubMedGoogle Scholar
  54. 54.
    T.R. Graham, H.E. Zhau, V.A. Odero-Marah, A.O. Osunkoya, K.S. Kimbro, M. Tighiouart, T. Liu, J.W. Simons, R.M. O'Regan, Insulin-like growth factor-I–dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 68, 2479–2488 (2008)CrossRefPubMedGoogle Scholar
  55. 55.
    C. Scheel and R.A. Weinberg, in Seminars in cancer biology, (Elsevier, 2012), p. 396-403Google Scholar
  56. 56.
    A.J. Armstrong, M.S. Marengo, S. Oltean, G. Kemeny, R. Bitting, J. Turnbull, C.I. Herold, P.K. Marcom, D. George and M. Garcia-Blanco, Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 9, 997–1007 (2011)Google Scholar
  57. 57.
    W. Wang, L. Wan, S. Wu, J. Yang, Y. Zhou, F. Liu, Z. Wu, Y. Cheng, Mesenchymal marker and LGR5 expression levels in circulating tumor cells correlate with colorectal cancer prognosis. Cell Oncol. 41, 495–504 (2018)CrossRefGoogle Scholar
  58. 58.
    G. van der Horst, L. Bos, G. van der Pluijm, Epithelial plasticity, cancer stem cells and the tumor supportive stroma in bladder carcinoma. Mol Cancer Res. 10, 995–1009 (2012)CrossRefPubMedGoogle Scholar
  59. 59.
    I. Malanchi, Tumour cells coerce host tissue to cancer spread. Bonekey Rep. 2, 371 (2013)Google Scholar
  60. 60.
    F. Amerizadeh, A. Bahrami, M. Khazaei, A. Hesari, M. Rezayi, S. Talebian, M. Maftouh, M. Moetamani-Ahmadi, S. Seifi, S. ShahidSales, M. Joudi-Mashhad, G.A. Ferns, F. Ghasemi, A. Avan, Current status and future prospects of transforming growth factor-β as a potential prognostic and therapeutictarget in the treatment of breast cancer. J Cell Biochem. (2019).  https://doi.org/10.1002/jcb.27831
  61. 61.
    J. Zavadil, L. Cermak, N. Soto-Nieves, E.P. Böttinger, Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23, 1155–1165 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    H. Ikushima, K. Miyazono, TGFβ signalling: a complex web in cancer progression. Nature Rev Cancer 10, 415 (2010)CrossRefGoogle Scholar
  63. 63.
    M.A. Huber, N. Kraut, H. Beug, Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17, 548–558 (2005)CrossRefPubMedGoogle Scholar
  64. 64.
    S.A. Mani, W. Guo, M.-J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    M.E. Kidd, D.K. Shumaker, K.M. Ridge, The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol. 50, 1–6 (2014)PubMedPubMedCentralGoogle Scholar
  66. 66.
    J.J. Christiansen, A.K. Rajasekaran, Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66, 8319–8326 (2006)CrossRefPubMedGoogle Scholar
  67. 67.
    K. Verschueren, J.E. Remacle, C. Collart, H. Kraft, B.S. Baker, P. Tylzanowski, L. Nelles, G. Wuytens, M.-T. Su, R. Bodmer, SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem. 274, 20489–20498 (1999)CrossRefPubMedGoogle Scholar
  68. 68.
    E.-H. Nam, Y. Lee, Y.-K. Park, J.W. Lee, S. Kim, ZEB2 upregulates integrin α5 expression through cooperation with Sp1 to induce invasion during epithelial–mesenchymal transition of human cancer cells. Carcinogenesis 33, 563–571 (2012)CrossRefPubMedGoogle Scholar
  69. 69.
    M.A. Eckert, T.M. Lwin, A.T. Chang, J. Kim, E. Danis, L. Ohno-Machado, J. Yang, Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 19, 372–386 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    E. Casas, J. Kim, A. Bendesky, L. Ohno-Machado, C.J. Wolfe, J. Yang, Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res. 71, 245–254 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    A. Barrallo-Gimeno, M.A. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151–3161 (2005)CrossRefPubMedGoogle Scholar
  72. 72.
    M. Mohajeri, B. Behnam, A.F. Cicero, A. Sahebkar, Protective effects of curcumin against aflatoxicosis: A comprehensive review. J Cell Physiol. 233, 3552–3577 (2018)CrossRefPubMedGoogle Scholar
  73. 73.
    A.B. Kunnumakkara, C. Koca, S. Dey, P. Gehlot, S. Yodkeeree, D. Danda, B. Sung, B.B. Aggarwal, Molecular targets and therapeutic uses of spices: modern uses for ancient medicine. World Scientific 57, 1510–1528 (2009)Google Scholar
  74. 74.
    A. Sahebkar, A.F.G. Cicero, L.E. Simental-Mendía, B.B. Aggarwal, S.C. Gupta, Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. 107, 234–242 (2016)CrossRefPubMedGoogle Scholar
  75. 75.
    Y. Panahi, M.S. Hosseini, N. Khalili, E. Naimi, M. Majeed, A. Sahebkar, Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin Nutr. 34, 1101–1108 (2015)CrossRefPubMedGoogle Scholar
  76. 76.
    E. Abdollahi, A.A. Momtazi, T.P. Johnston, A. Sahebkar, Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J Cell Physiol. 233, 830–848 (2018)CrossRefPubMedGoogle Scholar
  77. 77.
    A.F.G. Cicero, A. Colletti, G. Bajraktari, O. Descamps, D.M. Djuric, M. Ezhov, Z. Fras, N. Katsiki, M. Langlois, G. Latkovskis, D.B. Panagiotakos, G. Paragh, D.P. Mikhailidis, O. Mitchenko, B. Paulweber, D. Pella, C. Pitsavos, Ž. Reiner, K.K. Ray, M. Rizzo, A. Sahebkar, M.C. Serban, L.S. Sperling, P.P. Toth, D. Vinereanu, M. Vrablík, N.D. Wong, M. Banach, Lipid lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Arch Med Sci. 13, 965–1005 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Y. Panahi, M.S. Hosseini, N. Khalili, E. Naimi, S.S. Soflaei, M. Majeed, A. Sahebkar, Effects of supplementation with curcumin on serum adipokine concentrations: A randomized controlled trial. Nutrition 32, 1116–1122 (2016)CrossRefPubMedGoogle Scholar
  79. 79.
    S. Ganjali, C.N. Blesso, M. Banach, M. Pirro, M. Majeed, A. Sahebkar, Effects of curcumin on HDL functionality. Pharmacol Res. 119, 208–218 (2017)CrossRefPubMedGoogle Scholar
  80. 80.
    F. Keihanian, A. Saeidinia, R.K. Bagheri, T.P. Johnston, A. Sahebkar, Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol. 233, 4497–4511 (2018)CrossRefPubMedGoogle Scholar
  81. 81.
    J. Tabeshpour, M. Hashemzaei, A. Sahebkar, The regulatory role of curcumin on platelet functions. J Cell Biochem. 119, 8713–8722 (2018)CrossRefPubMedGoogle Scholar
  82. 82.
    Y. Panahi, N. Khalili, E. Sahebi, S. Namazi, L.E. Simental-Mendía, M. Majeed, A. Sahebkar, Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with Type 2 diabetes mellitus: A randomized double-blind placebo-controlled trial. Drug Res. 68, 403–409 (2018)CrossRefGoogle Scholar
  83. 83.
    A. Sahebkar, M.C. Serban, S. Ursoniu, M. Banach, Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 18, 898–909 (2015)CrossRefGoogle Scholar
  84. 84.
    Y. Panahi, N. Khalili, E. Sahebi, S. Namazi, M.S. Karimian, M. Majeed, A. Sahebkar, Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology 25, 25–31 (2017)CrossRefPubMedGoogle Scholar
  85. 85.
    A. Sahebkar, Y. Henrotin, Analgesic efficacy and safety of curcuminoids in clinical practice: A systematic review and meta-analysis of randomized controlled trials. Pain Med. (United States) 17, 1192–1202 (2016)Google Scholar
  86. 86.
    N.A. Zabihi, M. Pirro, T.P. Johnston, A. Sahebkar, Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes. Curr Pharm Des. 23, 969–982 (2017)CrossRefPubMedGoogle Scholar
  87. 87.
    Y. Panahi, P. Kianpour, R. Mohtashami, R. Jafari, L.E. Simental-Mendía, A. Sahebkar, Efficacy and Safety of Phytosomal Curcumin in Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Drug Res. 67, 244–251 (2017)CrossRefGoogle Scholar
  88. 88.
    H. Mirzaei, G. Naseri, R. Rezaee, M. Mohammadi, Z. Banikazemi, H.R. Mirzaei, H. Salehi, M. Peyvandi, J.M. Pawelek, A. Sahebkar, Curcumin: A new candidate for melanoma therapy? Int J Cancer. 139, 1683–1695 (2016)CrossRefPubMedGoogle Scholar
  89. 89.
    A.A. Momtazi, F. Shahabipour, S. Khatibi, T.P. Johnston, M. Pirro and A. Sahebkar. Curcumin as a MicroRNA regulator in cancer: A review. Rev Physiol Biochem Pharmacol. 171, 1–38 (2016)Google Scholar
  90. 90.
    M. Iranshahi, A. Sahebkar, M. Takasaki, T. Konoshima, H. Tokuda, Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur J Cancer Prev. 18, 412–415 (2009)CrossRefPubMedGoogle Scholar
  91. 91.
    A.A. Momtazi, A. Sahebkar, Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des. 22, 4386–4397 (2016)CrossRefPubMedGoogle Scholar
  92. 92.
    A. Soltani, A. Salmaninejad, M. Jalili-Nik, A. Soleimani, H. Javid, S.I. Hashemy, A. Sahebkar, 5′-Adenosine monophosphate-activated protein kinase: A potential target for disease prevention by curcumin. J Cell Physiol. 234, 2241–2251 (2019)Google Scholar
  93. 93.
    R.M. Marjaneh, F. Rahmani, S.M. Hassanian, N. Rezaei, M. Hashemzehi, A. Bahrami, F. Ariakia, H. Fiuji, A. Sahebkar, A. Avan, Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol. 233, 6785–6798 (2018)CrossRefPubMedGoogle Scholar
  94. 94.
    D. Lelli, A. Sahebkar, T.P. Johnston, C. Pedone, Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res. 115, 133–148 (2017).  https://doi.org/10.1016/j.phrs.2016.11.017 CrossRefPubMedGoogle Scholar
  95. 95.
    L. Wang, B. Zhang, F. Huang, B. Liu, Y. Xie, Curcumin inhibits lipolysis via suppression of endoplasmic reticulum stress in adipose tissue and prevents hepatic insulin resistance. J Lipid Res. 57, 1243–1255 (2016)Google Scholar
  96. 96.
    N. Parsamanesh, M. Moossavi, A. Bahrami, A.E. Butler, A. Sahebkar, Therapeutic potential of curcumin in diabetic complications. Pharmacol Res. 136, 181–193 (2018)CrossRefPubMedGoogle Scholar
  97. 97.
    X. Zhou, J. Zhang, C. Xu, W. Wang, Curcumin ameliorates renal fibrosis by inhibiting local fibroblast proliferation and extracellular matrix deposition. J Pharmacol Sci. 126, 344–350 (2014)CrossRefPubMedGoogle Scholar
  98. 98.
    L. Ding, J. Li, B. Song, X. Xiao, B. Zhang, M. Qi, W. Huang, L. Yang, Z. Wang, Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol. 304, 99–109 (2016)CrossRefPubMedGoogle Scholar
  99. 99.
    N. Barati, A.A. Momtazi-Borojeni, M. Majeed, A. Sahebkar, Potential therapeutic effects of curcumin in gastric cancer. J Cell Physiol. 234, 2317–2328 (2019)Google Scholar
  100. 100.
    A. Shakeri, N. Ward, Y. Panahi, A. Sahebkar, Anti-angiogenic activity of curcumin in cancer therapy: a narrative review. Curr Vasc Pharmacol. 17, 262–269 (2019)CrossRefPubMedGoogle Scholar
  101. 101.
    M. Hashemzehi, R. Behnam-Rassouli, S.M. Hassanian, M. Moradi-Binabaj, R. Moradi-Marjaneh, F. Rahmani, H. Fiuji, M. Jamili, M. Mirahmadi, N. Boromand, Phytosomal-curcumin antagonizes cell growth and migration, induced by thrombin through AMP-Kinase in breast cancer. J Cell Biochem. 119, 5996–6007 (2018)Google Scholar
  102. 102.
    L. Hamzehzadeh, S.L. Atkin, M. Majeed, A.E. Butler, A. Sahebkar, The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J Cell Physiol. 233, 6530–6537 (2018)Google Scholar
  103. 103.
    M. Shanmugam, G. Rane, M. Kanchi, F. Arfuso, A. Chinnathambi, M. Zayed, S. Alharbi, B. Tan, A. Kumar, G. Sethi, The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20, 2728–2769 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    J.G. Devassy, I.D. Nwachukwu, P.J. Jones, Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev. 73, 155–165 (2015)CrossRefPubMedGoogle Scholar
  105. 105.
    A. Shehzad, F. Wahid, Y.S. Lee, Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Archiv der Pharmazie 343, 489–499 (2010)CrossRefPubMedGoogle Scholar
  106. 106.
    A. Jacob, R. Wu, M. Zhou, P. Wang, Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ activation. PPAR Res. 2007, 89369 (2007)CrossRefPubMedGoogle Scholar
  107. 107.
    B.H. Choi, C.G. Kim, Y.-S. Bae, Y. Lim, Y.H. Lee, S.Y. Shin, p21Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res. 68, 1369–1377 (2008)CrossRefPubMedGoogle Scholar
  108. 108.
    S.-S. Han, Y.-S. Keum, H.-J. Seo, Y.-J. Surh, Curcumin suppresses activation of NF-κB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. BMB Rep. 35, 337–342 (2002)CrossRefGoogle Scholar
  109. 109.
    R.L. Thangapazham, A. Sharma, R.K. Maheshwari, Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J. 8, E443 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    S.S. Bhandarkar and J.L. Arbiser, in The molecular targets and therapeutic uses of curcumin in health and disease. (Springer, 2007), p. 185-195Google Scholar
  111. 111.
    M.S. Squires, E.A. Hudson, L. Howells, S. Sale, C.E. Houghton, J.L. Jones, L.H. Fox, M. Dickens, S.A. Prigent, M.M. Manson, Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol. 65, 361–376 (2003)CrossRefPubMedGoogle Scholar
  112. 112.
    J.H. Seo, K.J. Jeong, W.J. Oh, H.J. Sul, J.S. Sohn, Y.K. Kim, J.K. Kang, C.G. Park, H.Y. Lee, Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer Lett. 288, 50–56 (2010)CrossRefPubMedGoogle Scholar
  113. 113.
    J. Yu, Y. Peng, L.-C. Wu, Z. Xie, Y. Deng, T. Hughes, S. He, X. Mo, M. Chiu, Q.-E. Wang, Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PloS one 8, e55934 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    R.J. Anto, A. Mukhopadhyay, K. Denning, B.B. Aggarwal, Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23, 143–150 (2002)CrossRefPubMedGoogle Scholar
  115. 115.
    R. Hayeshi, I. Mutingwende, W. Mavengere, V. Masiyanise, S. Mukanganyama, The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin. Food Chem Toxicol. 45, 286–295 (2007)CrossRefPubMedGoogle Scholar
  116. 116.
    S. Oetari, M. Sudibyo, J.N. Commandeur, R. Samhoedi, N.P. Vermeulen, Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver. Biochem Pharmacol. 51, 39–45 (1996)CrossRefPubMedGoogle Scholar
  117. 117.
    R. Thapliyal, G. Maru, Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem Toxicol. 39, 541–547 (2001)CrossRefPubMedGoogle Scholar
  118. 118.
    A.J. Ruby, G. Kuttan, K.D. Babu, K. Rajasekharan, R. Kuttan, Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 94, 79–83 (1995)CrossRefPubMedGoogle Scholar
  119. 119.
    S.M. Plummer, K.A. Holloway, M.M. Manson, R.J. Munks, A. Kaptein, S. Farrow, L. Howells, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 18, 6013 (1999)CrossRefPubMedGoogle Scholar
  120. 120.
    R. Motterlini, R. Foresti, R. Bassi, C.J. Green, Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med. 28, 1303–1312 (2000)CrossRefPubMedGoogle Scholar
  121. 121.
    T. Ak, İ. Gülçin, Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 174, 27–37 (2008)CrossRefPubMedGoogle Scholar
  122. 122.
    K.C. Das, C.K. Das, Curcumin (diferuloylmethane), a singlet oxygen (1O2) quencher. Biochem Biophys Res Commun. 295, 62–66 (2002)CrossRefPubMedGoogle Scholar
  123. 123.
    A. Barzegar, A.A. Moosavi-Movahedi, Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One 6, e26012 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    T. Onoue, D. Uchida, N.M. Begum, Y. Tomizuka, H. Yoshida, M. Sato, Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol. 29, 1133–1138 (2006)PubMedGoogle Scholar
  125. 125.
    S.W. Pyo, M. Hashimoto, Y.S. Kim, C.H. Kim, S.H. Lee, K.R. Johnson, M.J. Wheelock, J.U. Park, Expression of E-cadherin, P-cadherin and N-cadherin in oral squamous cell carcinoma: correlation with the clinicopathologic features and patient outcome. J Craniomaxillofac Surg. 35, 1–9 (2007)CrossRefPubMedGoogle Scholar
  126. 126.
    C.-C. Fan, T.-Y. Wang, Y.-A. Cheng, S.S. Jiang, C.-W. Cheng, A.Y.-L. Lee, T.-Y. Kao, Expression of E-cadherin, Twist, and p53 and their prognostic value in patients with oral squamous cell carcinoma. J Cancer Res Clin Oncol. 139, 1735–1744 (2013)CrossRefPubMedGoogle Scholar
  127. 127.
    N.A. Dallas, L. Xia, F. Fan, M.J. Gray, P. Gaur, G. Van Buren, S. Samuel, M.P. Kim, S.J. Lim, L.M. Ellis, Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 69, 1951–1957 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    K.R. Fischer, A. Durrans, S. Lee, J. Sheng, F. Li, S.T. Wong, H. Choi, T. El Rayes, S. Ryu, J. Troeger, Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    C. Zhang, Y. Xu, H. Wang, G. Li, H. Yan, Z. Fei, Y. Xu, W. Li, Curcumin reverses irinotecan resistance in colon cancer cell by regulation of epithelial–mesenchymal transition. Anticancer Drugs 29, 334–340 (2018)CrossRefPubMedGoogle Scholar
  130. 130.
    S. Toden, Y. Okugawa, T. Jascur, D. Wodarz, N.L. Komarova, C. Buhrmann, M. Shakibaei, C.R. Boland, A. Goel, Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36, 355–367 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    D. Zhang, C. Huang, C. Yang, R.J. Liu, J. Wang, J. Niu, D. Brömme, Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts. Respir Res. 12, 154 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    A. Bahrami, M. Khazaei, S.M. Hassanian, S. ShahidSales, M. Joudi-Mashhad, M. Maftouh, M.H. Jazayeri, M.R. Parizade, G.A. Ferns, A. Avan, Targeting the tumor microenvironment as a potential therapeutic approach in colorectal cancer: Rational and progress. J Cell Physiol. 233, 2928–2936 (2018)CrossRefPubMedGoogle Scholar
  133. 133.
    A. Bahrami, M. Khazaei, F. Bagherieh, M. Ghayour-Mobarhan, M. Maftouh, S.M. Hassanian, A. Avan, Targeting stroma in pancreatic cancer: Promises and failures of targeted therapies. J Cell Physiol. 232, 2931–2937 (2017)CrossRefPubMedGoogle Scholar
  134. 134.
    P. Nilendu, S.C. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G.S. Sarode, J.K. Pal, N.K. Sharma, Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance. Cell Oncol. 41, 353–367 (2018)CrossRefGoogle Scholar
  135. 135.
    N. Eiro, L. Gonzalez, A. Martinez-Ordonez, B. Fernandez-Garcia, L.O. Gonzalez, S. Cid, F. Dominguez, R. Perez-Fernandez, F.J. Vizoso, Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell Oncol. 41, 369–378 (2018)CrossRefGoogle Scholar
  136. 136.
    M.M. Koczorowska, C. Friedemann, K. Geiger, M. Follo, M.L. Biniossek, O. Schilling, Differential effect of TGFbeta on the proteome of cancer associated fibroblasts and cancer epithelial cells in a co-culture approach - a short report. Cell Oncol. 40, 639–650 (2017)CrossRefGoogle Scholar
  137. 137.
    A. Bahrami, S.M. Hassanian, M. Khazaei, M. Hasanzadeh, S. Shahidsales, M. Maftouh, G.A. Ferns, A. Avan, The therapeutic potential of targeting tumor microenvironment in breast cancer: Rational strategies and recent progress. J Cell Biochem. 119, 111–122 (2018)CrossRefPubMedGoogle Scholar
  138. 138.
    M. Vered, D. Dayan, R. Yahalom, A. Dobriyan, I. Barshack, I.O. Bello, S. Kantola, T. Salo, Cancer-associated fibroblasts and epithelial-mesenchymal transition in metastatic oral tongue squamous cell carcinoma. Int J Cancer 127, 1356–1362 (2010)CrossRefPubMedGoogle Scholar
  139. 139.
    Y. Jing, Z. Han, S. Zhang, Y. Liu, L. Wei, Epithelial-Mesenchymal Transition in tumor microenvironment. Cell & Bioscience 1, 29 (2011)CrossRefGoogle Scholar
  140. 140.
    C. Buhrmann, P. Kraehe, C. Lueders, P. Shayan, A. Goel, M. Shakibaei, Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT. PLoS One 9, e107514 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    F.C. Kelleher, Hedgehog signaling and therapeutics in pancreatic cancer. Carcinogenesis 32, 445–451 (2010)CrossRefPubMedGoogle Scholar
  142. 142.
    Y. Katoh, M. Katoh, Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med. 9, 873–886 (2009)CrossRefPubMedGoogle Scholar
  143. 143.
    L. Cao, X. Xiao, J. Lei, W. Duan, Q. Ma, W. Li, Curcumin inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway. Oncol Rep. 35, 3728–3734 (2016)CrossRefPubMedGoogle Scholar
  144. 144.
    J. Dai, K. Ai, Y. Du, G. Chen, Sonic hedgehog expression correlates with distant metastasis in pancreatic adenocarcinoma. Pancreas 40, 233–236 (2011)CrossRefPubMedGoogle Scholar
  145. 145.
    A. Bahrami, S.L. Atkin, M. Majeed, A. Sahebkar, Effects of curcumin on hypoxia-inducible factor as a new therapeutic target. Pharmacol Res. 137, 159–169 (2018)CrossRefPubMedGoogle Scholar
  146. 146.
    A. Sasco, M. Secretan, K. Straif, Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer 45, S3–S9 (2004)CrossRefPubMedGoogle Scholar
  147. 147.
    T. Vu, L. Jin, P. Datta, Effect of cigarette smoking on epithelial to mesenchymal transition (EMT) in lung cancer. J Clin Med. 5, 44 (2016)CrossRefPubMedCentralGoogle Scholar
  148. 148.
    Z. Liang, R. Wu, W. Xie, C. Xie, J. Wu, S. Geng, X. Li, M. Zhu, W. Zhu, J. Zhu, Effects of Curcumin on Tobacco Smoke-induced Hepatic MAPK Pathway Activation and Epithelial–Mesenchymal Transition In Vivo. Phytother Res. 31, 1230–1239 (2017)CrossRefPubMedGoogle Scholar
  149. 149.
    A.H. Huber, W.I. Weis, The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001)CrossRefPubMedGoogle Scholar
  150. 150.
    R. Thakur, D.P. Mishra, Pharmacological modulation of beta-catenin and its applications in cancer therapy. J Cell Mol Med. 17, 449–456 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    E.M. Al-Hujaily, A.G. Mohamed, I. Al-Sharif, K.M. Youssef, P.S. Manogaran, B. Al-Otaibi, A. Al-Haza’a, I. Al-Jammaz, K. Al-Hussein, A. Aboussekhra, PAC, a novel curcumin analogue, has anti-breast cancer properties with higher efficiency on ER-negative cells. Breast Cancer Res Treat. 128, 97–107 (2011)CrossRefPubMedGoogle Scholar
  152. 152.
    H.A. Al-Howail, H.A. Hakami, B. Al-Otaibi, A. Al-Mazrou, M.H. Daghestani, I. Al-Jammaz, H.H. Al-Khalaf, A. Aboussekhra, PAC down-regulates estrogen receptor alpha and suppresses epithelial-to-mesenchymal transition in breast cancer cells. BMC Cancer 16, 540 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    P. Paramita, B.W. Wardhani, S.I. Wanandi, M. Louisa, Curcumin for the Prevention of Epithelial-Mesenchymal Transition in Endoxifen-Treated MCF-7 Breast Cancer Cells. Asian Pac J Cancer Prev. 19, 1243 (2018)PubMedPubMedCentralGoogle Scholar
  154. 154.
    J. Xu, D. Liu, H. Niu, G. Zhu, Y. Xu, D. Ye, J. Li, Q. Zhang, Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. Clin Cancer Res. 36, 19 (2017)CrossRefGoogle Scholar
  155. 155.
    W.-C. Chen, Y.-A. Lai, Y.-C. Lin, J.-W. Ma, L.-F. Huang, N.-S. Yang, C.-T. Ho, S.-C. Kuo, T.-D. Way, Curcumin suppresses doxorubicin-induced epithelial–mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J Agric Food Chem. 61, 11817–11824 (2013)CrossRefPubMedGoogle Scholar
  156. 156.
    R. Bakalova, Z. Zhelev, S. Shibata, B. Nikolova, I. Aoki, T. Higashi, Impressive Suppression of Colon Cancer Growth by Triple Combination SN38/EF24/Melatonin:“Oncogenic” Versus “Onco-Suppressive” Reactive Oxygen Species. Anticancer Res. 37, 5449–5458 (2017)PubMedGoogle Scholar
  157. 157.
    W. Ren, L. Gao, F. Li, C. Qiang, S. Li, J. Zheng, X. Kong, J. Deng, G. Cai, H. Zhang, Circulating high mobility group AT-hook 2 and pleomorphic adenoma gene 1 in blood of patients with oral squamous cell carcinoma. J Oral Pathol Med. 46, 998–1003 (2017)PubMedGoogle Scholar
  158. 158.
    Q. Zou, L. Xiong, Z. Yang, F. Lv, L. Yang, X. Miao, Expression levels of HMGA2 and CD9 and its clinicopathological significances in the benign and malignant lesions of the gallbladder. World J Surg Oncol. 10, 92 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    M.J. Scanlan, B. Raj, B. Calvo, P. Garin-Chesa, M.P. Sanz-Moncasi, J.H. Healey, L.J. Old, W.J. Rettig, Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA 91, 5657–5661 (1994)CrossRefPubMedGoogle Scholar
  160. 160.
    G.-M. Jiang, W.-Y. Xie, H.-S. Wang, J. Du, B.-P. Wu, W. Xu, H.-F. Liu, P. Xiao, Z.-G. Liu, H.-Y. Li, Curcumin combined with FAPαc vaccine elicits effective antitumor response by targeting indolamine-2, 3-dioxygenase and inhibiting EMT induced by TNF-α in melanoma. Oncotarget 6, 25932 (2015)PubMedPubMedCentralGoogle Scholar
  161. 161.
    M. Iwano, D. Plieth, T.M. Danoff, C. Xue, H. Okada, E.G. Neilson, Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 110, 341–350 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    R. Kalluri, E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 112, 1776–1784 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    S. Meran, R. Steadman, Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol. 92, 158–167 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    M. Zeisberg, J.S. Duffield, Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol. 21, 1247–1253 (2010)Google Scholar
  165. 165.
    I. Loeffler, G. Wolf, Transforming growth factor-β and the progression of renal disease. Dial Transplant. 29, i37–i45 (2013)CrossRefGoogle Scholar
  166. 166.
    M.R. Farahpour, A. Dilmaghanian, M. Faridy, E. Karashi, Topical Moltkia coerulea hydroethanolic extract accelerates the repair of excision wound in a rat model. Chin J Traumatol. 19, 97–103 (2016)CrossRefPubMedGoogle Scholar
  167. 167.
    S.J. Grille, A. Bellacosa, J. Upson, A.J. Klein-Szanto, F. Van Roy, W. Lee-Kwon, M. Donowitz, P.N. Tsichlis, L. Larue, The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 63, 2172–2178 (2003)PubMedGoogle Scholar
  168. 168.
    L.-n. Sun, Z.-x. Chen, X.-c. Liu, H.-y. Liu, G.-j. Guan, G. Liu, Curcumin ameliorates epithelial-to-mesenchymal transition of podocytes in vivo and in vitro via regulating caveolin-1. Biomed Pharmacother. 68, 1079–1088 (2014)CrossRefPubMedGoogle Scholar
  169. 169.
    F. Galbiati, A.M. Brown, D.E. Weinstein, A. Ben-Ze'ev, R.G. Pestell, M.P. Lisanti, Caveolin-1 expression inhibits Wnt/β-catenin/Lef-1 signaling by recruiting β-catenin to caveolae membrane domains. J Biol Chem. 275, 23368–23377 (2000)CrossRefPubMedGoogle Scholar
  170. 170.
    R. Kronstein, J. Seebach, S. Großklaus, C. Minten, B. Engelhardt, M. Drab, S. Liebner, Y. Arsenijevic, A.A. Taha, T. Afanasieva, Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc Res. 93, 130–140 (2011)CrossRefPubMedGoogle Scholar
  171. 171.
    A. Bahrami, S. Shahidsales, M. Khazaei, M. Ghayour-Mobarhan, M. Maftouh, S.M. Hassanian, A. Avan, C-Met as a potential target for the treatment of gastrointestinal cancer: Current status and future perspectives. J Cell Physiol. 232, 2657–2673 (2017)CrossRefPubMedGoogle Scholar
  172. 172.
    J.B. Wu, C. Shao, X. Li, Q. Li, P. Hu, C. Shi, Y. Li, Y.-T. Chen, F. Yin, C.-P. Liao, Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest. 124, 2891–2908 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    X. Chen, H. Cheng, T. Pan, Y. Liu, Y. Su, C. Ren, D. Huang, X. Zha, C. Liang, mTOR regulate EMT through RhoA and Rac1 pathway in prostate cancer. Mol Carcinog. 54, 1086–1095 (2015)CrossRefPubMedGoogle Scholar
  174. 174.
    S. Cannito, E. Novo, A. Compagnone, L. Valfrè di Bonzo, C. Busletta, E. Zamara, C. Paternostro, D. Povero, A. Bandino, F. Bozzo, Redox mechanisms switch on hypoxia-dependent epithelial–mesenchymal transition in cancer cells. Carcinogenesis 29, 2267–2278 (2008)CrossRefPubMedGoogle Scholar
  175. 175.
    M.-H. Yang, K.-J. Wu, TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle 7, 2090–2096 (2008)CrossRefPubMedGoogle Scholar
  176. 176.
    Z. Liu, J. Liu, L. Zhao, H. Geng, J. Ma, Z. Zhang, D. Yu, C. Zhong, Curcumin reverses benzidine-induced epithelial-mesenchymal transition via suppression of ERK5/AP-1 in SV-40 immortalized human urothelial cells. Int J Oncol. 50, 1321–1329 (2017)CrossRefPubMedGoogle Scholar
  177. 177.
    S.M. Sureban, R. May, N. Weygant, D. Qu, P. Chandrakesan, E. Bannerman-Menson, N. Ali, P. Pantazis, C.B. Westphalen, T.C. Wang, XMD8-92 inhibits pancreatic tumor xenograft growth via a DCLK1-dependent mechanism. Cancer Lett. 351, 151–161 (2014)CrossRefPubMedGoogle Scholar
  178. 178.
    Z. Liang, L. Lu, J. Mao, X. Li, H. Qian, W. Xu, Curcumin reversed chronic tobacco smoke exposure induced urocystic EMT and acquisition of cancer stem cells properties via Wnt/β-catenin. Cell Death Dis. 8, e3066 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    C. Samanic, M. Kogevinas, M. Dosemeci, N. Malats, F.X. Real, M. Garcia-Closas, C. Serra, A. Carrato, R. García-Closas, M. Sala, Smoking and bladder cancer in Spain: effects of tobacco type, timing, environmental tobacco smoke, and gender. Cancer Epidemiol Biomarkers Prev. 15, 1348–1354 (2006)CrossRefPubMedGoogle Scholar
  180. 180.
    W. Zou, Y. Zou, Z. Zhao, B. Li, P. Ran, Nicotine Induced Epithelial-Mesenchymal Transition via Wnt/β-catenin Signaling in Human Airway Epithelial Cells. Am J Physiol Heart Circ Physiol. 304, 199–209 (2012)Google Scholar
  181. 181.
    S.S. Hecht, Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 91, 1194–1210 (1999)CrossRefPubMedGoogle Scholar
  182. 182.
    C.-C. Yu, M.-D. Yang, H.-Y. Lin, A.-C. Huang, J.-P. Lin, C.-L. Kuo, K.-C. Liu, H.-C. Liu, S.-T. Yang, J.-G. Chung, Bisdemethoxycurcumin (BDMC) alters gene expression-associated cell cycle, cell migration and invasion and tumor progression in human lung cancer NCI-H460 cells. In Vivo 29, 711–728 (2015)PubMedGoogle Scholar
  183. 183.
    G. Hilton, R. Machemer, R. Michels, E. Okun, C. Schepens, A. Schwartz, The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 90, 121–125 (1983)CrossRefGoogle Scholar
  184. 184.
    R.M. Feist, J.L. King, R. Morris, C.D. Witherspoon, C. Guidry, Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 252, 347–357 (2014)CrossRefPubMedGoogle Scholar
  185. 185.
    J.G. Garweg, C. Tappeiner, M. Halberstadt, Pathophysiology of proliferative vitreoretinopathy in retinal detachment. Surv Ophthalmol. 58, 321–329 (2013)CrossRefPubMedGoogle Scholar
  186. 186.
    P.A. Campochiaro, J.A. Jerdan, B.M. Glaser, A. Cardin, R.G. Michels, Vitreous aspirates from patients with proliferative vitreoretinopathy stimulate retinal pigment epithelial cell migration. Arch Ophthalmol. 103, 1403–1405 (1985)CrossRefPubMedGoogle Scholar
  187. 187.
    R. Chaudhary, J. Dretzke, R. Scott, A. Logan, R. Blanch, Clinical and surgical risk factors in the development of proliferative vitreoretinopathy following retinal detachment surgery: a systematic review protocol. Syst Rev. 5, 107 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    S. Ganekal, S. Dorairaj, Effect of intraoperative 5-fluorouracil and low molecular weight heparin on the outcome of high-risk proliferative vitreoretinopathy. Saudi J Ophthalmol. 28, 257–261 (2014)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Afsane Bahrami
    • 1
  • Muhammed Majeed
    • 2
  • Amirhossein Sahebkar
    • 3
    • 4
    • 5
    Email author
  1. 1.Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
  2. 2.Sabinsa CorporationEast WindsorUSA
  3. 3.Department of Medical Biotechnology Research Center, School of Medicine, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  4. 4.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  5. 5.School of PharmacyMashhad University of Medical SciencesMashhadIran

Personalised recommendations