Advertisement

Molecular features unique to glioblastoma radiation resistant residual cells may affect patient outcome - a short report

  • Ekjot Kaur
  • Jayant S. Goda
  • Atanu Ghorai
  • Sameer Salunkhe
  • Prakash Shetty
  • Aliasgar V. Moiyadi
  • Epari Sridhar
  • Abhishek Mahajan
  • Rakesh Jalali
  • Shilpee Dutt
Report
  • 47 Downloads

Abstract

Purpose

Previously we have shown, using a primary glioblastoma (GBM) cell model, that a subpopulation of innately radiation resistant (RR) GBM cells survive radiotherapy and form multinucleated and giant cells (MNGCs) by homotypic fusions. We also showed that MNGCs may cause relapse. Here, we set out to explore whether molecular characteristics of RR cells captured from patient-derived primary GBM cultures bear clinical relevance.

Methods

Primary cultures were derived from 19 naive GBM tumor samples. RR cells generated from these cultures were characterized using various cell biological assays. We also collected clinicopathological data of the 19 patients and assessed associations with RR variables using Spearman’s correlation test and with patient survival using Kaplan-Meier analysis. Significance was determined using a log-rank test.

Results

We found that SF2 (surviving fraction 2) values (p = 0.029), days of RR cell formation (p = 0.019) and percentage of giant cells (p = 0.034) in the RR population independently correlated with a poor patient survival. We also found that low ATM (Ataxia-telangiectasia mutated) expression levels in RR cells showed a significant (p = 0.002) negative correlation with SF2 values. A low ATM expression level in RR cells along with a high tumor volume was also found to negatively correlate with patient survival (p = 0.011). Finally, we found that the ATM expression levels in RR cells independently correlated with a poor patient survival (p = 0.014).

Conclusions

Our data indicate that molecular features of innately radiation resistant GBM cells independently correlate with clinical outcome. Our study also highlights the relevance of using patient-derived primary GBM cultures for the characterization of RR cells that are otherwise inaccessible for analysis.

Keywords

Glioblastoma Radiation resistant cells Patient-derived primary cultures MNGCs ATM DNA repair 

Notes

Acknowledgements

We are grateful to Dr. Sadhana Kannan for help with statistical analysis and to Prof. B. J. Rao, TIFR, for providing the anti-ATM antibody. AG acknowledges DST-SERB, India for providing a National Post-Doctoral Fellowship (PDF/2016/00158), and SS acknowledges CSIR for providing a fellowship.

Funding

This study is supported by a Department of Biotechnology grant (BT/PR4020/MED/30/792/2012) to SD.

Compliance with ethical standards

Competing interests

None declared.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Tata Memorial Centre institutional ethics committee (TMC-IEC III: - ECR/149/Inst/MH/2013) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    P.Y. Wen, S. Kesari, Malignant gliomas in adults. N Engl J Med 359, 492–507 (2008)CrossRefGoogle Scholar
  2. 2.
    L.M. DeAngelis, Brain tumors. N Engl J Med 344, 114–123 (2001)CrossRefGoogle Scholar
  3. 3.
    F.B. Furnari, T. Fenton, R.M. Bachoo, A. Mukasa, J.M. Stommel, A. Stegh, W.C. Hahn, K.L. Ligon, D.N. Louis, C. Brennan, L. Chin, R.A. DePinho, W.K. Cavenee, Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21, 2683–2710 (2007)CrossRefGoogle Scholar
  4. 4.
    E.M. Ahmed, G. Bandopadhyay, B. Coyle, A. Grabowska, A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol 41, 319–328 (2018)CrossRefGoogle Scholar
  5. 5.
    L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell Oncol 40, 471–482 (2017)CrossRefGoogle Scholar
  6. 6.
    E. Kaur, J. Rajendra, S. Jadhav, E. Shridhar, J.S. Goda, A. Moiyadi, S. Dutt, Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis 36, 685–695 (2015)CrossRefGoogle Scholar
  7. 7.
    A.G. Douglas-Jones, W.T. Barr, Breast carcinoma with tumor giant cells. Report of a case with fine needle aspiration cytology. Acta Cytol 33, 109–114 (1989)PubMedGoogle Scholar
  8. 8.
    M.A. Jones, R.H. Young, R.E. Scully, Endometrial adenocarcinoma with a component of giant cell carcinoma. Int J Gynecol Pathol 10, 260–270 (1991)CrossRefGoogle Scholar
  9. 9.
    H. Kawano, T. Kubota, K. Sato, T. Goya, S. Arikawa, S. Wakisaka, Immunohistochemical study of giant cell in glioblastoma. Clin Neuropathol 14, 118–123 (1995)PubMedGoogle Scholar
  10. 10.
    A.V. Parwani, M. Herawi, J.I. Epstein, Pleomorphic giant cell adenocarcinoma of the prostate: report of 6 cases. Am J Surg Pathol 30, 1254–1259 (2006)CrossRefGoogle Scholar
  11. 11.
    D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114, 97–109 (2007)CrossRefGoogle Scholar
  12. 12.
    N.A. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro. Nat Protoc 1, 2315–2319 (2006)CrossRefGoogle Scholar
  13. 13.
    S. Salunkhe, S.V. Mishra, J. Nair, S. Ghosh, N. Choudhary, E. Kaur, S. Shah, K. Patkar, D. Anand, N. Khattry, S.K. Hasan, S. Dutt, Inhibition of novel GCN5-ATM axis restricts the onset of acquired drug resistance in leukemia. Int J Cancer 142, 2175–2185 (2018)CrossRefGoogle Scholar
  14. 14.
    F. Varghese, A.B. Bukhari, R. Malhotra, A. De, IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One 9, e96801 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Zhang, I. Mercado-Uribe, Z. Xing, B. Sun, J. Kuang, J. Liu, Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33, 116–128 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Lu, Y. Kang, Cell fusion as a hidden force in tumor progression. Cancer Res 69, 8536–8539 (2009)CrossRefGoogle Scholar
  17. 17.
    D. Bastida-Ruiz, K. Van Hoesen, M. Cohen, The dark side of cell fusion. Int J Mol Sci 17, 638 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Bartek, J. Lukas, Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003)CrossRefGoogle Scholar
  19. 19.
    K.A. Nyberg, R.J. Michelson, C.W. Putnam, T.A. Weinert, Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36, 617–656 (2002)CrossRefGoogle Scholar
  20. 20.
    S. Angèle, I. Treilleux, P. Tanière, G. Martel-Planche, M. Vuillaume, C. Bailly, A. Brémond, R. Montesano, J. Hall, Abnormal expression of the ATM and TP53 genes in sporadic breast carcinomas. Clin Cancer Res 6, 3536–3544 (2000)PubMedGoogle Scholar
  21. 21.
    T.M.A. Abdel-Fatah, A. Arora, N. Alsubhi, D. Agarwal, P.M. Moseley, C. Perry, R. Doherty, S.Y.T. Chan, A.R. Green, E. Rakha, G. Ball, I.O. Ellis, S. Madhusudan, Clinicopathological significance of ATM-Chk2 expression in sporadic breast cancers: a comprehensive analysis in large cohorts. Neoplasia 16, 982–991 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Squatrito, C.W. Brennan, K. Helmy, J.T. Huse, J.H. Petrini, E.C. Holland, Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18, 619–629 (2010)CrossRefGoogle Scholar
  23. 23.
    F.M. Uckun, W. Jaszcz, M. Chandan-Langlie, K.G. Waddick, K. Gajl-Peczalska, C.W. Song, Intrinsic radiation resistance of primary clonogenic blasts from children with newly diagnosed B-cell precursor acute lymphoblastic leukemia. J Clin Invest 91, 1044–1051 (1993)CrossRefGoogle Scholar
  24. 24.
    Q. Matthews, A. Jirasek, J.J. Lum, A.G. Brolo, Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys Med Biol 56, 6839–6855 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Tribius, A. Pidel, D. Casper, ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. Int J Radiat Oncol Biol Phys 50, 511–523 (2001)CrossRefGoogle Scholar
  26. 26.
    S. Knappskog, R. Chrisanthar, E. Lokkevik, G. Anker, B. Ostenstad, S. Lundgren, T. Risberg, I. Mjaaland, B. Leirvaag, H. Miletic, P.E. Lonning, Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer. Breast Cancer Res 14, R47 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Jiang, H.C. Reinhardt, J. Bartkova, J. Tommiska, C. Blomqvist, H. Nevanlinna, J. Bartek, M.B. Yaffe, M.T. Hemann, The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23, 1895–1909 (2009)CrossRefGoogle Scholar
  28. 28.
    I. Dokic, A. Mairani, S. Brons, B. Schoell, A. Jauch, D. Krunic, J. Debus, A. Régnier-Vigouroux, K. Weber, High resistance to X-rays and therapeutic carbon ions in glioblastoma cells bearing dysfunctional ATM associates with intrinsic chromosomal instability. Int J Radiat Biol 91, 157–165 (2015)CrossRefGoogle Scholar
  29. 29.
    M.A. Haidar, H. Kantarjian, T. Manshouri, C.Y. Chang, S. O'Brien, E. Freireich, M. Keating, M. Albitar, ATM gene deletion in patients with adult acute lymphoblastic leukemia. Cancer 88, 1057–1062 (2000)CrossRefGoogle Scholar
  30. 30.
    L. Ripolles, M. Ortega, F. Ortuno, A. Gonzalez, J. Losada, J. Ojanguren, J.A. Soler, J. Bergua, M.D. Coll, M.R. Caballin, Genetic abnormalities and clinical outcome in chronic lymphocytic leukemia. Cancer Genet Cytogenet 171, 57–64 (2006)CrossRefGoogle Scholar
  31. 31.
    B. Austen, A. Skowronska, C. Baker, J.E. Powell, A. Gardiner, D. Oscier, A. Majid, M. Dyer, R. Siebert, A.M. Taylor, P.A. Moss, T. Stankovic, Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 25, 5448–5457 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Rondeau, S. Vacher, L. De Koning, A. Briaux, A. Schnitzler, W. Chemlali, C. Callens, R. Lidereau, I. Bièche, ATM has a major role in the double-strand break repair pathway dysregulation in sporadic breast carcinomas and is an independent prognostic marker at both mRNA and protein levels. Br J Cancer 112, 1059–1066 (2015)CrossRefGoogle Scholar
  33. 33.
    N.S. Shabb, A. Tawil, F. Gergeos, M. Saleh, S. Azar, Multinucleated giant cells in fine-needle aspiration of thyroid nodules: Their diagnostic significance. Diagn Cytopathol 21, 307–312 (1999)CrossRefGoogle Scholar
  34. 34.
    I. Kern, P. Kecelj, M. Kosnik, M. Mermolja, Multinucleated giant cells in bronchoalveolar lavage. Acta Cytol 47, 426–430 (2003)CrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  • Ekjot Kaur
    • 1
    • 2
  • Jayant S. Goda
    • 2
    • 3
  • Atanu Ghorai
    • 1
    • 2
  • Sameer Salunkhe
    • 1
    • 2
  • Prakash Shetty
    • 2
    • 4
  • Aliasgar V. Moiyadi
    • 2
    • 4
  • Epari Sridhar
    • 2
    • 5
  • Abhishek Mahajan
    • 2
    • 3
  • Rakesh Jalali
    • 2
    • 3
  • Shilpee Dutt
    • 1
    • 2
  1. 1.Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
  2. 2.Homi Bhabha National Institute, Training School ComplexMumbaiIndia
  3. 3.Clinical Biology Lab, Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
  4. 4.Department of Neurosurgery, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiIndia
  5. 5.Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiIndia

Personalised recommendations