Cellular Oncology

, Volume 42, Issue 2, pp 117–130 | Cite as

Therapeutic targeting potential of chromatin-associated proteins in MLL-rearranged acute leukemia

  • Xin Xu
  • Björn SchneiderEmail author



Acute leukemias (AL) with a Mixed Lineage Leukemia (MLL) gene rearrangement (MLLr) represent a group of leukemic entities conferring intermediate to adverse prognoses. Multiple chromatin-associated proteins have been shown to play essential roles during the genesis of MLLr AL. Some chromatin-associated proteins function as negative regulators of MLLr AL whereas others are required for leukemic initiation or maintenance - the latter group constituting potential therapeutic targets. Most of the identified proteins have been functionally analyzed using experimental models with human/murine normal cells transformed by MLL-AF9 or other MLL fusion products, which may recapitulate most but not all aspects of human AML, such as immune system interactions – features of which the importance is rapidly emerging.


Here, we review chromatin-associated proteins fundamental to MLLr AL development, highlighting those with targeting potential by small molecule inhibitors. In particular, we focus on synthetic targeting of multiple chromatin-associated proteins, a strategy that shows superior therapeutic efficacy and offers hope for overcoming drug resistance.


Acute leukemia MLL Chromatin associated proteins Small molecule inhibitors Synthetic targeting 



Xin Xu was funded by the National Natural Science Foundation of China (NSFC; grant # 81370628 and # 81570157), the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Shandong Provincial Natural Science Foundation, China (grant # ZR2015CL023), and the Shandong Province Higher Educational Science and Technology Program (J16LL54).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    C. Röllig, M. Bornhäuser, C. Thiede, F. Taube, M. Kramer, B. Mohr, W. Aulitzky, H. Bodenstein, H.-J. Tischler, R. Stuhlmann, U. Schuler, F. Stölzel, M. von Bonin, H. Wandt, K. Schäfer-Eckart, M. Schaich, G. Ehninger, Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: evaluation of the proposed reporting system. J. Clin. Oncol. 29, 2758–2765 (2011)CrossRefPubMedGoogle Scholar
  2. 2.
    C.H. Pui, F.G. Behm, J.R. Downing, M.L. Hancock, S.A. Shurtleff, R.C. Ribeiro, D.R. Head, H.H. Mahmoud, J.T. Sandlund, W.L. Furman, 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J. Clin. Oncol. 12, 909–915 (1994)CrossRefPubMedGoogle Scholar
  3. 3.
    C. Meyer, T. Burmeister, D. Gröger, G. Tsaur, L. Fechina, A. Renneville, R. Sutton, N.C. Venn, M. Emerenciano, M.S. Pombo-de-Oliveira, C. Barbieri Blunck, B. Almeida Lopes, J. Zuna, J. Trka, P. Ballerini, H. Lapillonne, M. de Braekeleer, G. Cazzaniga, L. Corral Abascal, V.H.J. van der Velden, E. Delabesse, T.S. Park, S.H. Oh, M.L.M. Silva, T. Lund-Aho, V. Juvonen, A.S. Moore, O. Heidenreich, J. Vormoor, E. Zerkalenkova, Y. Olshanskaya, C. Bueno, P. Menendez, A. Teigler-Schlegel, U. Zur Stadt, J. Lentes, G. Göhring, A. Kustanovich, O. Aleinikova, B.W. Schäfer, S. Kubetzko, H.O. Madsen, B. Gruhn, X. Duarte, P. Gameiro, E. Lippert, A. Bidet, J.M. Cayuela, E. Clappier, C.N. Alonso, C.M. Zwaan, M.M. van den Heuvel-Eibrink, S. Izraeli, L. Trakhtenbrot, P. Archer, J. Hancock, A. Möricke, J. Alten, M. Schrappe, M. Stanulla, S. Strehl, A. Attarbaschi, M. Dworzak, O.A. Haas, R. Panzer-Grümayer, L. Sedék, T. Szczepański, A. Caye, L. Suarez, H. Cavé, R. Marschalek, The MLL recombinome of acute leukemias in 2017. Leukemia 32, 273–284 (2018)CrossRefPubMedGoogle Scholar
  4. 4.
    A.V. Krivtsov, S.A. Armstrong, MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    P.M. Ayton, M.L. Cleary, Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 17, 2298–2307 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Y. Wang, A.V. Krivtsov, A.U. Sinha, T.E. North, W. Goessling, Z. Feng, L.I. Zon, S.A. Armstrong, The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650–1653 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    L. Zhu, Q. Li, S.H.K. Wong, M. Huang, B.J. Klein, J. Shen, L. Ikenouye, M. Onishi, D. Schneidawind, C. Buechele, L. Hansen, J. Duque-Afonso, F. Zhu, G.M. Martin, O. Gozani, R. Majeti, T.G. Kutateladze, M.L. Cleary, ASH1L links histone H3 lysine 36 dimethylation to MLL leukemia. Cancer Discov. 6, 770–783 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Y. Zheng, H. Zhang, Y. Wang, X. Li, P. Lu, F. Dong, Y. Pang, S. Ma, H. Cheng, S. Hao, F. Tang, W. Yuan, X. Zhang, T. Cheng, Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia 30, 2373–2384 (2016)CrossRefPubMedGoogle Scholar
  9. 9.
    M.-J. Chang, H. Wu, N.J. Achille, M.R. Reisenauer, C.-W. Chou, N.J. Zeleznik-Le, C.S. Hemenway, W. Zhang, Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res. 70, 10234–10242 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    K.M. Bernt, N. Zhu, A.U. Sinha, S. Vempati, J. Faber, A.V. Krivtsov, Z. Feng, N. Punt, A. Daigle, L. Bullinger, R.M. Pollock, V.M. Richon, A.L. Kung, S.A. Armstrong, MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    D.G. Valerio, H. Xu, M.E. Eisold, C.M. Woolthuis, T.K. Pandita, S.A. Armstrong, Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice. Blood 129, 48–59 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    T. Neff, A.U. Sinha, M.J. Kluk, N. Zhu, M.H. Khattab, L. Stein, H. Xie, S.H. Orkin, S.A. Armstrong, Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc. Natl. Acad. Sci. U. S. A. 109, 5028–5033 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    B. Zhou, J. Wang, S.Y. Lee, J. Xiong, N. Bhanu, Q. Guo, P. Ma, Y. Sun, R.C. Rao, B.A. Garcia, J.L. Hess, Y. Dou, PRDM16 Suppresses MLL1r Leukemia via Intrinsic Histone Methyltransferase Activity. Mol. Cell 62, 222–236 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    N. Cheung, T.K. Fung, B.B. Zeisig, K. Holmes, J.K. Rane, K.A. Mowen, M.G. Finn, B. Lenhard, L.C. Chan, C.W.E. So, Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia. Cancer Cell 29, 32–48 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    S. Kaushik, F. Liu, K.J. Veazey, G. Gao, P. Das, L.F. Neves, K. Lin, Y. Zhong, Y. Lu, V. Giuliani, M.T. Bedford, S.D. Nimer, M.A. Santos, Genetic deletion or small-molecule inhibition of the arginine methyltransferase PRMT5 exhibit anti-tumoral activity in mouse models of MLL-rearranged AML. Leukemia 32, 499–509 (2018)CrossRefPubMedGoogle Scholar
  16. 16.
    W.J. Harris, X. Huang, J.T. Lynch, G.J. Spencer, J.R. Hitchin, Y. Li, F. Ciceri, J.G. Blaser, B.F. Greystoke, A.M. Jordan, C.J. Miller, D.J. Ogilvie, T.C.P. Somervaille, The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012)CrossRefPubMedGoogle Scholar
  17. 17.
    N. Zhu, M. Chen, R. Eng, J. DeJong, A.U. Sinha, N.F. Rahnamay, R. Koche, F. Al-Shahrour, J.C. Minehart, C.-W. Chen, A.J. Deshpande, H. Xu, S.H. Chu, B.L. Ebert, R.G. Roeder, S.A. Armstrong, MLL-AF9- and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. J. Clin. Invest. 126, 997–1011 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    P. Sroczynska, V.A. Cruickshank, J.-P. Bukowski, S. Miyagi, F.O. Bagger, J. Walfridsson, M.B. Schuster, B. Porse, K. Helin, shRNA screening identifies JMJD1C as being required for leukemia maintenance. Blood 123, 1870–1882 (2014)CrossRefPubMedGoogle Scholar
  19. 19.
    S.H.K. Wong, D.L. Goode, M. Iwasaki, M.C. Wei, H.-P. Kuo, L. Zhu, D. Schneidawind, J. Duque-Afonso, Z. Weng, M.L. Cleary, The H3K4-Methyl epigenome regulates leukemia stem cell oncogenic potential. Cancer Cell 28, 198–209 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    H. Huang, X. Jiang, Z. Li, Y. Li, C.-X. Song, C. He, M. Sun, P. Chen, S. Gurbuxani, J. Wang, G.-M. Hong, A.G. Elkahloun, S. Arnovitz, J. Wang, K. Szulwach, L. Lin, C. Street, M. Wunderlich, M. Dawlaty, M.B. Neilly, R. Jaenisch, F.-C. Yang, J.C. Mulloy, P. Jin, P.P. Liu, J.D. Rowley, M. Xu, C. He, J. Chen, TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc. Natl. Acad. Sci. U. S. A. 110, 11994–11999 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    J. Zuber, J. Shi, E. Wang, A.R. Rappaport, H. Herrmann, E.A. Sison, D. Magoon, J. Qi, K. Blatt, M. Wunderlich, M.J. Taylor, C. Johns, A. Chicas, J.C. Mulloy, S.C. Kogan, P. Brown, P. Valent, J.E. Bradner, S.W. Lowe, C.R. Vakoc, RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    C.Y. Fong, O. Gilan, E.Y.N. Lam, A.F. Rubin, S. Ftouni, D. Tyler, K. Stanley, D. Sinha, P. Yeh, J. Morison, G. Giotopoulos, D. Lugo, P. Jeffrey, S.C.-W. Lee, C. Carpenter, R. Gregory, R.G. Ramsay, S.W. Lane, O. Abdel-Wahab, T. Kouzarides, R.W. Johnstone, S.-J. Dawson, B.J.P. Huntly, R.K. Prinjha, A.T. Papenfuss, M.A. Dawson, BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    J. Tan, M. Jones, H. Koseki, M. Nakayama, A.G. Muntean, I. Maillard, J.L. Hess, CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 20, 563–575 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    A. Yokoyama, M.L. Cleary, Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    A. Yokoyama, T.C.P. Somervaille, K.S. Smith, O. Rozenblatt-Rosen, M. Meyerson, M.L. Cleary, The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207–218 (2005)CrossRefPubMedGoogle Scholar
  26. 26.
    E. Wang, S. Kawaoka, M. Yu, J. Shi, T. Ni, W. Yang, J. Zhu, R.G. Roeder, C.R. Vakoc, Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc. Natl. Acad. Sci. U. S. A. 110, 3901–3906 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    N. Rapin, B.T. Porse, Oncogenic fusion proteins expressed in immature hematopoietic cells fail to recapitulate the transcriptional changes observed in human AML. Oncogenesis 3, e106 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    G.D. Gregory, C.R. Vakoc, T. Rozovskaia, X. Zheng, S. Patel, T. Nakamura, E. Canaani, G.A. Blobel, Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol. Cell. Biol. 27, 8466–8479 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Y. Tanaka, Z.-I. Katagiri, K. Kawahashi, D. Kioussis, S. Kitajima, Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 397, 161–168 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    H. Miyazaki, K. Higashimoto, Y. Yada, T.A. Endo, J. Sharif, T. Komori, M. Matsuda, Y. Koseki, M. Nakayama, H. Soejima, H. Handa, H. Koseki, S. Hirose, K. Nishioka, Ash1l methylates Lys36 of histone H3 independently of transcriptional elongation to counteract polycomb silencing. PLoS Genet. 9, e1003897 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    S. An, K.J. Yeo, Y.H. Jeon, J.-J. Song, Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. J. Biol. Chem. 286, 8369–8374 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    M. Jones, J. Chase, M. Brinkmeier, J. Xu, D.N. Weinberg, J. Schira, A. Friedman, S. Malek, J. Grembecka, T. Cierpicki, Y. Dou, S.A. Camper, I. Maillard, Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells. J. Clin. Invest. 125, 2007–2020 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    M. Okano, D.W. Bell, D.A. Haber, E. Li, DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999)CrossRefPubMedGoogle Scholar
  34. 34.
    S.-i. Mizuno, Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97, 1172–1179 (2001)CrossRefPubMedGoogle Scholar
  35. 35.
    D. Watanabe, I. Suetake, S. Tajima, K. Hanaoka, Expression of Dnmt3b in mouse hematopoietic progenitor cells and spermatogonia at specific stages. Gene Expr. Patterns 5, 43–49 (2004)CrossRefPubMedGoogle Scholar
  36. 36.
    T.J. Ley, L. Ding, M.J. Walter, M.D. McLellan, T. Lamprecht, D.E. Larson, C. Kandoth, J.E. Payton, J. Baty, J. Welch, C.C. Harris, C.F. Lichti, R.R. Townsend, R.S. Fulton, D.J. Dooling, D.C. Koboldt, H. Schmidt, Q. Zhang, J.R. Osborne, L. Lin, M. O'Laughlin, J.F. McMichael, K.D. Delehaunty, S.D. McGrath, L.A. Fulton, V.J. Magrini, T.L. Vickery, J. Hundal, L.L. Cook, J.J. Conyers, G.W. Swift, J.P. Reed, P.A. Alldredge, T. Wylie, J. Walker, J. Kalicki, M.A. Watson, S. Heath, W.D. Shannon, N. Varghese, R. Nagarajan, P. Westervelt, M.H. Tomasson, D.C. Link, T.A. Graubert, J.F. DiPersio, E.R. Mardis, R.K. Wilson, DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    X.-J. Yan, J. Xu, Z.-H. Gu, C.-M. Pan, G. Lu, Y. Shen, J.-Y. Shi, Y.-M. Zhu, L. Tang, X.-W. Zhang, W.-X. Liang, J.-Q. Mi, H.-D. Song, K.-Q. Li, Z. Chen, S.-J. Chen, Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat. Genet. 43, 309–315 (2011)CrossRefPubMedGoogle Scholar
  38. 38.
    M.J. Walter, L. Ding, D. Shen, J. Shao, M. Grillot, M. McLellan, R. Fulton, H. Schmidt, J. Kalicki-Veizer, M. O'Laughlin, C. Kandoth, J. Baty, P. Westervelt, J.F. DiPersio, E.R. Mardis, R.K. Wilson, T.J. Ley, T.A. Graubert, Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25, 1153–1158 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    L. Couronné, C. Bastard, O.A. Bernard, TET2 and DNMT3A mutations in human T-cell lymphoma. N. Engl. J. Med. 366, 95–96 (2012)CrossRefPubMedGoogle Scholar
  40. 40.
    S. Hayette, X. Thomas, L. Jallades, K. Chabane, C. Charlot, I. Tigaud, S. Gazzo, S. Morisset, P. Cornillet-Lefebvre, A. Plesa, S. Huet, A. Renneville, G. Salles, F.E. Nicolini, J.-P. Magaud, M. Michallet, High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia. PLoS ONE 7, e51527 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    C. Niederwieser, J. Kohlschmidt, S. Volinia, S.P. Whitman, K.H. Metzeler, A.-K. Eisfeld, K. Maharry, P. Yan, D. Frankhouser, H. Becker, S. Schwind, A.J. Carroll, D. Nicolet, J.H. Mendler, J.P. Curfman, Y.-Z. Wu, M.R. Baer, B.L. Powell, J.E. Kolitz, J.O. Moore, T.H. Carter, R. Bundschuh, R.A. Larson, R.M. Stone, K. Mrózek, G. Marcucci, C.D. Bloomfield, Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia. Leukemia 29, 567–575 (2015)CrossRefPubMedGoogle Scholar
  42. 42.
    I. Schulze, C. Rohde, M. Scheller-Wendorff, N. Bäumer, A. Krause, F. Herbst, P. Riemke, K. Hebestreit, P. Tschanter, Q. Lin, H. Linhart, L.A. Godley, H. Glimm, M. Dugas, W. Wagner, W.E. Berdel, F. Rosenbauer, C. Müller-Tidow, Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood 127, 1575–1586 (2016)CrossRefPubMedGoogle Scholar
  43. 43.
    Q. Feng, H. Wang, H.H. Ng, H. Erdjument-Bromage, P. Tempst, K. Struhl, Y. Zhang, Methylation of H3-Lysine 79 Is Mediated by a New Family of HMTases without a SET Domain. Curr. Biol. 12, 1052–1058 (2002)CrossRefPubMedGoogle Scholar
  44. 44.
    S.Y. Jo, E.M. Granowicz, I. Maillard, D. Thomas, J.L. Hess, Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 117, 4759–4768 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    A.T. Nguyen, J. He, O. Taranova, Y. Zhang, Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res. 21, 1370–1373 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    A.T. Nguyen, O. Taranova, J. He, Y. Zhang, DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117, 6912–6922 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Y. Okada, Q. Feng, Y. Lin, Q. Jiang, Y. Li, V.M. Coffield, L. Su, G. Xu, Y. Zhang, hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005)CrossRefPubMedGoogle Scholar
  48. 48.
    D. Mueller, C. Bach, D. Zeisig, M.-P. Garcia-Cuellar, S. Monroe, A. Sreekumar, R. Zhou, A. Nesvizhskii, A. Chinnaiyan, J.L. Hess, R.K. Slany, A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110, 4445–4454 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    E. Bitoun, P.L. Oliver, K.E. Davies, The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum. Mol. Genet. 16, 92–106 (2007)CrossRefPubMedGoogle Scholar
  50. 50.
    S.C. Monroe, S.Y. Jo, D.S. Sanders, V. Basrur, K.S. Elenitoba-Johnson, R.K. Slany, J.L. Hess, MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp. Hematol. 39, 77–86.e1-5 (2011)CrossRefPubMedGoogle Scholar
  51. 51.
    M. Mohan, H.-M. Herz, Y.-H. Takahashi, C. Lin, K.C. Lai, Y. Zhang, M.P. Washburn, L. Florens, A. Shilatifard, Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev. 24, 574–589 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    A. Benedikt, S. Baltruschat, B. Scholz, A. Bursen, T.N. Arrey, B. Meyer, L. Varagnolo, A.M. Müller, M. Karas, T. Dingermann, R. Marschalek, The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia 25, 135–144 (2011)CrossRefPubMedGoogle Scholar
  53. 53.
    S.R. Daigle, E.J. Olhava, C.A. Therkelsen, C.R. Majer, C.J. Sneeringer, J. Song, L.D. Johnston, M.P. Scott, J.J. Smith, Y. Xiao, L. Jin, K.W. Kuntz, R. Chesworth, M.P. Moyer, K.M. Bernt, J.-C. Tseng, A.L. Kung, S.A. Armstrong, R.A. Copeland, V.M. Richon, R.M. Pollock, Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    S.R. Daigle, E.J. Olhava, C.A. Therkelsen, A. Basavapathruni, L. Jin, P.A. Boriack-Sjodin, C.J. Allain, C.R. Klaus, A. Raimondi, M.P. Scott, N.J. Waters, R. Chesworth, M.P. Moyer, R.A. Copeland, V.M. Richon, R.M. Pollock, Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122, 1017–1025 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    A.J. Deshpande, L. Chen, M. Fazio, A.U. Sinha, K.M. Bernt, D. Banka, S. Dias, J. Chang, E.J. Olhava, S.R. Daigle, V.M. Richon, R.M. Pollock, S.A. Armstrong, Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 121, 2533–2541 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    S.M. Sarkaria, M.J. Christopher, J.M. Klco, T.J. Ley, Primary acute myeloid leukemia cells with IDH1 or IDH2 mutations respond to a DOT1L inhibitor in vitro. Leukemia 28, 2403–2406 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    M.W.M. Kühn, M.J. Hadler, S.R. Daigle, R.P. Koche, A.V. Krivtsov, E.J. Olhava, M.A. Caligiuri, G. Huang, J.E. Bradner, R.M. Pollock, S.A. Armstrong, MLL partial tandem duplication leukemia cells are sensitive to small molecule DOT1L inhibition. Haematologica 100, e190–e193 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    A.J. Deshpande, A. Deshpande, A.U. Sinha, L. Chen, J. Chang, A. Cihan, M. Fazio, C.-W. Chen, N. Zhu, R. Koche, L. Dzhekieva, G. Ibáñez, S. Dias, D. Banka, A. Krivtsov, M. Luo, R.G. Roeder, J.E. Bradner, K.M. Bernt, S.A. Armstrong, AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 26, 896–908 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    R.E. Rau, B.A. Rodriguez, M. Luo, M. Jeong, A. Rosen, J.H. Rogers, C.T. Campbell, S.R. Daigle, L. Deng, Y. Song, S. Sweet, T. Chevassut, M. Andreeff, S.M. Kornblau, W. Li, M.A. Goodell, DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood 128, 971–981 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    C.T. Campbell, J.N. Haladyna, D.A. Drubin, T.M. Thomson, M.J. Maria, T. Yamauchi, N.J. Waters, E.J. Olhava, R.M. Pollock, J.J. Smith, R.A. Copeland, S.J. Blakemore, K.M. Bernt, S.R. Daigle, Mechanisms of Pinometostat (EPZ-5676) Treatment-Emergent Resistance in MLL-Rearranged Leukemia. Mol. Cancer Ther. 16, 1669–1679 (2017)CrossRefPubMedGoogle Scholar
  61. 61.
    W. Liu, L. Deng, Y. Song, M. Redell, DOT1L inhibition sensitizes MLL-rearranged AML to chemotherapy. PLoS ONE 9, e98270 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    C.R. Klaus, D. Iwanowicz, D. Johnston, C.A. Campbell, J.J. Smith, M.P. Moyer, R.A. Copeland, E.J. Olhava, M.P. Scott, R.M. Pollock, S.R. Daigle, A. Raimondi, DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells. J. Pharmacol. Exp. Ther. 350, 646–656 (2014)CrossRefPubMedGoogle Scholar
  63. 63.
    C.-W. Chen, R.P. Koche, A.U. Sinha, A.J. Deshpande, N. Zhu, R. Eng, J.G. Doench, H. Xu, S.H. Chu, J. Qi, X. Wang, C. Delaney, K.M. Bernt, D.E. Root, W.C. Hahn, J.E. Bradner, S.A. Armstrong, DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat. Med. 21, 335–343 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    A. Hilfiker, D. Hilfiker-Kleiner, A. Pannuti, J.C. Lucchesi, mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16, 2054–2060 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    M. Taipale, S. Rea, K. Richter, A. Vilar, P. Lichter, A. Imhof, A. Akhtar, hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol. Cell. Biol. 25, 6798–6810 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    D.G. Valerio, H. Xu, C.-W. Chen, T. Hoshii, M.E. Eisold, C. Delaney, M. Cusan, A.J. Deshpande, C.-H. Huang, A. Lujambio, Y.G. Zheng, J. Zuber, T.K. Pandita, S.W. Lowe, S.A. Armstrong, Histone Acetyltransferase Activity of MOF Is Required for MLL-AF9 Leukemogenesis. Cancer Res. 77, 1753–1762 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Y. Dou, T.A. Milne, A.J. Tackett, E.R. Smith, A. Fukuda, J. Wysocka, C.D. Allis, B.T. Chait, J.L. Hess, R.G. Roeder, Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005)CrossRefPubMedGoogle Scholar
  68. 68.
    R. Margueron, D. Reinberg, The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    F.W. Schmitges, A.B. Prusty, M. Faty, A. Stützer, G.M. Lingaraju, J. Aiwazian, R. Sack, D. Hess, L. Li, S. Zhou, R.D. Bunker, U. Wirth, T. Bouwmeester, A. Bauer, N. Ly-Hartig, K. Zhao, H. Chan, J. Gu, H. Gut, W. Fischle, J. Müller, N.H. Thomä, Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011)CrossRefPubMedGoogle Scholar
  70. 70.
    I.J. Majewski, M.E. Blewitt, C.A. de Graaf, E.J. McManus, M. Bahlo, A.A. Hilton, C.D. Hyland, G.K. Smyth, J.E. Corbin, D. Metcalf, W.S. Alexander, D.J. Hilton, Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol. 6, e93 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    S.C.W. Lee, S. Miller, C. Hyland, M. Kauppi, M. Lebois, L. Di Rago, D. Metcalf, S.A. Kinkel, E.C. Josefsson, M.E. Blewitt, I.J. Majewski, W.S. Alexander, Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis. Blood 126, 167–175 (2015)CrossRefPubMedGoogle Scholar
  72. 72.
    W. Yu, F. Zhang, S. Wang, Y. Fu, J. Chen, X. Liang, H. Le, W.T. Pu, B. Zhang, Depletion of polycomb repressive complex 2 core component EED impairs fetal hematopoiesis. Cell Death Dis. 8, e2744 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    H. Xie, J. Xu, J.H. Hsu, M. Nguyen, Y. Fujiwara, C. Peng, S.H. Orkin, Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14, 68–80 (2014)CrossRefPubMedGoogle Scholar
  74. 74.
    M. Mochizuki-Kashio, Y. Mishima, S. Miyagi, M. Negishi, A. Saraya, T. Konuma, J. Shinga, H. Koseki, A. Iwama, Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 118, 6553–6561 (2011)CrossRefPubMedGoogle Scholar
  75. 75.
    M. Mochizuki-Kashio, K. Aoyama, G. Sashida, M. Oshima, T. Tomioka, T. Muto, C. Wang, A. Iwama, Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner. Blood 126, 1172–1183 (2015)CrossRefPubMedGoogle Scholar
  76. 76.
    J. Shi, E. Wang, J. Zuber, A. Rappaport, M. Taylor, C. Johns, S.W. Lowe, C.R. Vakoc, The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. Oncogene 32, 930–938 (2013)CrossRefPubMedGoogle Scholar
  77. 77.
    W. Qi, K. Zhao, J. Gu, Y. Huang, Y. Wang, H. Zhang, M. Zhang, J. Zhang, Z. Yu, L. Li, L. Teng, S. Chuai, C. Zhang, M. Zhao, H. Chan, Z. Chen, D. Fang, Q. Fei, L. Feng, L. Feng, Y. Gao, H. Ge, X. Ge, G. Li, A. Lingel, Y. Lin, Y. Liu, F. Luo, M. Shi, L. Wang, Z. Wang, Y. Yu, J. Zeng, C. Zeng, L. Zhang, Q. Zhang, S. Zhou, C. Oyang, P. Atadja, E. Li, An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat. Chem. Biol. 13, 381–388 (2017)CrossRefPubMedGoogle Scholar
  78. 78.
    Y. He, S. Selvaraju, M.L. Curtin, C.G. Jakob, H. Zhu, K.M. Comess, B. Shaw, J. The, E. Lima-Fernandes, M.M. Szewczyk, D. Cheng, K.L. Klinge, H.-Q. Li, M. Pliushchev, M.A. Algire, D. Maag, J. Guo, J. Dietrich, S.C. Panchal, A.M. Petros, R.F. Sweis, M. Torrent, L.J. Bigelow, G. Senisterra, F. Li, S. Kennedy, Q. Wu, D.J. Osterling, D.J. Lindley, W. Gao, S. Galasinski, D. Barsyte-Lovejoy, M. Vedadi, F.G. Buchanan, C.H. Arrowsmith, G.G. Chiang, C. Sun, W.N. Pappano, The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat. Chem. Biol. 13, 389–395 (2017)CrossRefPubMedGoogle Scholar
  79. 79.
    B. Xu, D.M. On, A. Ma, T. Parton, K.D. Konze, S.G. Pattenden, D.F. Allison, L. Cai, S. Rockowitz, S. Liu, Y. Liu, F. Li, M. Vedadi, S.V. Frye, B.A. Garcia, D. Zheng, J. Jin, G.G. Wang, Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 125, 346–357 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    D. Honma, O. Kanno, J. Watanabe, J. Kinoshita, M. Hirasawa, E. Nosaka, M. Shiroishi, T. Takizawa, I. Yasumatsu, T. Horiuchi, A. Nakao, K. Suzuki, T. Yamasaki, K. Nakajima, M. Hayakawa, T. Yamazaki, A.S. Yadav, N. Adachi, Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci. 108, 2069–2078 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    I. Pinheiro, R. Margueron, N. Shukeir, M. Eisold, C. Fritzsch, F.M. Richter, G. Mittler, C. Genoud, S. Goyama, M. Kurokawa, J. Son, D. Reinberg, M. Lachner, T. Jenuwein, Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150, 948–960 (2012)CrossRefPubMedGoogle Scholar
  82. 82.
    F. Aguilo, S. Avagyan, A. Labar, A. Sevilla, D.-F. Lee, P. Kumar, I.R. Lemischka, B.Y. Zhou, H.-W. Snoeck, Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 117, 5057–5066 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    E. Deneault, S. Cellot, A. Faubert, J.-P. Laverdure, M. Fréchette, J. Chagraoui, N. Mayotte, M. Sauvageau, S.B. Ting, G. Sauvageau, A functional screen to identify novel effectors of hematopoietic stem cell activity. Cell 137, 369–379 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    I. Nishikata, H. Sasaki, M. Iga, Y. Tateno, S. Imayoshi, N. Asou, T. Nakamura, K. Morishita, A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is expressed mainly in t(1;3)(p36;q21)-positive AML and blocks G-CSF-induced myeloid differentiation. Blood 102, 3323–3332 (2003)CrossRefPubMedGoogle Scholar
  85. 85.
    D.C. Shing, M. Trubia, F. Marchesi, E. Radaelli, E. Belloni, C. Tapinassi, E. Scanziani, C. Mecucci, B. Crescenzi, I. Lahortiga, M.D. Odero, G. Zardo, A. Gruszka, S. Minucci, P.P. Di Fiore, P.G. Pelicci, Overexpression of sPRDM16 coupled with loss of p53 induces myeloid leukemias in mice. J. Clin. Invest. 117, 3696–3707 (2007)PubMedPubMedCentralGoogle Scholar
  86. 86.
    I. Sakai, T. Tamura, H. Narumi, N. Uchida, Y. Yakushijin, T. Hato, S. Fujita, M. Yasukawa, Novel RUNX1-PRDM16 fusion transcripts in a patient with acute myeloid leukemia showing t(1;21)(p36;q22). Genes Chromosom. Cancer 44, 265–270 (2005)CrossRefPubMedGoogle Scholar
  87. 87.
    C. Roche-Lestienne, L. Deluche, S. Corm, I. Tigaud, S. Joha, N. Philippe, S. Geffroy, J.-L. Laï, F.-E. Nicolini, C. Preudhomme, RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL+ leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood 111, 3735–3741 (2008)CrossRefPubMedGoogle Scholar
  88. 88.
    B.D. Strahl, S.D. Briggs, C.J. Brame, J.A. Caldwell, S.S. Koh, H. Ma, R.G. Cook, J. Shabanowitz, D.F. Hunt, M.R. Stallcup, C.D. Allis, Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11, 996–1000 (2001)CrossRefPubMedGoogle Scholar
  89. 89.
    T.L. Branscombe, A. Frankel, J.H. Lee, J.R. Cook, Z. Yang, S. Pestka, S. Clarke, PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276, 32971–32976 (2001)CrossRefPubMedGoogle Scholar
  90. 90.
    F. Liu, G. Cheng, P.-J. Hamard, S. Greenblatt, L. Wang, N. Man, F. Perna, H. Xu, M. Tadi, L. Luciani, S.D. Nimer, Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. J. Clin. Invest. 125, 3532–3544 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    J. Serio, J. Ropa, W. Chen, M. Mysliwski, N. Saha, L. Chen, J. Wang, H. Miao, T. Cierpicki, J. Grembecka, A.G. Muntean, The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia. Oncogene 37, 450–460 (2018)CrossRefPubMedGoogle Scholar
  92. 92.
    J.W. Edmunds, L.C. Mahadevan, A.L. Clayton, Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008)CrossRefPubMedGoogle Scholar
  93. 93.
    Y.-L. Zhang, J.-W. Sun, Y.-Y. Xie, Y. Zhou, P. Liu, J.-C. Song, C.-H. Xu, L. Wang, D. Liu, A.-N. Xu, Z. Chen, S.-J. Chen, X.-J. Sun, Q.-H. Huang, Setd2 deficiency impairs hematopoietic stem cell self-renewal and causes malignant transformation. Cell Res. 28, 476–490 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    X. Zhu, F. He, H. Zeng, S. Ling, A. Chen, Y. Wang, X. Yan, W. Wei, Y. Pang, H. Cheng, C. Hua, Y. Zhang, X. Yang, X. Lu, L. Cao, L. Hao, L. Dong, W. Zou, J. Wu, X. Li, S. Zheng, J. Yan, J. Zhou, L. Zhang, S. Mi, X. Wang, L. Zhang, Y. Zou, Y. Chen, Z. Geng, J. Wang, J. Zhou, X. Liu, J. Wang, W. Yuan, G. Huang, T. Cheng, Q.-F. Wang, Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat. Genet. 46, 287–293 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Y. Shi, F. Lan, C. Matson, P. Mulligan, J.R. Whetstine, P.A. Cole, R.A. Casero, Y. Shi, Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004)CrossRefGoogle Scholar
  96. 96.
    A. Sprüssel, J.H. Schulte, S. Weber, M. Necke, K. Händschke, T. Thor, K.W. Pajtler, A. Schramm, K. König, L. Diehl, P. Mestdagh, J. Vandesompele, F. Speleman, H. Jastrow, L.C. Heukamp, R. Schüle, U. Dührsen, R. Buettner, A. Eggert, J.R. Göthert, Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 26, 2039–2051 (2012)CrossRefPubMedGoogle Scholar
  97. 97.
    J.P. McGrath, K.E. Williamson, S. Balasubramanian, S. Odate, S. Arora, C. Hatton, T.M. Edwards, T. O'Brien, S. Magnuson, D. Stokoe, D.L. Daniels, B.M. Bryant, P. Trojer, Pharmacological inhibition of the histone lysine demethylase KDM1A suppresses the growth of multiple acute myeloid eukemia subtypes. Cancer Res. 76, 1975–1988 (2016)CrossRefPubMedGoogle Scholar
  98. 98.
    Y.-i. Tsukada, J. Fang, H. Erdjument-Bromage, M.E. Warren, C.H. Borchers, P. Tempst, Y. Zhang, Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006)CrossRefPubMedGoogle Scholar
  99. 99.
    M. Brauchle, Z. Yao, R. Arora, S. Thigale, I. Clay, B. Inverardi, J. Fletcher, P. Taslimi, M.G. Acker, B. Gerrits, J. Voshol, A. Bauer, D. Schübeler, T. Bouwmeester, H. Ruffner, Protein complex interactor analysis and differential activity of KDM3 subfamily members towards H3K9 methylation. PLoS ONE 8, e60549 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    M. Katoh, M. Katoh, Comparative integromics on JMJD1C gene encoding histone demethylase: Conserved POU5F1 binding site elucidating mechanism of JMJD1C expression in undifferentiated ES cells and diffuse-type gastric cancer. Int. J. Oncol. 31, 219–223 (2007)PubMedGoogle Scholar
  101. 101.
    P.A.C. Cloos, J. Christensen, K. Agger, A. Maiolica, J. Rappsilber, T. Antal, K.H. Hansen, K. Helin, The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311 (2006)CrossRefPubMedGoogle Scholar
  102. 102.
    D.J. Seward, G. Cubberley, S. Kim, M. Schonewald, L. Zhang, B. Tripet, D.L. Bentley, Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins. Nat. Struct. Mol. Biol. 14, 240–242 (2007)CrossRefPubMedGoogle Scholar
  103. 103.
    S. Cellot, K.J. Hope, J. Chagraoui, M. Sauvageau, É. Deneault, T. MacRae, N. Mayotte, B.T. Wilhelm, J.R. Landry, S.B. Ting, J. Krosl, K. Humphries, A. Thompson, G. Sauvageau, RNAi screen identifies Jarid1b as a major regulator of mouse HSC activity. Blood 122, 1545–1555 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    M.H. Stewart, M. Albert, P. Sroczynska, V.A. Cruickshank, Y. Guo, D.J. Rossi, K. Helin, T. Enver, The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal in mice. Blood 125, 2075–2078 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    R.B. Lorsbach, J. Moore, S. Mathew, S.C. Raimondi, S.T. Mukatira, J.R. Downing, TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17, 637–641 (2003)CrossRefPubMedGoogle Scholar
  106. 106.
    J.U. Guo, Y. Su, C. Zhong, G.-l. Ming, H. Song, Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    A.J. Stonestrom, S.C. Hsu, K.S. Jahn, P. Huang, C.A. Keller, B.M. Giardine, S. Kadauke, A.E. Campbell, P. Evans, R.C. Hardison, G.A. Blobel, Functions of BET proteins in erythroid gene expression. Blood 125, 2825–2834 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    R.M. Rodriguez, B. Suarez-Alvarez, R. Salvanés, C. Huidobro, E.G. Toraño, J.L. Garcia-Perez, C. Lopez-Larrea, A.F. Fernandez, C. Bueno, P. Menendez, M.F. Fraga, Role of BRD4 in hematopoietic differentiation of embryonic stem cells. Epigenetics 9, 566–578 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    M.A. Dawson, R.K. Prinjha, A. Dittmann, G. Giotopoulos, M. Bantscheff, W.-I. Chan, S.C. Robson, C.-w. Chung, C. Hopf, M.M. Savitski, C. Huthmacher, E. Gudgin, D. Lugo, S. Beinke, T.D. Chapman, E.J. Roberts, P.E. Soden, K.R. Auger, O. Mirguet, K. Doehner, R. Delwel, A.K. Burnett, P. Jeffrey, G. Drewes, K. Lee, B.J.P. Huntly, T. Kouzarides, Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    A. Chaidos, V. Caputo, A. Karadimitris, Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence. Ther Adv Hematol 6, 128–141 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    K. Klauke, V. Radulović, M. Broekhuis, E. Weersing, E. Zwart, S. Olthof, M. Ritsema, S. Bruggeman, X. Wu, K. Helin, L. Bystrykh, G. de Haan, Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat. Cell Biol. 15, 353–362 (2013)CrossRefPubMedGoogle Scholar
  112. 112.
    E. Maethner, M.-P. Garcia-Cuellar, C. Breitinger, S. Takacova, V. Divoky, J.L. Hess, R.K. Slany, MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells. Cell Rep. 3, 1553–1566 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    C.S. Hemenway, A.C. de Erkenez, G.C. Gould, The polycomb protein MPc3 interacts with AF9, an MLL fusion partner in t(9;11)(p22;q23) acute leukemias. Oncogene 20, 3798–3805 (2001)CrossRefPubMedGoogle Scholar
  114. 114.
    H. Méreau, J. de Rijck, K. Cermáková, A. Kutz, S. Juge, J. Demeulemeester, R. Gijsbers, F. Christ, Z. Debyser, J. Schwaller, Impairing MLL-fusion gene-mediated transformation by dissecting critical interactions with the lens epithelium-derived growth factor (LEDGF/p75). Leukemia 27, 1245–1253 (2013)CrossRefPubMedGoogle Scholar
  115. 115.
    K. Cermáková, P. Tesina, J. Demeulemeester, S. El Ashkar, H. Méreau, J. Schwaller, P. Rezáčová, V. Veverka, J. de Rijck, Validation and structural characterization of the LEDGF/p75-MLL interface as a new target for the treatment of MLL-dependent leukemia. Cancer Res. 74, 5139–5151 (2014)CrossRefPubMedGoogle Scholar
  116. 116.
    M.J. Murai, J. Pollock, S. He, H. Miao, T. Purohit, A. Yokom, J.L. Hess, A.G. Muntean, J. Grembecka, T. Cierpicki, The same site on the integrase-binding domain of lens epithelium-derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood 124, 3730–3737 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Y.-X. Chen, J. Yan, K. Keeshan, A.T. Tubbs, H. Wang, A. Silva, E.J. Brown, J.L. Hess, W.S. Pear, X. Hua, The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc. Natl. Acad. Sci. U. S. A. 103, 1018–1023 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    E. Novotny, S. Compton, P.P. Liu, F.S. Collins, S.C. Chandrasekharappa, In vitro hematopoietic differentiation of mouse embryonic stem cells requires the tumor suppressor menin and is mediated by Hoxa9. Mech. Dev. 126, 517–522 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    I. Maillard, Y.-X. Chen, A. Friedman, Y. Yang, A.T. Tubbs, O. Shestova, W.S. Pear, X. Hua, Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. Blood 113, 1661–1669 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    S. Jin, H. Zhao, Y. Yi, Y. Nakata, A. Kalota, A.M. Gewirtz, c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J. Clin. Invest. 120, 593–606 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    J. Grembecka, S. He, A. Shi, T. Purohit, A.G. Muntean, R.J. Sorenson, H.D. Showalter, M.J. Murai, A.M. Belcher, T. Hartley, J.L. Hess, T. Cierpicki, Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8, 277–284 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    D. Borkin, S. He, H. Miao, K. Kempinska, J. Pollock, J. Chase, T. Purohit, B. Malik, T. Zhao, J. Wang, B. Wen, H. Zong, M. Jones, G. Danet-Desnoyers, M.L. Guzman, M. Talpaz, D.L. Bixby, D. Sun, J.L. Hess, A.G. Muntean, I. Maillard, T. Cierpicki, J. Grembecka, Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27, 589–602 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    S. He, B. Malik, D. Borkin, H. Miao, S. Shukla, K. Kempinska, T. Purohit, J. Wang, L. Chen, B. Parkin, S.N. Malek, G. Danet-Desnoyers, A.G. Muntean, T. Cierpicki, J. Grembecka, Menin-MLL inhibitors block oncogenic transformation by MLL-fusion proteins in a fusion partner-independent manner. Leukemia 30, 508–513 (2016)CrossRefPubMedGoogle Scholar
  124. 124.
    E. Shema, I. Tirosh, Y. Aylon, J. Huang, C. Ye, N. Moskovits, N. Raver-Shapira, N. Minsky, J. Pirngruber, G. Tarcic, P. Hublarova, L. Moyal, M. Gana-Weisz, Y. Shiloh, Y. Yarden, S.A. Johnsen, B. Vojtesek, S.L. Berger, M. Oren, The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev. 22, 2664–2676 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    A.S. Advani, C-kit as a target in the treatment of acute myelogenous leukemia. Curr Hematol Rep 4, 51–58 (2005)PubMedGoogle Scholar
  126. 126.
    P. Rathert, M. Roth, T. Neumann, F. Muerdter, J.-S. Roe, M. Muhar, S. Deswal, S. Cerny-Reiterer, B. Peter, J. Jude, T. Hoffmann, Ł.M. Boryń, E. Axelsson, N. Schweifer, U. Tontsch-Grunt, L.E. Dow, D. Gianni, M. Pearson, P. Valent, A. Stark, N. Kraut, C.R. Vakoc, J. Zuber, Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525, 543–547 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    O. Gilan, E.Y.N. Lam, I. Becher, D. Lugo, E. Cannizzaro, G. Joberty, A. Ward, M. Wiese, C.Y. Fong, S. Ftouni, D. Tyler, K. Stanley, L. MacPherson, C.-F. Weng, Y.-C. Chan, M. Ghisi, D. Smil, C. Carpenter, P. Brown, N. Garton, M.E. Blewitt, A.J. Bannister, T. Kouzarides, B.J.P. Huntly, R.W. Johnstone, G. Drewes, S.-J. Dawson, C.H. Arrowsmith, P. Grandi, R.K. Prinjha, M.A. Dawson, Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nat. Struct. Mol. Biol. 23, 673–681 (2016)CrossRefPubMedGoogle Scholar
  128. 128.
    H. Okuda, B. Stanojevic, A. Kanai, T. Kawamura, S. Takahashi, H. Matsui, A. Takaori-Kondo, A. Yokoyama, Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia. J. Clin. Invest. 127, 1918–1931 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    C. Dafflon, V.J. Craig, H. Méreau, J. Gräsel, B. Schacher Engstler, G. Hoffman, F. Nigsch, S. Gaulis, L. Barys, M. Ito, J. Aguadé-Gorgorió, B. Bornhauser, J.-P. Bourquin, A. Proske, C. Stork-Fux, M. Murakami, W.R. Sellers, F. Hofmann, J. Schwaller, R. Tiedt, Complementary activities of DOT1L and Menin inhibitors in MLL-rearranged leukemia. Leukemia 31, 1269–1277 (2017)CrossRefPubMedGoogle Scholar
  130. 130.
    M.W.M. Kühn, E. Song, Z. Feng, A. Sinha, C.-W. Chen, A.J. Deshpande, M. Cusan, N. Farnoud, A. Mupo, C. Grove, R. Koche, J.E. Bradner, E. de Stanchina, G.S. Vassiliou, T. Hoshii, S.A. Armstrong, Targeting Chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 6, 1166–1181 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    A.C. Winters, K.M. Bernt, MLL-rearranged leukemias-An update on science and clinical approaches. Front. Pediatr. 5, 4 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    S.X. Pfister, A. Ashworth, Marked for death: targeting epigenetic changes in cancer. Nat. Rev. Drug Discov. 16, 241–263 (2017)CrossRefPubMedGoogle Scholar
  133. 133.
    A. Chavez-Gonzalez, B. Bakhshinejad, K. Pakravan, M.L. Guzman, S. Babashah, Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell. Oncol. 40, 1–20 (2017)CrossRefGoogle Scholar
  134. 134.
    I.A. Voutsadakis, Expression and function of immune ligand-receptor pairs in NK cells and cancer stem cells: therapeutic implications. Cell. Oncol. 41, 107–121 (2018)CrossRefGoogle Scholar
  135. 135.
    P. Gotwals, S. Cameron, D. Cipolletta, V. Cremasco, A. Crystal, B. Hewes, B. Mueller, S. Quaratino, C. Sabatos-Peyton, L. Petruzzelli, J.A. Engelman, G. Dranoff, Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 17, 286–301 (2017)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  1. 1.Laboratory for Stem Cell and Regenerative MedicineThe Affiliated Hospital of Weifang Medical UniversityWeifangPeople’s Republic of China
  2. 2.College of Bioscience and TechnologyWeifang Medical UniversityWeifangPeople’s Republic of China
  3. 3.Institute of PathologyUniversity Medicine RostockRostockGermany

Personalised recommendations