Advertisement

Cellular Oncology

, Volume 42, Issue 1, pp 41–54 | Cite as

SOX3 can promote the malignant behavior of glioblastoma cells

  • Jelena Marjanovic Vicentic
  • Danijela DrakulicEmail author
  • Idoia Garcia
  • Vladanka Vukovic
  • Paula Aldaz
  • Nela Puskas
  • Igor Nikolic
  • Goran Tasic
  • Savo Raicevic
  • Laura Garros-Regulez
  • Nicolas Sampron
  • Michael J. Atkinson
  • Natasa Anastasov
  • Ander Matheu
  • Milena Stevanovic
Original Paper

Abstract

Purpose

Glioblastoma is the most common and lethal adult brain tumor. Despite current therapeutic strategies, including surgery, radiation and chemotherapy, the median survival of glioblastoma patients is 15 months. The development of this tumor depends on a sub-population of glioblastoma stem cells governing tumor propagation and therapy resistance. SOX3 plays a role in both normal neural development and carcinogenesis. However, little is known about its role in glioblastoma. Thus, the aim of this work was to elucidate the role of SOX3 in glioblastoma.

Methods

SOX3 expression was assessed using real-time quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry. MTT, immunocytochemistry and Transwell assays were used to evaluate the effects of exogenous SOX3 overexpression on the viability, proliferation, migration and invasion of glioblastoma cells, respectively. The expression of Hedgehog signaling pathway components and autophagy markers was assessed using RT-qPCR and Western blot analyses, respectively.

Results

Higher levels of SOX3 expression were detected in a subset of primary glioblastoma samples compared to those in non-tumoral brain tissues. Exogenous overexpression of this gene was found to increase the proliferation, viability, migration and invasion of glioblastoma cells. We also found that SOX3 up-regulation was accompanied by an enhanced activity of the Hedgehog signaling pathway and by suppression of autophagy in glioblastoma cells. Additionally, we found that SOX3 expression was elevated in patient-derived glioblastoma stem cells, as well as in oncospheres derived from glioblastoma cell lines, compared to their differentiated counterparts, implying that SOX3 expression is associated with the undifferentiated state of glioblastoma cells.

Conclusion

From our data we conclude that SOX3 can promote the malignant behavior of glioblastoma cells.

Keywords

SOX3 Glioblastoma Glioblastoma stem cells Migration Hedgehog signaling Autophagy 

Notes

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (Grant No: 173051) and by the Serbian Academy of Sciences and Arts (Grant No: F 24). Jelena Marjanovic Vicentic received a grant from the IBRO-InEurope Short Stay Grants Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The study was approved by the Ethics Committee of the Biodonostia Institute and Hospital Donostia and by the Ethics Committee of the Institute of Molecular Genetics and Genetic Engineering, University of Belgrade. It was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants included in the study.

References

  1. 1.
    P. Kleihues, D.N. Louis, B.W. Scheithauer, L.B. Rorke, G. Reifenberger, P.C. Burger, W.K. Cavenee, The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 61, 215–225 (2002)CrossRefGoogle Scholar
  2. 2.
    M. Jansen, S. Yip, D.N. Louis, Molecular pathology in adult gliomas: Diagnostic, prognostic, and predictive markers. Lancet Neurol. 9, 717–726 (2010)CrossRefPubMedCentralGoogle Scholar
  3. 3.
    R. Stupp, W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G. Cairncross, E. Eisenhauer, R. O. Mirimanoff, R. for the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996 (2005)Google Scholar
  4. 4.
    D.N. Louis, Molecular pathology of malignant gliomas. Annu. Rev. Pathol. 1, 97–117 (2006)CrossRefGoogle Scholar
  5. 5.
    C.W. Brennan, R.G. Verhaak, A. McKenna, B. Campos, H. Noushmehr, S.R. Salama, S. Zheng, D. Chakravarty, J.Z. Sanborn, S.H. Berman, R. Beroukhim, B. Bernard, C.J. Wu, G. Genovese, I. Shmulevich, J. Barnholtz-Sloan, L. Zou, R. Vegesna, S.A. Shukla, G. Ciriello, W.K. Yung, W. Zhang, C. Sougnez, T. Mikkelsen, K. Aldape, D.D. Bigner, E.G. Van Meir, M. Prados, A. Sloan, K.L. Black, J. Eschbacher, G. Finocchiaro, W. Friedman, D.W. Andrews, A. Guha, M. Iacocca, B.P. O'Neill, G. Foltz, J. Myers, D.J. Weisenberger, R. Penny, R. Kucherlapati, C.M. Perou, D.N. Hayes, R. Gibbs, M. Marra, G.B. Mills, E. Lander, P. Spellman, R. Wilson, C. Sander, J. Weinstein, M. Meyerson, S. Gabriel, P.W. Laird, D. Haussler, G. Getz, L. Chin, T.R. Network, The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013)CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Cancer Genome Atlas Research, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)CrossRefGoogle Scholar
  7. 7.
    M.L. Suva, E. Rheinbay, S.M. Gillespie, A.P. Patel, H. Wakimoto, S.D. Rabkin, N. Riggi, A.S. Chi, D.P. Cahill, B.V. Nahed, W.T. Curry, R.L. Martuza, M.N. Rivera, N. Rossetti, S. Kasif, S. Beik, S. Kadri, I. Tirosh, I. Wortman, A.K. Shalek, O. Rozenblatt-Rosen, A. Regev, D.N. Louis, B.E. Bernstein, Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014)CrossRefPubMedCentralGoogle Scholar
  8. 8.
    J.D. Lathia, S.C. Mack, E.E. Mulkearns-Hubert, C.L. Valentim, J.N. Rich, Cancer stem cells in glioblastoma. Genes Dev. 29, 1203–1217 (2015)CrossRefPubMedCentralGoogle Scholar
  9. 9.
    A.R. Safa, M.R. Saadatzadeh, A.A. Cohen-Gadol, K.E. Pollok, K. Bijangi-Vishehsaraei, Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2, 152–163 (2015)CrossRefPubMedCentralGoogle Scholar
  10. 10.
    M.L. Suva, N. Riggi, B.E. Bernstein, Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013)CrossRefGoogle Scholar
  11. 11.
    A.M. de la Rocha, N. Sampron, M.M. Alonso, A. Matheu, Role of SOX family of transcription factors in central nervous system tumors. Am. J. Cancer Res. 4, 312–324 (2014)PubMedCentralGoogle Scholar
  12. 12.
    J. Holmberg, X. He, I. Peredo, A. Orrego, G. Hesselager, C. Ericsson, O. Hovatta, S.M. Oba-Shinjo, S.K. Marie, M. Nister, J. Muhr, Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. PLoS One 6, e18454 (2011)CrossRefPubMedCentralGoogle Scholar
  13. 13.
    A.D. Berezovsky, L.M. Poisson, D. Cherba, C.P. Webb, A.D. Transou, N.W. Lemke, X. Hong, L.A. Hasselbach, S.M. Irtenkauf, T. Mikkelsen, A.C. deCarvalho, Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation. Neoplasia 16, 193–206, 206 e119–125 (2014)CrossRefPubMedCentralGoogle Scholar
  14. 14.
    I. Garcia, J. Aldaregia, J. Marjanovic Vicentic, P. Aldaz, L. Moreno-Cugnon, S. Torres-Bayona, E. Carrasco-Garcia, L. Garros-Regulez, L. Egana, A. Rubio, S. Pollard, M. Stevanovic, N. Sampron, A. Matheu, Oncogenic activity of SOX1 in glioblastoma. Sci. Rep. 7, 46575 (2017)CrossRefPubMedCentralGoogle Scholar
  15. 15.
    M. Stevanovic, R. Lovell-Badge, J. Collignon, P.N. Goodfellow, SOX3 is an X-linked gene related to SRY. Hum. Mol. Genet. 2, 2013–2018 (1993)CrossRefGoogle Scholar
  16. 16.
    K.S. Alatzoglou, A. Azriyanti, N. Rogers, F. Ryan, N. Curry, C. Noakes, P. Bignell, G.W. Hall, A.S. Littooij, D. Saunders, P. Thomas, H. Stewart, M.T. Dattani, SOX3 deletion in mouse and human is associated with persistence of the craniopharyngeal canal. J. Clin. Endocrinol. Metab. 99, E2702–E2708 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Bylund, E. Andersson, B.G. Novitch, J. Muhr, Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162–1168 (2003)CrossRefGoogle Scholar
  18. 18.
    M.M. Laronda, J.L. Jameson, Sox3 functions in a cell-autonomous manner to regulate spermatogonial differentiation in mice. Endocrinology 152, 1606–1615 (2011)CrossRefPubMedCentralGoogle Scholar
  19. 19.
    S. Brunelli, E. Silva Casey, D. Bell, R. Harland, R. Lovell-Badge, Expression of Sox3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionarily conserved regulatory elements. Genesis 36, 12–24 (2003)CrossRefGoogle Scholar
  20. 20.
    D. Uwanogho, M. Rex, E.J. Cartwright, G. Pearl, C. Healy, P.J. Scotting, P.T. Sharpe, Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23–36 (1995)CrossRefGoogle Scholar
  21. 21.
    Y. Xia, N. Papalopulu, P.K. Vogt, J. Li, The oncogenic potential of the high mobility group box protein Sox3. Cancer Res. 60, 6303–6306 (2000)Google Scholar
  22. 22.
    K. Li, R.W. Wang, Y.G. Jiang, Y.B. Zou, W. Guo, Overexpression of Sox3 is associated with diminished prognosis in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 20(Suppl 3), S459–S466 (2013)CrossRefGoogle Scholar
  23. 23.
    Q. Yan, F. Wang, Y. Miao, X. Wu, M. Bai, X. Xi, Y. Feng, Sex-determining region Y-box3 (SOX3) functions as an oncogene in promoting epithelial ovarian cancer by targeting Src kinase. Tumour Biol. 37, 12263–12271 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Kim, A. Trubetskoy, T. Suzuki, N.A. Jenkins, N.G. Copeland, J. Lenz, Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J. Virol. 77, 2056–2062 (2003)CrossRefPubMedCentralGoogle Scholar
  25. 25.
    M. Qiu, D. Chen, C. Shen, J. Shen, H. Zhao, Y. He, Sex-determining region Y-box protein 3 induces epithelial-mesenchymal transition in osteosarcoma cells via transcriptional activation of Snail1. J. Exp. Clin. Cancer Res. 36, 46 (2017)CrossRefPubMedCentralGoogle Scholar
  26. 26.
    S.M. Pollard, K. Yoshikawa, I.D. Clarke, D. Danovi, S. Stricker, R. Russell, J. Bayani, R. Head, M. Lee, M. Bernstein, J.A. Squire, A. Smith, P. Dirks, Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580 (2009)CrossRefGoogle Scholar
  27. 27.
    L. Garros-Regulez, P. Aldaz, O. Arrizabalaga, V. Moncho-Amor, E. Carrasco-Garcia, L. Manterola, L. Moreno-Cugnon, C. Barrena, J. Villanua, I. Ruiz, S. Pollard, R. Lovell-Badge, N. Sampron, I. Garcia, A. Matheu, mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance. Expert Opin. Ther. Targets 20, 393–405 (2016)CrossRefPubMedCentralGoogle Scholar
  28. 28.
    J. Popovic, D. Stanisavljevic, M. Schwirtlich, A. Klajn, J. Marjanovic, M. Stevanovic, Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells. PLoS One 9, e91852 (2014)CrossRefPubMedCentralGoogle Scholar
  29. 29.
    P. Bernard, H. Sim, K. Knower, E. Vilain, V. Harley, Human SRY inhibits beta-catenin-mediated transcription. Int. J. Biochem. Cell Biol. 40, 2889–2900 (2008)CrossRefPubMedCentralGoogle Scholar
  30. 30.
    M. van de Wetering, R. Cavallo, D. Dooijes, M. van Beest, J. van Es, J. Loureiro, A. Ypma, D. Hursh, T. Jones, A. Bejsovec, M. Peifer, M. Mortin, H. Clevers, Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997)CrossRefGoogle Scholar
  31. 31.
    U. Naumann, P.N. Harter, J. Rubel, E. Ilina, A.E. Blank, H.B. Esteban, M. Mittelbronn, Glioma cell migration and invasion as potential target for novel treatment strategies. Transl. Neurosci. 4, 314–329 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Lee, J.K. Lee, S.H. Ahn, J. Lee, D.H. Nam, WNT signaling in glioblastoma and therapeutic opportunities. Lab. Investig. 96, 137–150 (2016)CrossRefGoogle Scholar
  33. 33.
    V. Clement, P. Sanchez, N. de Tribolet, I. Radovanovic, A. Ruiz i Altaba, HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 17, 165–172 (2007)CrossRefGoogle Scholar
  34. 34.
    T.K. Rimkus, R.L. Carpenter, S. Qasem, M. Chan, H.W. Lo, Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers 8, 22 (2016)Google Scholar
  35. 35.
    E. White, The role for autophagy in cancer. J. Clin. Invest. 125, 42–46 (2015)CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Q.Y. Cai, G.Y. Liang, Y.F. Zheng, Q.Y. Tan, R.W. Wang, K. Li, Sox3 silencing inhibits metastasis and growth of esophageal squamous cell carcinoma cell via down-regulating GSK-3 beta. Int. J. Clin. Exp. Pathol. 9, 2939–2949 (2016)Google Scholar
  37. 37.
    B. Gong, Y. Yue, R. Wang, Y. Zhang, Q. Jin, X. Zhou, Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells. Tumour Biol. 39, 1010428317706217 (2017)Google Scholar
  38. 38.
    H. Acloque, O.H. Ocana, A. Matheu, K. Rizzoti, C. Wise, R. Lovell-Badge, M.A. Nieto, Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev. Cell 21, 546–558 (2011)CrossRefPubMedCentralGoogle Scholar
  39. 39.
    E. White, R.S. DiPaola, The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 15, 5308–5316 (2009)CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Z.Y. Zhong, E. Sanchez-Lopez, M. Karin, Autophagy, inflammation, and immunity: A troika governing cancer and its treatment. Cell 166, 288–298 (2016)CrossRefPubMedCentralGoogle Scholar
  41. 41.
    M. Mojsin, V. Topalovic, J.M. Vicentic, M. Schwirtlich, D. Stanisavljevic, D. Drakulic, M. Stevanovic, Crosstalk between SOXB1 proteins and WNT/beta-catenin signaling in NT2/D1 cells. Histochem. Cell Biol. 144, 429–441 (2015)CrossRefGoogle Scholar
  42. 42.
    A.M. Zorn, G.D. Barish, B.O. Williams, P. Lavender, M.W. Klymkowsky, H.E. Varmus, Regulation of Wnt signaling by sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol. Cell 4, 487–498 (1999)CrossRefGoogle Scholar
  43. 43.
    L. Zhao, S.E. Zevallos, K. Rizzoti, Y. Jeong, R. Lovell-Badge, D.J. Epstein, Disruption of SoxB1-dependent sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev. Cell 22, 585–596 (2012)CrossRefPubMedCentralGoogle Scholar
  44. 44.
    T. Oosterveen, S. Kurdija, Z. Alekseenko, C.W. Uhde, M. Bergsland, M. Sandberg, E. Andersson, J.M. Dias, J. Muhr, J. Ericson, Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling. Dev. Cell 23, 1006–1019 (2012)CrossRefGoogle Scholar
  45. 45.
    Y.L. Hu, M. DeLay, A. Jahangiri, A.M. Molinaro, S.D. Rose, W.S. Carbonell, M.K. Aghi, Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 72, 1773–1783 (2012)CrossRefPubMedCentralGoogle Scholar
  46. 46.
    J. Bischof, M.A. Westhoff, J.E. Wagner, M.E. Halatsch, S. Trentmann, U. Knippschild, C.R. Wirtz, T. Burster, Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumour Biol. 39, 1010428317692227 (2017)CrossRefGoogle Scholar
  47. 47.
    Z.F. Yang, D.J. Klionsky, Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Carmo, H. Carvalheiro, I. Crespo, I. Nunes, M.C. Lopes, Effect of temozolomide on the U-118 glioma cell line. Oncol. Lett. 2, 1165–1170 (2011)CrossRefPubMedCentralGoogle Scholar
  49. 49.
    T. Kanzawa, I.M. Germano, T. Komata, H. Ito, Y. Kondo, S. Kondo, Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448–457 (2004)CrossRefGoogle Scholar
  50. 50.
    L. Pirtoli, G. Cevenini, P. Tini, M. Vannini, G. Oliveri, S. Marsili, V. Mourmouras, G. Rubino, C. Miracco, The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy 5, 930–936 (2009)CrossRefGoogle Scholar
  51. 51.
    X. Huang, H.M. Bai, L. Chen, B. Li, Y.C. Lu, Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J. Clin. Neurosci. 17, 1515–1519 (2010)CrossRefGoogle Scholar
  52. 52.
    M. Jimenez-Sanchez, F.M. Menzies, Y.Y. Chang, N. Simecek, T.P. Neufeld, D.C. Rubinsztein, The hedgehog signalling pathway regulates autophagy. Nat. Commun. 3, 1200 (2012)CrossRefPubMedCentralGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  • Jelena Marjanovic Vicentic
    • 1
  • Danijela Drakulic
    • 1
    Email author
  • Idoia Garcia
    • 2
    • 3
    • 4
  • Vladanka Vukovic
    • 1
  • Paula Aldaz
    • 2
    • 4
  • Nela Puskas
    • 5
  • Igor Nikolic
    • 6
    • 7
  • Goran Tasic
    • 6
    • 7
  • Savo Raicevic
    • 6
  • Laura Garros-Regulez
    • 2
  • Nicolas Sampron
    • 2
    • 4
    • 8
  • Michael J. Atkinson
    • 9
    • 10
  • Natasa Anastasov
    • 9
  • Ander Matheu
    • 2
    • 3
    • 4
    • 8
  • Milena Stevanovic
    • 1
    • 11
    • 12
  1. 1.Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Cellular Oncology GroupBiodonostia Health Research InstituteSan SebastianSpain
  3. 3.IKERBASQUEBasque Foundation for ScienceBilbaoSpain
  4. 4.CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes)MadridSpain
  5. 5.Institute of Histology and Embryology “Aleksandar Ð. Kostić”, School of MedicineUniversity of BelgradeBelgradeSerbia
  6. 6.Clinical Center of SerbiaClinic for NeurosurgeryBelgradeSerbia
  7. 7.Medical FacultyUniversity of BelgradeBelgradeSerbia
  8. 8.Neuro-oncology Tumor BoardDonostia HospitalSan SebastianSpain
  9. 9.Institute of Radiation Biology, Helmholtz Center MunichGerman Research Center for Environmental HealthNeuherbergGermany
  10. 10.Chair of Radiation BiologyTechnical University of MunichMunichGermany
  11. 11.Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  12. 12.Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations