Advertisement

Cellular Oncology

, Volume 41, Issue 5, pp 465–484 | Cite as

Interplay between NRF1, E2F4 and MYC transcription factors regulating common target genes contributes to cancer development and progression

  • Kaumudi Bhawe
  • Deodutta Roy
Review

Abstract

Background

Nuclear respiratory factor 1 (NRF1), historically perceived as a protein regulating genes controlling mitochondrial biogenesis, is now widely recognized as a multifunctional protein and as a key player in the transcriptional modulation of genes implicated in various cellular functions. Here, we present emerging data supporting novel roles of NRF1 in cancer development and progression through its interplay with the transcription factors E2F4 and MYC. To identify common human NRF1, E2F4 and MYC target genes, we analyzed the Encyclopedia of DNA Elements (ENCODE) NRF1 ChIP-Seq data. By doing so, we identified 9253 common target genes with NRF1, E2F4 and MYC binding motifs. NRF1 binding motifs were found to be present in genes operating in signaling pathways governing all hallmarks of malignant transformation and progression, including proliferation, invasion, self-renewal and apoptosis.

Conclusions

In addition to controlling mitochondrial biogenesis NRF1, in conjunction with E2F4 and MYC, may play a critical role in the acquisition of human cancer characteristics. Additionally, NRF1 may orchestrate both MYC and E2F4 to regulate common target genes linked to multiple networks in the development and progression of cancer. A comprehensive understanding of this dynamic interplay will set the stage, not only for the design of novel treatment strategies, but also for the discovery of pan-cellular transcription factor regulatory strategies to predict cancer risk, therapy response and patient prognosis.

Keywords

Nuclear respiratory factor 1 (NRF1) E2F4 MYC Cancer 

Notes

Acknowledgments

This work was, in part, supported by a VA MERIT Review (VA BX001463) grant to DR.

Compliance with ethical standards

Conflict of interest

None declared.

References

  1. 1.
    J. Wang, Q. Liu, J. Sun, Y. Shyr, Disrupted cooperation between transcription factors across diverse cancer types. BMC Genomics 17, 560 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    S.A. Lambert, A. Jolma, L. Campitelli, P. Das, T. Yin, M. Albu, X. Chen, J. Taipale, T. Hughes, M. Weirauch, The human transcription factors. Cell 172, 650–665 (2018)PubMedCrossRefGoogle Scholar
  3. 3.
    M.M. Falco, M. Bleda, J. Carbonell-Caballero, J. Dopazo, The pan-cancer pathological regulatory landscape. Nature Sci Rep 6 (2016)Google Scholar
  4. 4.
    C.V. Dang, MYC on the path to cancer. Cell 149, 22–35 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    V.O. Okoh, Q. Felty, J. Parkash, R. Poppiti, D. Roy, Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One 8, e54206 (2011)CrossRefGoogle Scholar
  6. 6.
    V.O. Okoh, N.A. Garba, R.B. Penney, J. Das, A. Deoraj, K. Singh, S. Sarkar, Q. Felty, C. Yoo, R. Jackson, D. Roy, Redox signaling to nuclear regulatory proteins by reactive oxygen species contributes to estrogen-induced growth of breast cancer cells. British J Cancer 112, 1687–1702 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Roy, R. Tamuli, NRF1 (nuclear respiratory factor 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology 13, 4 (2008)Google Scholar
  8. 8.
    L. Gopalakrishnan, R.C. Scarpulla, Structure, expression, and chromosomal assignment of the human gene encoding nuclear respiratory factor 1. J Biol Chem 270, 18019–18025 (1995)PubMedCrossRefGoogle Scholar
  9. 9.
    R.C. Scarpulla, Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88, 611–638 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    J.Y. Chan, X.L. Han, Y.W. Kan, Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. Proc Natl Acad Sci U S A 90, 11371–11375 (1993)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    V. Tiranti, E. Rossi, M. Rocchi, S. DiDonato, O. Zuffardi, M. Zeviani, The gene (NFE2L1) for human NRF-1, an activator involved in nuclear-mitochondrial interactions, maps to 7q32. Genomics 27, 555–557 (1995)PubMedCrossRefGoogle Scholar
  12. 12.
    R.C. Scarpulla, Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 1147, 321–334 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    J.S. Bassey, J.A.C. Efiok, B. Safer, A key transcription factor for eukaryotic initiation factor-2a is strongly homologous to developmental transcription factors and may link metabolic genes to cellular growth and development. J Biol Chem 269, 18921–18930 (1994)Google Scholar
  14. 14.
    H. Cam, E. Balciunaite, A. Blais, A. Spektor, R.C. Scarpulla, R. Young, Y. Kluger, B.D. Dynlacht, A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell 16, 399–411 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Satoh, N. Kawana, Y. Yamamoto, Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Reg Syst Biol 7, 139–152 (2013)Google Scholar
  16. 16.
    C. Amin, A.J. Wagner, N. Hay, Sequence-specific transcriptional activation by Myc and repression by max. Mol Cell Biol 13, 383–390 (1993)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    A.L. Gartel, K. Shchors, Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp Cell Res 283, 17–21 (2003)PubMedCrossRefGoogle Scholar
  18. 18.
    B. Lüscher, Function and regulation of the transcription factors of the Myc/max/mad network. Gene 277, 1–14 (2001)PubMedCrossRefGoogle Scholar
  19. 19.
    C.V. Dang, S.B. McMahon, Emerging concepts in the analysis of transcriptional targets of the MYC oncoprotein: Are the targets targetable? Genes & Cancer 1, 560–567 (2010)CrossRefGoogle Scholar
  20. 20.
    W. Tansey, P. Mammalian, MYC proteins and cancer. New Journal of Science, Hindawi 757534, 1–27 (2014)Google Scholar
  21. 21.
    H.Z. Chen, S.Y. Tsai, G. Leone, Emerging roles of E2Fs in cancer: An exit from cell cycle control. Nature Rev Cancer 9, 785–797 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Schwemmle, P. Pfeifer, Genomic structure and mutation screening of the E2F4 gene in human tumors. Int J Cancer 86, 672–677 (2000)PubMedCrossRefGoogle Scholar
  23. 23.
    P.J. Iaquinta, J.A. Lees, Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 19, 649–657 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    S. Skirnisdottir, G. Eiriksdottir, T. Baldursson, R.B. Barkardottir, V. Egilsson, S. Ingvarrson, High frequency of allelic imbalance at chromosome region 16q22-23 in human breast cancer: Correlation with high PgR and low S phase. Int J Cancer 64, 112–116 (1995)PubMedCrossRefGoogle Scholar
  25. 25.
    X. Zhong, H. Hemmi, J. Koike, K. Tsujita, H. Shimatake, Various AGC repeat numbers in the coding region of the human transcription factor gene E2F-4. Hum Mut 15, 296–297 (1999)CrossRefGoogle Scholar
  26. 26.
    N. Palmer, P. Kaldis, Regulation of the embryonic cell cycle during mammalian preimplantation development. Curr Top Dev Biol 120, 1–53 (2016)PubMedCrossRefGoogle Scholar
  27. 27.
    Z. Kherrouche, D.Y. Launoit, D. Monte, The NRF-1/α-PAL transcription factor regulates human E2F6 promoter activity. Biochem J 383, 529–536 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    S.T. Shors, B.J.S. Effiok, S.J. Harkin, B. Safer, Formation of pal/max heterodimers synergistically activates the eif2 promoter. J Biol Chem 273, 529–536 (1998)CrossRefGoogle Scholar
  29. 29.
    A.B. West, G. Kapatos, C. O’Farrell, F. Gonzalez-de-Chavez, K. Chiu, M.J. Farrer, N.T. Maidment, N-myc regulates parkin expression. J Biol Chem 279, 28896–28902 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    J.K. Das, D. Roy, Transcriptional regulation of chemokine receptor 4 (CXCR4) by nuclear respiratory factor 1 (NRF1) controls estrogen-induced malignant transformation of breast epithelial cells to breast cancer stem cells. Cancer Res 76, 3312 (2016)CrossRefGoogle Scholar
  31. 31.
    J.M. Lin, P.J. Collins, N.D. Trinklein, Y. Fu, H. Xi, R.M. Myers, Z. Weng, Transcription factor binding and modified histones in human bidirectional promoters. Genome Res 17, 818–827 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Y.M. Oh, J.K. Kim, S. Choi, J.Y. Yoo, Identification of co-occurring transcription factor binding sites from DNA sequence using clustered position weight matrices. Nucl Acids Res 40, e38–e38 (2012)PubMedCrossRefGoogle Scholar
  33. 33.
    R. Elkon, C. Linhart, R. Sharan, R. Shamir, Y. Shiloh, Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 13, 773–780 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    C. Benner, S. Konovalov, C. Mackintosh, K.R. Hutt, R. Stunnenberg, I. Garcia-Bassets, Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions. PLoS Genet 9, e1003906 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    R.I. Sherwood, T. Hashimoto, C.W. O'Donnell, S. Lewis, A.A. Barkal, J.P. van Hoff, V. Karun, T. Jaakkola, D.K. Gifford, Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature Biotech 32, 171–178 (2014)CrossRefGoogle Scholar
  36. 36.
    M.D. Lavigne, G. Vatsellas, A. Polyzos, E. Mantouvalou, G. Sianidis, I. Maraziotis, M. Agelopoulos, D. Thanos, Composite macroH2A/NRF-1 nucleosomes suppress noise and generate robustness in gene expression. Cell Rep 11, 1090–1101 (2015)PubMedCrossRefGoogle Scholar
  37. 37.
    A. Ferraro, Altered primary chromatin structures and their implications in cancer development. Cell Oncol 39, 195–210 (2016)CrossRefGoogle Scholar
  38. 38.
    F. Morrish, C. Giedt, & Hockenbery D. C-MYC apoptotic function is mediated by NRF-1 target genes. Genes Dev 17, 240–255 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    H.B. Suliman, J.E. Keenan, C.A. Piantadosi, Mitochondrial quality-control dysregulation in conditional HO-1−/− mice. JCI Insight 2, e89676 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    C. Zhang, M. Lin, R. Wu, X. Wang, B. Yang, A.J. Levine, W. Hu, Z. Feng, Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 108, 16259–16264 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    A. Soufi, G. Donahue, K.S. Zaret, Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994–1004 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    J.D. Lin, Minireview: The PGC-1 coactivator networks: Chromatin-remodeling and mitochondrial energy metabolism. Mol Endocrin 23, 2–10 (2009)CrossRefGoogle Scholar
  43. 43.
    W.-S. Tzou, Identification of potential E2F target genes through cis-regulatory modules derived from chromatin immunoprecipitation microarray data. Fooyin J Health Sci 2, 66–70 (2010)CrossRefGoogle Scholar
  44. 44.
    H. Liu, X. Tang, A. Srivastava, T. Pecot, P. Daniel, B. Hemmelgarn, S. Reyes, N. Fackler, A. Bajwa, R. Kladney, C. Koivisto, Z. Chen, Q. Wang, K. Huang, R. Machiraju, M.T. Saenz-Robles, P. Cantalupo, J.M. Pipas, G. Leone, Redeployment of Myc and E2f1-3 drives Rb-deficient cell cycles. Nature Cell Biol 17, 1036–1048 (2015)PubMedCrossRefGoogle Scholar
  45. 45.
    C.R. Chen, Y. Kang, P.M. Siegel, J. Massagué, E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110, 19–32 (2002)PubMedCrossRefGoogle Scholar
  46. 46.
    H. Ogawa, K.I. Ishiguro, S. Gaubatz, D.M. Livingston, Y. Nakatani, A complex with chromatin modifiers that occupies E2F and Myc responsive genes in G0 cells. Science 296, 1132–1136 (2002)PubMedCrossRefGoogle Scholar
  47. 47.
    R.E. Rempel, S. Mori, M. Gasparetto, M.A. Glozak, E.R. Andrechek, S.B. Adler, N.M. Laakso, A.S. Lagoo, R. Storms, C. Smith, J.R. Nevins, A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genet 5, e1000640 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    A. Fortunato, The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells. Cell Oncol 40, 367–378 (2017)CrossRefGoogle Scholar
  49. 49.
    A. Sathyanarayanan, K.S. Chandrasekaran, D. Karunagaran, microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. Cell Oncol 40, 119–131 (2017)CrossRefGoogle Scholar
  50. 50.
    S. Bugide, V.K. Gonugunta, V. Penugurti, V.L. Malisetty, R.K. Vadlamudi, B. Manavathi, HPIP promotes epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer cells through PI3K/AKT pathway activation. Cell Oncol 40, 133–144 (2017)CrossRefGoogle Scholar
  51. 51.
    M. Mohrin, J. Shin, Y. Liu, K. Brown, H. Luo, Y. Xi, C.M. Haynes, D. Chen, Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    J. Vazquez, J. Das, D. Roy, Estrogen and nuclear respiratory factor 1 act as joint mediators of redox modulation and stem cell aging that contribute in the pathogenesis of breast cancer. Cancer Res 76, 3322 (2016)CrossRefGoogle Scholar
  53. 53.
    K. Bhawe, J. Das, C. Yoo, and D. Roy, NRF1 regulated gene-network characterizing chemical toxicity through TF effects in brain cancer. In: The Toxicologist: Supplement to Toxicological Sciences, 150, Abstract No. 1961, Pp 234, (2018)Google Scholar
  54. 54.
    M. Preciados, C. Yoo, D. Roy, Estrogenic endocrine disrupting chemicals influencing NRF1 regulated gene networks in the development of complex human brain diseases. Int J Mol Sci 17, E2086 (2016)PubMedCrossRefGoogle Scholar
  55. 55.
    J. Wang, H. Wang, Z. Li, Q. Wu, J.D. Lathia, R.E. McLendon, A.B. Hjelmeland, J.N. Rich, C-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3, e3769 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    P. Sancho, D. Barneda, C. Heeschen, Hallmarks of cancer stem cell metabolism. Br J Cancer 114, 1305–1312 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    S. Galardi, M. Savino, F. Scagnoli, S. Pellegatta, F. Pisati, F. Zambelli, B. Illi, D. Annibali, S. Beji, E. Orecchini, M.A. Alberelli, C. Apicella, R.A. Fontanella, A. Michienzi, G. Finocchiaro, M.G. Farace, G. Pavesi, S.A. Ciafrè, S. Nasi, Resetting cancer stem cell regulatory nodes upon MYC inhibition. EMBO Rep 17, 1872–1889 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    R. Scognamiglio, N. Cabezas-Wallscheid, M.C. Thier, S. Altamura, A. Reyes, A.M. Prendergast, D. Baumgartner, L.S. Carnevalli, A. Atzberger, S. Haas, L. von Paleske, T. Boroviak, P. Worsdorfer, M.A. Essers, U. Kloz, R.N. Eisenman, F. Edenhofer, P. Bertone, W. Huber, F. van der Hoeven, A. Smith, A. Trumpp, Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    H.C. Yeo, T.T. Beh, J.J. Quek, G. Koh, K.K. Chan, D.Y. Lee, Integrated transcriptome and binding sites analysis implicates E2F in the regulation of self-renewal in human pluripotent stem cells. PLoS One 6, e27231 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    L.M. Julian, A. Blais, Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 6, 161 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    S. Pauklin, P. Madrigal, A. Bertero, L. Vallier, Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by cyclin D. Genes Dev 30, 421–433 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    A. Diman, F. Poulain, J. Rodriguez, M. Purnelle, H. Episkopou, L. Bertrand, M. Francaux, L. Deldicque, A. Decottignies, Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Science Adv 2, e1600031 (2016)CrossRefGoogle Scholar
  63. 63.
    A. Ocampo, J.C.I. Belmonte, Holding your breath for longevity. Science 347, 1319–1320 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    J.W. Hofmann, X. Zhao, M. De Cecco, A.L. Peterson, L. Pagliaroli, J. Manivannan, G.B. Hubbard, Y. Ikeno, Y. Zhang, B. Feng, X. Li, T. Serre, W. Qi, H. Van Remmen, R.A. Miller, K.G. Bath, R. de Cabo, H. Xu, N. Neretti, J.M. Sedivy, Reduced expression of MYC increases longevity and enhances healthspan. Cell 160, 477–488 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    P. Hydbring, L.G. Larsson, Cdk2: A key regulator of the senescence control function of Myc. Aging 2, 244–250 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    C. Park, I. Lee, W.K. Kang, E2F-1 is a critical modulator of cellular senescence in human cancer. Int J Mol Med 17, 715–720 (2006)PubMedGoogle Scholar
  67. 67.
    P. Iakova, S.S. Awad, N.A. Timchenko, Aging reduces proliferative capacities of liver by switching pathways of C/EBP growth arrest. Cell 113, 495–506 (2003)PubMedCrossRefGoogle Scholar
  68. 68.
    M. Vernier, V. Bourdeau, M.F. Gaumont-Leclerc, O. Moiseeva, V. Begin, F. Saad, A.M. Mes-Masson, G. Ferbeyre, Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 25, 41–50 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    J. Permuth-Wey, Y.A. Chen, Y.Y. Tsai, Z. Chen, X. Qu, J.M. Lancaster, H. Stockwell, G. Dagne, E. Iversen, H. Risch, J. Barnholtz-Sloan, J.M. Cunningham, R.A. Vierkant, B.L. Fridley, R. Sutphen, J. McLaughlin, S.A. Narod, E.L. Goode, J.M. Schildkraut, D. Fenstermacher, C.M. Phelan, T.A. Sellers, Inherited variants in mitochondrial biogenesis genes may influence epithelial ovarian cancer risk. Cancer Epidemiol Biomark Prev 20, 1131–114567 (2011)CrossRefGoogle Scholar
  70. 70.
    W. Liu, B.H. Beck, K.S. Vaidya, K.T. Nash, K.P. Feeley, S.W. Ballinger, K.M. Pounds, W.L. Denning, A.R. Diers, A. Landar, A. Dhar, T. Iwakuma, D.R. Welch, Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Res 74, 954–963 (2014)PubMedCrossRefGoogle Scholar
  71. 71.
    M.M. Ivanova, K.H. Luken, A.S. Zimmer, F.L. Lenzo, R.J. Smith, M.W. Arteel, T.J. Kollenberg, K.A. Mattingly, C.M. Klinge, Tamoxifen increases nuclear respiratory factor 1 transcription by activating estrogen receptor β and AP-1 recruitment to adjacent promoter binding sites. FASEB J 25, 1402–1416 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    D. Wang, J. Zhang, Y. Lu, Q. Luo, L. Zhu, Nuclear respiratory factor (NRF1) regulated hypoxia inducible factor 1alpha (HIF1a) under hypoxia in HEK293T. IUBMB Life 68, 748–755 (2016)PubMedCrossRefGoogle Scholar
  73. 73.
    L. Zhang, Q. Ding, Z. Wang, Nuclear respiratory factor 1 mediates the transcription initiation of insulin-degrading enzyme in a TATA box-binding protein-independent manner. PLoS One 7, e42035 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    A.G. Vaiopoulos, K. Athanasoula, A.G. Papavassiliou, Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. Biochim Biophys Acta 1842, 971–980 (2014)PubMedCrossRefGoogle Scholar
  75. 75.
    S. Sharma Saha, R. Roy Chowdhury, N.R. Mondal, B. Chakravarty, T. Chatterjee, S. Roy, S. Sengupta, Identification of genetic variation in the lncRNA HOTAIR associated with HPV16-related cervical cancer pathogenesis. Cell Oncol 39, 583–589 (2016)CrossRefGoogle Scholar
  76. 76.
    M. Xu, C.E. Cross, J.T. Speidel, S.Z. Abdel-Rahman, MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression. Cell Oncol 39, 435–447 (2016)CrossRefGoogle Scholar
  77. 77.
    C. Gebhard, C. Benner, M. Ehrich, L. Schwarzfischer, E. Schilling, M. Klug, W. Dietmaier, C. Thiede, E. Holler, R. Andreesen, M. Rehli, General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells. Cancer Res 70, 1398–1407 (2010)PubMedCrossRefGoogle Scholar
  78. 78.
    S.S. Hammoud, B.R. Cairns, D.A. Jones, Epigenetic regulation of colon cancer and intestinal stem cells. Curr Opin Cell Biol 25, 177–183 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    A. Wolfer, S. Ramaswamy, MYC and metastasis. Cancer Res 71, 2034–2037 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    H. Liu, D.C. Radisky, D. Yang, R. Xu, E.S. Radisky, M.J. Bissell, J.M. Bishop, MYC suppresses cancer metastasis by direct transcriptional silencing of [alpha]v and [beta]3 integrin subunits. Nature Cell Biol 14, 567–574 (2012)PubMedCrossRefGoogle Scholar
  81. 81.
    M. Jung, A.J. Russell, B. Liu, J. George, P.Y. Liu, T. Liu, A. DeFazio, D.D. Bowtell, A. Oberthuer, W.B. London, J.I. Fletcher, M. Haber, M.D. Norris, M.J. Henderson, A Myc activity signature predicts poor clinical outcomes in Myc-associated cancers. Cancer Res 15, 971–981 (2017)CrossRefGoogle Scholar
  82. 82.
    U.R. Rapp, C. Korn, F. Ceteci, C. Karreman, K. Luetkenhaus, V. Serafin, E. Zanucco, I. Castro, T. Potapenko, MYC is a metastasis gene for non-small-cell lung cancer. PLoS One 4, e6029 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    L. Fagnocchi, A. Cherubini, H. Hatsuda, A. Fasciani, S. Mazzoleni, V. Poli, V. Berno, R. Rossi, R. Reinbold, M. Endele, T. Schroeder, M. Rocchigiani, Z. Szkarlat, S. Oliviero, S. Dalton, A. Zippo, A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun 7, 11903 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    H.B. Suliman, T.E. Sweeney, C.M. Withers, C.A. Piantadosi, Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J Cell Science 123, 2565–2575 (2010)PubMedCrossRefGoogle Scholar
  85. 85.
    M.L. Boland, A.H. Chourasia, K.F. Macleod, Mitochondrial dysfunction in cancer. Front Oncol 3, 292 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    K.E. Wiese, S. Walz, B. von Eyss, E. Wolf, D. Athineos, O. Sansom, M. Eilers, Cold Spring Harbor Perspectives in Medicine 3, a014290 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    T.C. Chang, D. Yu, Y.S. Lee, E.A. Wentzel, D.E. Arking, K.M. West, C.V. Dang, A. Thomas-Tikhonenko, J.T. Mendell, Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet 40, 43–50 (2008)PubMedCrossRefGoogle Scholar
  88. 88.
    C. Bertoli, J.M. Skotheim, R.A. de Bruin, Control of cell cycle transcription during G1 and S phases. Nature Rev Mol Cell Biol 14, 518–528 (2013)CrossRefGoogle Scholar
  89. 89.
    G. Yao, Modelling mammalian cellular quiescence. Interface Focus 4, 3 (2014)CrossRefGoogle Scholar
  90. 90.
    S. Zheng, J. Moehlenbrink, Y.C. Lu, L.P. Zalmas, C.A. Sagum, S. Carr, J.F. McGouran, L. Alexander, O. Fedorov, S. Munro, B. Kessler, M.T. Bedford, Q. Yu, N.B.L. Thangue, Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 52, 37–51 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    B.P. Coe, K.L. Thu, S.A. Ronen, E.A. Vucic, A.F. Gazdar, S. Lam, M.S. Tsao, W.L. Lam, Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer. PLoS One 8, e71670 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    H.Z. Chen, M.M. Ouseph, J. Li, T. Pécot, V. Chokshi, L. Kent, S. Bae, M. Byrne, C. Duran, G. Comstock, P. Trikha, M. Mair, S. Senapati, C.K. Martin, S. Gandhi, N. Wilson, B. Liu, Y.W. Huang, J.C. Thompson, S. Raman, S. Singh, M. Leone, R. Machiraju, K. Huang, X. Mo, S. Fernandez, I. Kalaszczynska, D.J. Wolgemuth, P. Sicinski, T. Huang, V. Jin, G. Leone, Canonical and atypical E2Fs regulate the mammalian endocycle. Nature Cell Biol 14, 1192–1202 (2012)PubMedCrossRefGoogle Scholar
  93. 93.
    J. Johnson, B. Thijssen, U. McDermott, M. Garnett, L.F.A. Wessels, R. Bernards, Targeting the RB-E2F pathway in breast cancer. Oncogene 35, 4829–4835 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    D.P. Hollern, J. Honeysett, R.D. Cardiff, E.R. Andrechek, The E2F transcription factors regulate tumor development and metastasis in a mouse model of metastatic breast cancer. Mol Cell Biol 34, 3229–3240 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    E.R. Andrechek, HER2/Neu tumorigenesis and metastasis is regulated by E2F activator trancription factors. Oncogene 34, 217–225 (2015)PubMedCrossRefGoogle Scholar
  96. 96.
    A. Mathe, M.W. Brown, B. Morten, J.F. Forbes, S.G. Braye, K.A. Avery-Kiejda, R.J. Scott, Novel genes associated with lymph node metastasis in triple negative breast cancer. Nature Sci Rep 5, 15832 (2015)Google Scholar
  97. 97.
    H. Garneau, L. Alvarez, M.C. Paquin, C. Lussier, C. Rancourt, E. Tremblay, J.F. Beaulieu, N. Rivard, Nuclear expression of E2F4 induces cell death via multiple pathways in normal human intestinal epithelial crypt cells but not in colon cancer cells. Am J Physiol Gastrointest Liver Physiol 293, G758–G772 (2007)PubMedCrossRefGoogle Scholar
  98. 98.
    D. Dingar, F. Konecny, J. Zou, X. Sun, R. von Harsdorf, Anti-apoptotic function of the E2F transcription factor 4 (E2F4)/p130, a member of retinoblastoma gene family in cardiac myocytes. J Mol Cell Cardiol 53, 820–828 (2007)CrossRefGoogle Scholar
  99. 99.
    L. Zhao, M. Tang, Z. Hu, B. Yan, W. Pi, Z. Li, J. Zhang, L. Zhang, W. Jiang, G. Li, Y. Qiu, F. Hu, F. Liu, J. Lu, X. Chen, L. Xiao, Z. Xu, Y. Tao, L. Yang, A.M. Bode, Z. Dong, J. Zhou, J. Fan, L. Sun, & Cao Y. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget 6, 15995–16018 (2015)PubMedPubMedCentralGoogle Scholar
  100. 100.
    R.B. Penney, D. Roy, Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta 1836, 60–79 (2013)PubMedGoogle Scholar
  101. 101.
    B.N. Radde, M.M. Ivanova, H.X. Mai, N. Alizadeh-Rad, K. Piell, P. Van Hoose, M.P. Cole, P. Muluhngwi, T.S. Kalbfleisch, E.C. Rouchka, B.G. Hill, C.M. Klinge, Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells. Exp Cell Res 347, 222–231 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    G. Zhang, D.T. Frederick, L. Wu, Z. Wei, C. Krepler, S. Srinivasan, Y.C. Chae, X. Xu, H. Choi, E. Dimwamwa, O. Ope, B. Shannan, D. Basu, D. Zhang, M. Guha, M. Xiao, S. Randell, K. Sproesser, W. Xu, J. Liu, G.C. Karakousis, L.M. Schuchter, T.C. Gangadhar, R.K. Amaravadi, M. Gu, C. Xu, A. Ghosh, W. Xu, T. Tian, J. Zhang, S. Zha, Q. Liu, P. Brafford, A. Weeraratna, M.A. Davies, J.A. Wargo, N.G. Avadhani, Y. Lu, G.B. Mills, D.C. Altieri, K.T. Flaherty, M. Herlyn, Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 126, 1834–1856 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    M.H. Uddin, B. Kim, D.H. Suh, Y.S. Song, Anticancer strategy targeting mitochondrial biogenesis in ovarian Cancer. J Cancer Sci Therapy 6, 422–428 (2014)CrossRefGoogle Scholar
  104. 104.
    A. Shen, L. Wang, M. Huang, J. Sun, Y. Chen, Y.Y. Shen, X. Yang, X. Wang, J. Ding, M. Geng, C-Myc alterations confer therapeutic response and acquired resistance to c-met inhibitors in MET-addicted cancers. Cancer Res 75, 4548–4559 (2015)PubMedCrossRefGoogle Scholar
  105. 105.
    X.N. Pan, J.J. Chen, L.X. Wang, R.Z. Xiao, L.L. Liu, Z.G. Fang, Q. Liu, Z.J. Long, D.J. Lin, Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation. PLoS One 9, e105381 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    L.H. Yan, X.T. Wang, J. Yang, F.B. Kong, C. Lian, W.Y. Wei, W. Luo, Y.B. Xie, Q. Xiao, Reversal of multidrug resistance in gastric cancer cells by E2F-1 downregulation in vitro and in vivo. J Cell Biochem 115, 34–41 (2014)PubMedCrossRefGoogle Scholar
  107. 107.
    M.T. Rosenfeldt, L.A. Bell, J.S. Long, J. O'Prey, C. Nixon, F. Roberts, C. Dufès, K.M. Ryan, E2F1 drives chemotherapeutic drug resistance via ABCG2. Oncogene 33, 4164–4172 (2014)PubMedCrossRefGoogle Scholar
  108. 108.
    J.J. Stevens, B. Graham, E. Dugo, B. Berhaneselassie-Sumner, K. Ndebele, P.B. Tchounwou, Arsenic trioxide induces apoptosis via specific signaling pathways in HT-29 colon cancer cells. J Cancer Sci Therapy 9, 298–306 (2017)CrossRefGoogle Scholar
  109. 109.
    J.B. Bell, F. Eckerdt, H.D. Dhruv, D. Finlay, S. Peng, S. Kim, B. Kroczynska, E.M. Beauchamp, K. Alley, J. Clymer, S. Goldman, S.Y. Cheng, C.D. James, I. Nakano, C. Horbinski, A.P. Mazar, K. Vuori, P. Kumthekar, J. Raizer, M.E. Berens, L.C. Platanias, Differential response of glioma stem cells to arsenic trioxide therapy is regulated by MNK1 and mRNA translation. Mol Cancer Res 16, 32–46 (2018)PubMedCrossRefGoogle Scholar
  110. 110.
    F. Morrish, C. Giedt, D. Hockenbery, c-MYC apoptotic function is mediated by target genes. Genes Dev 17, 240–255 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Z. Li et al., The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Diff 24, 59–71 (2017)CrossRefGoogle Scholar
  112. 112.
    H. Kurihara, R. Maruyama, K. Ishiguro, S. Kanno, I. Yamamoto, K. Ishigami, K. Mitsuhashi, H. Igarashi, M. Ito, T. Tanuma, Y. Sukawa, K. Okita, T. Hasegawa, K. Imai, H. Yamamoto, Y. Shinomura, K. Nosho, The relationship between EZH2 expression and microRNA-31 in colorectal cancer and the role in evolution of the serrated pathway. Oncotarget 7, 12704–12717 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    A.P. Russell, S. Lamon, H. Boon, S. Wada, I. Güller, E.L. Brown, A.V. Chibalin, J.R. Zierath, R.J. Snow, N. Stepto, G.D. Wadley, T. Akimoto, Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol 591, 4637–4653 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    B. Kunkle, Q. Felty, G. Narasimhan, F. Trevino, D. Roy. Meta-analysis of brain tumor microarray data using Oncomine identifies NRF1, TFAM and MYC co-expressed genes: Its implications in the development of childhood brain tumors. 18th World IMACS / MODSIM Congress, Cairns, Australia 720–726 (2009)Google Scholar
  115. 115.
    W.R. Taylor, A.H. Schonthal, J. Galante, G.R. Stark, p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 276, 1998–2006 (2001)PubMedCrossRefGoogle Scholar
  116. 116.
    T.L. Born, J.A. Frost, A. Schönthal, G.C. Prendergast, J.R. Feramisco, C-Myc cooperates with activated Ras to induce the cdc2 promoter. Mol Cell Biol 14, 5710–5718 (1994)PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    I.B. Rosenwald, D.B. Rhoads, L.D. Callanan, K.J. Isselbacher, E.V. Schmidt, Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2a in response to growth induction by c-myc. Proc Natl Acad Sci U S A 90, 6175–6178 (1993)PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    V.O. Okoh, Q. Felty, J. Parkash, R. Poppiti, D. Roy, Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One 8, e54206 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    M.V. Oli, M.M. Grober, G. Giurato, M. Ravo, L. Cicatiello, M.R.D. Filippo, L. Ferraro, G. Nassa, M.F. Papa, O. Paris, R. Tarallo, S. Luo, G.P. Schroth, V.B.A. Weisz, Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics 12, 1471–2164 (2011)Google Scholar
  120. 120.
    I. Riz, R.G. Hawley, G1/S transcriptional networks modulated by the HOX11/TLX1 oncogene of T-cell acute lymphoblastic leukemia. Oncogene 24, 5561–5575 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    R. Tongbai, G. Idelman, S.H. Nordgard, W. Cui, J.L. Jacobs, C.M. Haggerty, S.J. Chanock, A.L. Borrensen-Dale, G. Livingston, P. Shaunessy, C.H. Chiang, V.N. Kristensen, S. Bilke, K. Gardner, Transcriptional networks inferred from molecular signatures of breast cancer. Am J Pathol 172, 495–509 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    F. Li, Y. Wang, K.I. Zeller, J.J. Potter, D.R. Wonsey, K.A. O’Donnell, J.W. Kim, J.T. Yustein, L.A. Lee, C.V. Dang, Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25, 6225–6234 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    R. Elkon, K.I. Zeller, C. Linhart, C.V. Dang, R. Shamir, Y. Shiloh, In silico identification of transcriptional regulators associated with c-Myc. Nucleic Acids Res 32, 4955–4961 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    M. Collu-Marchese, M. Shuen, M. Pauly, A. Saleem, D.A. Hood, The regulation of mitochondrial transcription factor a (Tfam) expression during skeletal muscle cell differentiation. Biosci Rep 35, e00221 (2015)PubMedPubMedCentralGoogle Scholar
  125. 125.
    M. Lynch, L. Chen, M.J. Ravitz, S. Mehtani, K. Korenblat, M.J. Pazin, E.V. Schmidt, hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 25, 6436–6453 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    L. Zhang, H. Yu, P. Wang, Q. Ding, Z. Wang, Screening of transcription factors with transcriptional initiation activity. Gene 531, 64–70 (2013)PubMedCrossRefGoogle Scholar
  127. 127.
    W. Mao, D. Kostka, M. Chikina, Modeling enhancer-promoter interactions with attention-based neural networks bioRxiv (2017).  https://doi.org/10.1101/219667
  128. 128.
    S. Mahara, W.J. Chng, Q. Yu, Molecular switch of EZH2 in hypoxia. Cell Cycle 15, 3007–3008 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    M.R. Doe, J.M. Ascano, M. Kaur, M.D. Cole, Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res 72, 949–957 (2012)PubMedCrossRefGoogle Scholar
  130. 130.
    B.-K. Lee, A.A. Bhinge, V.R. Iyer, Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res 39, 3558–3573 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    S. Terry, S. Buart, T.Z. Tan, G. Gros, M.Z. Noman, J.B. Lorens, F. Mami-Chouaib, J.P. Thiery, S. Chouaib, Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: Consequences on susceptibility to cell-mediated cytotoxicity. OncoImmunology 6, 2 (2017)CrossRefGoogle Scholar
  132. 132.
    S. Moniz, D. Bandarra, J. Biddlestone, K.J. Campbell, D. Komander, A. Bremm, S. Rocha, Cezanne regulates E2F1-dependent HIF2α expression. J Cell Sci 128, 3082–3093 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    S.T. Shors, J.S.E. Bassey, S.J. Harkin, B. Safer, Formation of alpha-pal/max heterodimers synergistically activates the eIF2-alpha promoter. J Biol Chem 273, 34703–34709 (1998)PubMedCrossRefGoogle Scholar
  134. 134.
    D. Kumari, A. Gabrielian, D. Wheeler, K. Usdin, The roles of Sp1, Sp3, USF1/USF2 and NRF-1 in the regulation and three-dimensional structure of the fragile X mental retardation gene promoter. Biochem J 386, 297–303 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    D.E. Fisher, L.A. Parent, P.A. Sharp, Myc/max and other helix-loop-helix/leucine zipper proteins bend DNA toward the minor groove. Proc Natl Acad Sci U S A 89, 11779–11783 (1992)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  1. 1.Department of Environmental Health SciencesFlorida International UniversityMiamiUSA

Personalised recommendations