Advertisement

Combined inhibition of RAC1 and Bcl-2/Bcl-xL synergistically induces glioblastoma cell death through down-regulation of the Usp9X/Mcl-1 axis

  • Michal Hlavac
  • Annika Dwucet
  • Richard Eric Kast
  • Jens Engelke
  • Mike-Andrew Westhoff
  • Markus D. Siegelin
  • Klaus-Michael Debatin
  • Christian Rainer Wirtz
  • Marc-Eric Halatsch
  • Georg Karpel-MasslerEmail author
Original Paper
  • 33 Downloads

Abstract

Purpose

Anti-apoptotic and pro-migratory phenotypes are hallmarks of neoplastic diseases, including primary brain malignancies. In this work, we examined whether reprogramming of the apoptotic and migratory machineries through a multi-targeting approach would induce enhanced cell death and enhanced inhibition of the migratory capacity of glioblastoma cells.

Methods

Preclinical testing and molecular analyses of combined inhibition of Bcl-2/Bcl-xL and RAC1 were performed in established, primary cultured and stem-like glioblastoma cell systems.

Results

We found that the combined inhibition of Bcl-2/Bcl-xL and RAC1 resulted in synergistic pro-apoptotic and anti-migratory effects in a broad range of different glioblastoma cells. At the molecular level, we found that RAC1 inhibition led to a decreased expression of the deubiquitinase Usp9X, followed by a decreased stability of Mcl-1. We also found that the combined inhibition led to a significantly decreased migratory activity and that tumor formation of glioblastoma cells on chorion allantoic membranes of chicken embryos was markedly impaired following the combined inhibition.

Conclusions

Our data indicate that concomitant inhibition of RAC1 and Bcl-2/Bcl-xL induces pro-apoptotic and anti-migratory glioblastoma phenotypes as well as synergistic anti-neoplastic activities. The clinical efficacy of this inhibitory therapeutic strategy warrants further evaluation.

Keywords

Glioblastoma RAC1 Bcl-xL Multi-targeting Usp9X 

Notes

Acknowledgements

We thank Andrea Schuster for her excellent technical support with the CAM assay and Angelika Vollmer for her assistance with the time-lapse analyses. MDS is supported by grants NIH NINDS K08 NS083732, NIH NINDS R01 NS095848 and NIH NINDS R01 NS102366.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13402_2019_425_MOESM1_ESM.pptx (647 kb)
Supplementary figure 1 A, In silico analysis based on the TCGA glioblastoma (GBM) dataset showing Kaplan-Meier curves for patients with high or low RAC1 mRNA expression (www.oncolnc.org, last accessed 12/11/2018). B, Chemical structures of ABT263 and NSC23766 (ChemDraw Professional 16.0, Perkin Elmer). C, ULM-GBM-PC35 cells were treated for 48 h with NSC23766 (NSC), ABT263 or the combination at indicated concentrations. Staining with annexin V/propidium iodide was performed prior to flow cytometric analysis. Representative flow plots are shown. Data are representative for three independent experiments. D, Quantitative representation of U251, ULM-GBM-PC38, T98G and ULM-GBM-PC35 glioblastoma cells treated as described for C and Fig. 2A-C. Columns, mean; bars, SEM. N = 3. Statistical significance was assessed by Student’s t test. (PPTX 647 kb)
13402_2019_425_MOESM2_ESM.pptx (2.1 mb)
Supplementary figure 2 A, U251 cells were treated for 48 h with NSC23766 and/ or ABT263 as indicated prior to staining with TMRE and flow cytometric analysis. The fold increase of cells with a reduced mitochondrial membrane potential (MMP) was calculated in comparison to control. Columns, mean; bars, SD. N = 3. Statistical significance was assessed by Student’s t test. B, U251 cells were subjected for 48 h to the combination treatment in the presence or absence of zVAD.fmk prior to staining with propidium iodide and flow cytometric analysis. Columns, mean; bars, SD. N = 3. Statistical significance was assessed by Student’s t test. C, U251 cells were treated for 48 h with the combination of 20 μM NSC23766 (NSC) and 2 μM ABT263 (ABT) in the presence or absence of 20 μM Necrostatin. Staining with propidium iodide was performed prior to flow cytometric analysis. Representative histograms are shown. D, Quantitative representation of U251 cells treated as described for C. Columns, mean; bars, SD. N = 3. Statistical significance was assessed by Student’s t test. E, U87MG cells were treated for 6 h or 24 h with increasing concentrations of NSC23766 under serum starvation. Whole-cell extracts were examined by Western blot for Mcl-1, Bcl-2 and Bcl-xL. Actin served as a loading control. Densitometric analysis was perfomed using ImageJ (NIH, Bethesda, MD; http://imagej.nih.gov/ij). Normalized data are presented on top of the respective Western blots. Data are representative for two independent experiments. (PPTX 2139 kb)
13402_2019_425_MOESM3_ESM.pptx (1.9 mb)
Supplementary figure 3 A, U251 cells were treated for 48 h with non-targeting (n.t.)-siRNA, or Mcl-1-siRNA followed by treatment with ABT263 or solvent for 24 h. Staining with propidium iodide was performed prior to flow cytometric analysis. Columns, mean; bars, SD. N = 3. Statistical significance was assessed by Student’s t test. B, U251 cells were treated for 48 h with NSC23766, the selective Bcl-2 inhibitor ABT199 or the combination. Staining with propidium iodide was performed prior to flow cytometric analysis. Representative histograms are shown. C, U251 cells were treated for 6 h or 24 h with NSC23766 (20 μM), ABT263 (2 μM) or both prior to performing rtPCR for Mcl-1. 18S served as housekeeping gene. Columns, mean. Bars, SD. N = 3. Statistical significance was assessed by Student’s t test. D, ULM-GBM-PC38 were treated with NSC23766 or solvent for 24 h before adding 10 μg/mL cycloheximide and Western blot analysis for Mcl-1 and Actin. Data are representative for two independent experiments. (PPTX 1908 kb)
13402_2019_425_MOESM4_ESM.pptx (112 kb)
Supplementary figure 4 A, A172 cells were seeded on 24-well plates followed by sequential microscopic imaging (magnification, ×10) over a total time period of 24 h. Single-cell tracking was performed using the MtrackJ software (see Materials and Methods). Wind-rose plots displaying the paths of 15 single cells per treatment condition during the 24 h observation period. The tracks were aligned to start from the same initial position to facilitate comparisons. B, Total distance of 45 cells covered within 24 h per treatment condition. Columns, mean; bars, SEM. Data are representative for 3 independent experiments. (PPTX 112 kb)

References

  1. 1.
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Friedl, S. Alexander, Cancer invasion and the microenvironment: Plasticity and reciprocity. Cell 147, 992–1009 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Venneti, C.B. Thompson, Metabolic reprogramming in brain tumors. Annu Rev Pathol 12, 515–545 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Stupp, W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, R.O. Mirimanoff, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352, 987–996 (2005)CrossRefGoogle Scholar
  5. 5.
    A.P. Patel, I. Tirosh, J.J. Trombetta, A.K. Shalek, S.M. Gillespie, H. Wakimoto, D.P. Cahill, B.V. Nahed, W.T. Curry, R.L. Martuza, D.N. Louis, O. Rozenblatt-Rosen, M.L. Suva, A. Regev, B.E. Bernstein, Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)CrossRefGoogle Scholar
  6. 6.
    G. Karpel-Massler, C.T. Ishida, Y. Zhang, M.E. Halatsch, M.A. Westhoff, M.D. Siegelin, Targeting intrinsic apoptosis and other forms of cell death by BH3-mimetics in glioblastoma. Expert Opin Drug Discov 12, 1031–1040 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Krajewski, M. Krajewska, A. Shabaik, T. Miyashita, H.G. Wang, J.C. Reed, Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145, 1323–1336 (1994)Google Scholar
  8. 8.
    Z. Oltvai, C. Milliman, S.J. Korsmeyer, Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619 (1993)CrossRefGoogle Scholar
  9. 9.
    J. Kale, E.J. Osterlund, D.W. Andrews, Bcl-2 famiy proteins: Changing partners in the dance towards death. Cell Death Differ 25, 65–80 (2018)CrossRefGoogle Scholar
  10. 10.
    J.M. Adams, S. Cory, The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Konopleva, R. Contractor, T. Tsao, I. Samudio, P.P. Ruvolo, S. Kitada, X. Deng, D. Zhai, Y.X. Shi, T. Sneed, M. Verhaegen, M. Soengas, V.R. Ruvolo, T. McQueen, W.D. Schober, J.C. Watt, T. Jiffar, X. Ling, F.C. Marini, D. Harris, M. Dietrich, Z. Estrov, J. McCubrey, W.S. May, J.C. Reed, M. Andreeff, Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375–388 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Etienne-Manneville, A. Hall, Rho GTPases in cell biology. Nature 420, 629–635 (2002)CrossRefGoogle Scholar
  13. 13.
    R. Khosravi-Far, P.A. Solski, G.J. Clark, M.S. Kinch, C.J. Der, Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol 15, 6443–6453 (1995)CrossRefGoogle Scholar
  14. 14.
    R.G. Qiu, J. Chen, D. Kirn, F. McCormick, M. Symons, An essential role for Rac in Ras transformation. Nature 374, 457–459 (1995)CrossRefGoogle Scholar
  15. 15.
    G. Fritz, I. Just, B. Kaina, Rho GTPases are over-expressed in human tumors. Int J Cancer 81, 682–687 (1999)CrossRefGoogle Scholar
  16. 16.
    P. Jordan, R. Brazao, M.G. Boavida, C. Gespach, E. Chastre, Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 18, 6835–6839 (1999)CrossRefGoogle Scholar
  17. 17.
    A. Schnelzer, D. Prechtel, U. Knaus, K. Dehne, M. Gerhard, H. Graeff, N. Harbeck, M. Schmitt, E. Lengyel, Rac1 in human breast cancer: Overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19, 3013–3020 (2000)CrossRefGoogle Scholar
  18. 18.
    A.Y. Chan, S.J. Coniglio, Y.Y. Chuang, D. Michaelson, U.G. Knaus, M.R. Philips, M. Symons, Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 24, 7821–7829 (2005)CrossRefGoogle Scholar
  19. 19.
    J. Didsbury, R.F. Weber, G.M. Bokoch, T. Evans, R. Snyderman, Rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem 264, 16378–16382 (1989)Google Scholar
  20. 20.
    G. Karpel-Massler, M.-A. Westhoff, S. Zhou, L. Nonnenmacher, A. Dwucet, R. Kast, M. Bachem, C. Wirtz, K.-M. Debatin, M.-E. Halatsch, Combined inhibition of HER1/EGFR and RAC1 results in a synergistic antiproliferative effect on established and primary cultured human glioblastoma cells. Mol Cancer Ther 12, 1783–1795 (2013)CrossRefGoogle Scholar
  21. 21.
    D. Opel, M.A. Westhoff, A. Bender, V. Braun, K.M. Debatin, S. Fulda, Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 68, 6271–6280 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Schneider, S. Ströbele, L. Nonnenmacher, M.D. Siegelin, M. Tepper, S. Stroh, S. Hasslacher, S. Enzenmüller, G. Strauss, B. Baumann, G. Karpel-Massler, M.A. Westhoff, K.M. Debatin, M.E. Halatsch, A paired comparison between glioblastoma "stem cells" and differentiated cells. Int J Cancer 138, 1709–1718 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Ströbele, M. Schneider, L. Schneele, M.D. Siegelin, L. Nonnenmacher, S. Zhou, G. Karpel-Massler, M.A. Westhoff, M.E. Halatsch, K.M. Debatin, A potential role for the inhibition of PI3K signaling in glioblastoma therapy. PLoS One 10, e0131670 (2015)CrossRefGoogle Scholar
  24. 24.
    G. Karpel-Massler, B.A. Horst, C. Shu, L. Chau, T. Tsujiuchi, J.N. Bruce, P. Canoll, L.A. Greene, J.M. Angelastro, M.D. Siegelin, A synthetic cell-penetrating dominant-negative ATF5 peptide exerts anti-cancer activity against a broad spectrum of treatment resistant cancers. Clin Cancer Res 22, 4698–4711 (2016)CrossRefGoogle Scholar
  25. 25.
    G. Karpel-Massler, C.T. Ishida, E. Bianchetti, Y. Zhang, C. Shu, T. Tsujiuchi, M.A. Banu, F. Garcia, K.A. Roth, J.N. Bruce, P. Canoll, M.D. Siegelin, Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nat Commun 8, 1067 (2017)Google Scholar
  26. 26.
    G. Karpel-Massler, F. Pareja, P. Aime, C. Shu, L. Chau, M.A. Westhoff, M.E. Halatsch, J.F. Crary, P. Canoll, M.D. Siegelin, PARP inhibition restores extrinsic apoptotic sensitivity in glioblastoma. PLoS One 9, e114583 (2014)CrossRefGoogle Scholar
  27. 27.
    G. Karpel-Massler, D. Ramani, C. Shu, M.E. Halatsch, M.A. Westhoff, J.N. Bruce, P. Canoll, M.D. Siegelin, Metabolic reprogramming of glioblastoma cells by L-asparaginase sensitizes for apoptosis in vitro and in vivo. Oncotarget 7, 33512–33528 (2016)Google Scholar
  28. 28.
    F. Pareja, D. Macleod, C. Shu, J.F. Crary, P.D. Canoll, A.H. Ross, M.D. Siegelin, PI3K and Bcl-2 inhibition primes glioblastoma cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD. Mol Cancer Res 12, 987–1001 (2014)CrossRefGoogle Scholar
  29. 29.
    O.L. Chinot, W. Wick, W. Mason, R. Henriksson, F. Saran, R. Nishikawa, A.F. Carpentier, K. Hoang-Xuan, P. Kavan, D. Cernea, A.A. Brandes, M. Hilton, L. Abrey, T. Cloughesy, Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370, 709–722 (2014)CrossRefGoogle Scholar
  30. 30.
    M.R. Gilbert, J.J. Dignam, T.S. Armstrong, J.S. Wefel, D.T. Blumenthal, M.A. Vogelbaum, H. Colman, A. Chakravarti, S. Pugh, M. Won, R. Jeraj, P.D. Brown, K.A. Jaeckle, D. Schiff, V.W. Stieber, D.G. Brachman, M. Werner-Wasik, I.W. Tremont-Lukats, E.P. Sulman, K.D. Aldape, W.J.J. Curran, M.P. Mehta, A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370, 699–708 (2014)CrossRefGoogle Scholar
  31. 31.
    M. van den Bent, A. Brandes, R. Rampling, M. Kouwenhoven, J. Kros, A. Carpentier, P. Clement, M. Frenay, M. Campone, J. Baurain, J. Armand, M. Taphoorn, A. Tosoni, H. Kletzl, B. Klughammer, D. Lacombe, T. Gorlia, Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 27, 1268–1274 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Schwickart, X. Huang, J.R. Lill, J. Liu, R. Ferrando, D.M. French, H. Maecker, K. O'Rourke, F. Bazan, J. Eastham-Anderson, P. Yue, D. Dornan, D.C. Huang, V.M. Dixit, Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463, 103–107 (2010)CrossRefGoogle Scholar
  33. 33.
    G. Karpel-Massler, M.A. Banu, C. Shu, M.E. Halatsch, M.A. Westhoff, J.N. Bruce, P. Canoll, M.D. Siegelin, Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget 7, 12791–12805 (2016)Google Scholar
  34. 34.
    G. Karpel-Massler, C.T. Ishida, E. Bianchetti, C. Shu, R. Perez-Lorenzo, B. Horst, M. Banu, K.A. Roth, J.N. Bruce, P. Canoll, D.C. Altieri, M.D. Siegelin, Inhibition of mitochondrial matrix chaperones and antiapoptotic Bcl-2 family proteins empower antitumor therapeutic responses. Cancer Res 77, 3513–3526 (2017)CrossRefGoogle Scholar
  35. 35.
    J.V. Joseph, S. Conroy, K. Pavlov, P. Sontakke, T. Tomar, E. Eggens-Meijer, V. Balasubramaniyan, M. Wagemakers, W.F. den Dunnen, F.A. Kruyt, Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchmal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett 359, 107–116 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Osswald, E. Jung, F. Sahm, G. Solecki, V. Venkataramani, J. Blaes, S. Weil, H. Horstmann, B. Wiestler, M. Syed, L. Huang, M. Ratliff, K. Karimian Jazi, F.T. Kurz, T. Schmenger, D. Lemke, M. Gömmel, M. Pauli, Y. Liao, P. Häring, S. Pusch, V. Herl, C. Steinhäuser, D. Krunic, M. Jarahian, H. Miletic, A.S. Berghoff, O. Griesbeck, G. Kalamakis, O. Garaschuk, M. Preusser, S. Weiss, H. Liu, S. Heiland, M. Platten, P.E. Huber, T. Kuner, A. von Deimling, W. Wick, F. Winkler, Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015)Google Scholar
  37. 37.
    S.J. Hanna, K. McCoy-Simandle, V. Miskolci, P. Guo, M. Cammer, L. Hodgson, D. Cox, The role of Rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Sci Rep 7, 8547 (2017)CrossRefGoogle Scholar
  38. 38.
    A.J. Ridley, H.F. Paterson, C.L. Johnstone, D. Diekmann, A. Hall, The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992)CrossRefGoogle Scholar
  39. 39.
    T.I. Oprea, L.A. Sklar, J.O. Agola, Y. Guo, M. Silberberg, J. Roxby, A. Vestling, E. Romero, Z. Surviladze, C. Murray-Krezan, A. Waller, O. Ursu, L.G. Hudson, A. Wandinger-Ness, Novel activities of select NSAID R-enantiomers against RAC1 and Cdc42 GTPases. PLoS One 10, e0142182 (2015)CrossRefGoogle Scholar
  40. 40.
    W. Xu, Q. Wan, S. Na, H. Yokota, J.L. Yan, K. Hamamura, Suppressed invasive and migratory behaviors of SW1353 chondrosarcoma cells through the regulation of Src, Rac1 GTPase, and MMP13. Cell Signal 27, 2332–2342 (2015)CrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Michal Hlavac
    • 1
  • Annika Dwucet
    • 1
  • Richard Eric Kast
    • 2
  • Jens Engelke
    • 1
  • Mike-Andrew Westhoff
    • 3
  • Markus D. Siegelin
    • 4
  • Klaus-Michael Debatin
    • 3
  • Christian Rainer Wirtz
    • 1
  • Marc-Eric Halatsch
    • 1
  • Georg Karpel-Massler
    • 1
    Email author
  1. 1.Department of Neurological SurgeryUlm University Medical CenterUlmGermany
  2. 2.IIAIG, Study CenterBurlingtonUSA
  3. 3.Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
  4. 4.Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations