Advertisement

Cellular Oncology

, Volume 41, Issue 6, pp 663–675 | Cite as

Anti-tumor effect of CDK inhibitors on CDKN2A-defective squamous cell lung cancer cells

  • Eun-Hui Jeong
  • Tae-Gul Lee
  • Yun Jung Ko
  • Seo Yun Kim
  • Hye-Ryoun Kim
  • Hyunggee Kim
  • Cheol Hyeon KimEmail author
Original Paper

Abstract

Background

Squamous cell lung cancer (SqCLC) is a distinct histologic subtype of non-small cell lung cancer (NSCLC). Although the discovery of driver mutations and their targeted drugs has remarkably improved the treatment outcomes for lung adenocarcinoma, currently no such molecular target is clinically available for SqCLC. The CDKN2A locus at 9p21 encodes two alternatively spliced proteins, p16INK4a (p16) and p14ARF (p14), which function as cell cycle inhibitors. The Cancer Genome Atlas (TCGA) project revealed that CDKN2A is inactivated in 72% of SqCLC cases. In addition, it was found that CDKN2A mutations are significantly more common in SqCLC than in adenocarcinoma. Down-regulation of p16 and p14 by CDKN2A gene inactivation leads to activation of cyclin-dependent kinases (CDKs), thereby permitting constitutive phosphorylation of Rb and subsequent cell cycle progression. Here, we hypothesized that CDK inhibition may serve as an attractive strategy for the treatment of CDKN2A-defective SqCLC.

Methods

We investigated whether the CDK inhibitors flavopiridol and dinaciclib may exhibit antitumor activity in CDKN2A-defective SqCLC cells compared to control cells. The cytotoxic effect of the CDK inhibitors was evaluated using cell viability assays, and the induction of apoptosis was assessed using TUNEL assays and Western blot analyses. Finally, anti-tumor effects of the CDK inhibitors on xenografted cells were investigated in vivo.

Results

We found that flavopiridol and dinaciclib induced cytotoxicity by enhancing apoptosis in CDKN2A-defective SqCLC cells, and that epithelial to mesenchymal transition (EMT) decreased and autophagy increased during this process. In addition, we found that autophagy had a cytoprotective role.

Conclusion

Our data suggest a potential role of CDK inhibitors in managing CDKN2A-defective SqCLC.

Keywords

Squamous cell lung cancer CDKN2A CDK inhibitors Flavopiridol Dinaciclib 

Notes

Acknowledgements

This study was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT (MSIT), Republic of Korea (50474-2018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    W.D. Travis, Pathology of lung cancer. Clin. Chest Med. 32, 669–692 (2011)CrossRefGoogle Scholar
  2. 2.
    C.J. Langer, C. Obasaju, P. Bunn, P. Bonomi, D. Gandara, F.R. Hirsch, E.S. Kim, R.B. Natale, S. Novello, L. Paz-Ares, M. Perol, M. Reck, S.S. Ramalingam, C.H. Reynolds, M.A. Socinski, D.R. Spigel, H. Wakelee, C. Mayo, N. Thatcher, Incremental innovation and progress in advanced squamous cell lung cancer: Current status and future impact of treatment. J. Thorac. Oncol. 11, 2066–2081 (2016)CrossRefGoogle Scholar
  3. 3.
    M.A. Socinski, C. Obasaju, D. Gandara, F.R. Hirsch, P. Bonomi, P.A. Bunn Jr., E.S. Kim, C.J. Langer, R.B. Natale, S. Novello, L. Paz-Ares, M. Perol, M. Reck, S.S. Ramalingam, C.H. Reynolds, D.R. Spigel, H. Wakelee, N. Thatcher, Current and emergent therapy options for advanced squamous cell lung cancer. J. Thorac. Oncol. 13, 165–183 (2018)CrossRefGoogle Scholar
  4. 4.
    F.R. Hirsch, G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran, Jr., Y.L. Wu, L. Paz-Ares, Lung cancer: Current therapies and new targeted treatments. Lancet 389, 299–311 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Reck, K.F. Rabe, Precision diagnosis and treatment for advanced non-small-cell lung cancer. N. Engl. J. Med. 377, 849–861 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Thomas, S.V. Liu, D.S. Subramaniam, G. Giaccone, Refining the treatment of NSCLC according to histological and molecular subtypes. Nat. Rev. Clin. Oncol. 12, 511–526 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Ruas, G. Peters, The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, F115–F177 (1998)PubMedGoogle Scholar
  8. 8.
    N.E. Sharpless, INK4a/ARF: A multifunctional tumor suppressor locus. Mutat. Res. 576, 22–38 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Pacifico, G. Leone, Role of p53 and CDKN2A inactivation in human squamous cell carcinomas. J. Biomed. Biotechnol. 2007, 43418 (2007)Google Scholar
  10. 10.
    R. Zhao, B.Y. Choi, M.H. Lee, A.M. Bode, Z. Dong, Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine 8, 30–39 (2016)CrossRefGoogle Scholar
  11. 11.
    F.J. Stott, S. Bates, M.C. James, B.B. McConnell, M. Starborg, S. Brookes, I. Palmero, K. Ryan, E. Hara, K.H. Vousden, G. Peters, The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Serrano, H. Lee, L. Chin, C. Cordon-Cardo, D. Beach, R.A. DePinho, Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996)CrossRefGoogle Scholar
  13. 13.
    Cancer Genome Atlas Research Network, Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012)CrossRefGoogle Scholar
  14. 14.
    Cancer Genome Atlas Research Network, Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014)CrossRefGoogle Scholar
  15. 15.
    G.I. Shapiro, Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770–1783 (2006)CrossRefGoogle Scholar
  16. 16.
    T. VanArsdale, C. Boshoff, K.T. Arndt, R.T. Abraham, Molecular pathways: Targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin. Cancer Res. 21, 2905–2910 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Parry, T. Guzi, F. Shanahan, N. Davis, D. Prabhavalkar, D. Wiswell, W. Seghezzi, K. Paruch, M.P. Dwyer, R. Doll, A. Nomeir, W. Windsor, T. Fischmann, Y. Wang, M. Oft, T. Chen, P. Kirschmeier, E.M. Lees, Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol. Cancer Ther. 9, 2344–2353 (2010)CrossRefGoogle Scholar
  18. 18.
    M.M. Al-Ansari, S.F. Hendrayani, A. Tulbah, T. Al-Tweigeri, A.I. Shehata, A. Aboussekhra, p16INK4A represses breast stromal fibroblasts migration/invasion and their VEGF-a-dependent promotion of angiogenesis through Akt inhibition. Neoplasia 14, 1269–1277 (2012)CrossRefGoogle Scholar
  19. 19.
    M.M. Al-Ansari, S.F. Hendrayani, A.I. Shehata, A. Aboussekhra, p16(INK4A) represses the paracrine tumor-promoting effects of breast stromal fibroblasts. Oncogene 32, 2356–2364 (2013)CrossRefGoogle Scholar
  20. 20.
    C. Umbreit, J. Flanjak, C. Weiss, P. Erben, C. Aderhold, A. Faber, J. Stern-Straeter, K. Hoermann, J.D. Schultz, Incomplete epithelial-mesenchymal transition in p16-positive squamous cell carcinoma cells correlates with beta-catenin expression. Anticancer Res. 34, 7061–7069 (2014)PubMedGoogle Scholar
  21. 21.
    A. Scott, F. Bai, H.L. Chan, S. Liu, J. Ma, J.M. Slingerland, D.J. Robbins, A.J. Capobianco, X.H. Pei, p16INK4a suppresses BRCA1-deficient mammary tumorigenesis. Oncotarget 7, 84496–84507 (2016)PubMedPubMedCentralGoogle Scholar
  22. 22.
    H.H. Al-Khalaf, A. Aboussekhra, p16(INK4A) induces senescence and inhibits EMT through microRNA-141/microRNA-146b-5p-dependent repression of AUF1. Mol. Carcinog. 56, 985–999 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014)CrossRefGoogle Scholar
  24. 24.
    D.J. Klionsky, S.D. Emr, Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721 (2000)CrossRefGoogle Scholar
  25. 25.
    B. Levine, Cell biology: Autophagy and cancer. Nature 446, 745–747 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Pimkina, O. Humbey, J.T. Zilfou, M. Jarnik, M.E. Murphy, ARF induces autophagy by virtue of interaction with Bcl-xl. J. Biol. Chem. 284, 2803–2810 (2009)CrossRefGoogle Scholar
  27. 27.
    H. Jiang, V. Martin, C. Gomez-Manzano, D.G. Johnson, M. Alonso, E. White, J. Xu, T.J. McDonnell, N. Shinojima, J. Fueyo, The RB-E2F1 pathway regulates autophagy. Cancer Res. 70, 7882–7893 (2010)CrossRefGoogle Scholar
  28. 28.
    C. Capparelli, B. Chiavarina, D. Whitaker-Menezes, T.G. Pestell, R.G. Pestell, J. Hulit, S. Ando, A. Howell, U.E. Martinez-Outschoorn, F. Sotgia, M.P. Lisanti, CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle 11, 3599–3610 (2012)CrossRefGoogle Scholar
  29. 29.
    N. Mizushima, T. Yoshimori, B. Levine, Methods in mammalian autophagy research. Cell 140, 313–326 (2010)CrossRefGoogle Scholar
  30. 30.
    G. Das, B.V. Shravage, E.H. Baehrecke, Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol. 4 (2012)CrossRefGoogle Scholar
  31. 31.
    D.A. Gewirtz, The four faces of autophagy: Implications for cancer therapy. Cancer Res. 74, 647–651 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell. Oncol. 40, 419–441 (2017)CrossRefGoogle Scholar
  33. 33.
    D.R. Gandara, P.S. Hammerman, M.L. Sos, P.N. Lara Jr., F.R. Hirsch, Squamous cell lung cancer: From tumor genomics to cancer therapeutics. Clin. Cancer Res. 21, 2236–2243 (2015)CrossRefGoogle Scholar
  34. 34.
    Z. Lou-Qian, Y. Rong, L. Ming, Y. Xin, J. Feng, X. Lin, The prognostic value of epigenetic silencing of p16 gene in NSCLC patients: A systematic review and meta-analysis. PLoS One 8, e54970 (2013)CrossRefGoogle Scholar
  35. 35.
    X.B. Xing, W.B. Cai, L. Luo, L.S. Liu, H.J. Shi, M.H. Chen, The prognostic value of p16 hypermethylation in cancer: A meta-analysis. PLoS One 8, e66587 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Malumbres, M. Barbacid, To cycle or not to cycle: A critical decision in cancer. Nat. Rev. Cancer 1, 222–231 (2001)CrossRefGoogle Scholar
  37. 37.
    M. Malumbres, M. Barbacid, Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009)CrossRefGoogle Scholar
  38. 38.
    C. Criscitiello, G. Viale, A. Esposito, G. Curigliano, Dinaciclib for the treatment of breast cancer. Expert Opin. Investig. Drugs 23, 1305–1312 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Flynn, J. Jones, A.J. Johnson, L. Andritsos, K. Maddocks, S. Jaglowski, J. Hessler, M.R. Grever, E. Im, H. Zhou, Y. Zhu, D. Zhang, K. Small, R. Bannerji, J.C. Byrd, Dinaciclib is a novel cyclin-dependent kinase inhibitor with significant clinical activity in relapsed and refractory chronic lymphocytic leukemia. Leukemia 29, 1524–1529 (2015)CrossRefGoogle Scholar
  40. 40.
    C. Abdullah, X. Wang, D. Becker, Expression analysis and molecular targeting of cyclin-dependent kinases in advanced melanoma. Cell Cycle 10, 977–988 (2011)CrossRefGoogle Scholar
  41. 41.
    C. Hu, T. Dadon, V. Chenna, S. Yabuuchi, R. Bannerji, R. Booher, P. Strack, N. Azad, B.D. Nelkin, A. Maitra, Combined inhibition of cyclin-dependent kinases (dinaciclib) and AKT (MK-2206) blocks pancreatic tumor growth and metastases in patient-derived xenograft models. Mol. Cancer Ther. 14, 1532–1539 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Stone, R.L. Sutherland, E.A. Musgrove, Inhibitors of cell cycle kinases: Recent advances and future prospects as cancer therapeutics. Crit. Rev. Oncog. 17, 175–198 (2012)CrossRefGoogle Scholar
  43. 43.
    P.J. Roberts, J.E. Bisi, J.C. Strum, A.J. Combest, D.B. Darr, J.E. Usary, W.C. Zamboni, K.K. Wong, C.M. Perou, N.E. Sharpless, Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J. Natl. Cancer Inst. 104, 476–487 (2012)CrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  1. 1.Division of Pulmonology, Department of Internal MedicineKorea Cancer Center HospitalSeoulSouth Korea
  2. 2.School of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea

Personalised recommendations