Cellular Oncology

, Volume 41, Issue 4, pp 455–462 | Cite as

AAA+ ATPases Reptin and Pontin as potential diagnostic and prognostic biomarkers in salivary gland cancer - a short report

  • Jan-Henrik MikeschEmail author
  • Wolfgang Hartmann
  • Linus Angenendt
  • Otmar Huber
  • Christoph Schliemann
  • Maria Francisca Arteaga
  • Eva Wardelmann
  • Claudia Rudack
  • Wolfgang E. Berdel
  • Markus Stenner
  • Inga GrünewaldEmail author



Salivary gland cancer (SGC) is a rare and heterogeneous disease with significant differences in recurrence and metastasis characteristics. As yet, little is known about the mechanisms underlying the initiation and/or progression of these diverse tumors. In recent years, the AAA+ ATPase family members Pontin (RuvBL1, Tip49a) and Reptin (RuvBL2, Tip49b) have been implicated in various processes, including transcription regulation, chromatin remodeling and DNA damage repair, that are frequently deregulated in cancer. The aim of this study was to assess the clinical and functional significance of Reptin and Pontin expression in SGC.


Immunohistochemical staining of Pontin, Reptin, β-catenin, Cyclin D1, TP53 and MIB-1 was performed on a collection of 94 SGC tumor samples comprising 13 different histological subtypes using tissue microarrays.


We found that Reptin and Pontin were expressed in the majority of SGC samples across all histological subtypes. Patients with a high Reptin expression showed a significantly inferior 5-year overall survival rate compared to patients with a low Reptin expression (47.7% versus 78.3%; p = 0.033), whereas no such difference was observed for Pontin. A high Reptin expression strongly correlated with a high expression of the proliferation marker MIB-1 (p = 0.003), the cell cycle regulator Cyclin D1 (p = 0.006), accumulation of TP53 as a surrogate p53 mutation marker (p = 0.042) and cytoplasmic β-catenin expression (p = 0.002). Increased Pontin expression was found to significantly correlate with both cytoplasmic and nuclear β-catenin expression (p = 0.037 and p = 0.018, respectively), which is indicative for its oncogenic function.


Our results suggest a role of Reptin and Pontin in SGC tumor progression and/or patient survival. Therefore, SGC patients exhibiting a high Reptin expression may benefit from more aggressive therapeutic regimens. Future studies should clarify whether such patients may be considered for more radical surgery, extended adjuvant therapy and/or targeted therapy.


Salivary gland cancer AAA+ ATPases Reptin Pontin β-catenin 



We thank Inka Buchroth and Gabriele Naber for their expert technical support.


The W.E.B. laboratory is supported by the Deutsche Forschungsgemeinschaft (DFG), grant DFG EXC 1003, Cells in Motion, Cluster of Excellence.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    M. Guzzo, L.D. Locati, F.J. Prott, G. Gatta, M. McGurk, L. Licitra, Major and minor salivary gland tumors. Crit Rev Oncol Hematol 74, 134–148 (2010). CrossRefPubMedGoogle Scholar
  2. 2.
    R.J. Zarbo, Salivary gland neoplasia: A review for the practicing pathologist. Mod Pathol 15, 298–323 (2002). CrossRefPubMedGoogle Scholar
  3. 3.
    A. Skalova, D.R. Gnepp, J.S. Lewis Jr., J.L. Hunt, J.A. Bishop, H. Hellquist, A. Rinaldo, V. Vander Poorten, A. Ferlito, Newly described entities in salivary gland pathology. Am J Surg Pathol 41, e33–e47 (2017). CrossRefPubMedGoogle Scholar
  4. 4.
    A. Busch, L. Bauer, E. Wardelmann, C. Rudack, I. Grunewald, M. Stenner, Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer. J Clin Pathol 70, 403–409 (2017). CrossRefPubMedGoogle Scholar
  5. 5.
    I. Grunewald, M. Trautmann, A. Busch, L. Bauer, S. Huss, P. Schweinshaupt, C. Vollbrecht, M. Odenthal, A. Quaas, R. Buttner, M.F. Meyer, D. Beutner, K.B. Huttenbrink, E. Wardelmann, M. Stenner, W. Hartmann, MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas. Oncotarget 7, 75261–75272 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    I. Grunewald, C. Vollbrecht, J. Meinrath, M.F. Meyer, L.C. Heukamp, U. Drebber, A. Quaas, D. Beutner, K.B. Huttenbrink, E. Wardelmann, W. Hartmann, R. Buttner, M. Odenthal, M. Stenner, Targeted next generation sequencing of parotid gland cancer uncovers genetic heterogeneity. Oncotarget 6, 18224–18237 (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    G. Stenman, F. Persson, M.K. Andersson, Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncol 50, 683–690 (2014). CrossRefPubMedGoogle Scholar
  8. 8.
    J.G. Armstrong, L.B. Harrison, R.H. Spiro, D.E. Fass, E.W. Strong, Z.Y. Fuks, Malignant tumors of major salivary gland origin. A matched-pair analysis of the role of combined surgery and postoperative radiotherapy. Arch Otolaryngol Head Neck Surg 116, 290–293 (1990)CrossRefPubMedGoogle Scholar
  9. 9.
    S. Sood, M. McGurk, F. Vaz, Management of Salivary Gland Tumours: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol 130, S142–S149 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    E.S. Choi, S. Oh, B. Jang, H.J. Yu, J.A. Shin, N.P. Cho, I.H. Yang, D.H. Won, H.J. Kwon, S.D. Hong, S.D. Cho, Silymarin and its active component silibinin act as novel therapeutic alternatives for salivary gland cancer by targeting the ERK1/2-Bim signaling cascade. Cell Oncol 40, 235–246 (2017). CrossRefGoogle Scholar
  11. 11.
    P.M. Matias, S.H. Baek, T.M. Bandeiras, A. Dutta, W.A. Houry, O. Llorca, J. Rosenbaum, The AAA+ proteins Pontin and Reptin enter adult age: From understanding their basic biology to the identification of selective inhibitors. Front Mol Biosci 2, 17 (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    A. Grigoletto, P. Lestienne, J. Rosenbaum, The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta 1815, 147–157 (2011). PubMedCrossRefGoogle Scholar
  13. 13.
    O. Huber, L. Menard, V. Haurie, A. Nicou, D. Taras, J. Rosenbaum, Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res 68, 6873–6876 (2008). CrossRefPubMedGoogle Scholar
  14. 14.
    S. Jha, A. Dutta, RVB1/RVB2: Running rings around molecular biology. Mol Cell 34, 521–533 (2009). CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    M.L. Carlson, E.T. Wilson, S.M. Prescott, Regulation of COX-2 transcription in a colon cancer cell line by Pontin52/TIP49a. Mol Cancer 2, 42 (2003). CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    M.M. Maslon, R. Hrstka, B. Vojtesek, T.R. Hupp, A divergent substrate-binding loop within the pro-oncogenic protein anterior gradient-2 forms a docking site for Reptin. J Mol Biol 404, 418–438 (2010). CrossRefPubMedGoogle Scholar
  17. 17.
    J.C. Lauscher, S. Elezkurtaj, S. Dullat, S. Lipka, J. Grone, H.J. Buhr, O. Huber, M. Kruschewski, Increased Pontin expression is a potential predictor for outcome in sporadic colorectal carcinoma. Oncol Rep 28, 1619–1624 (2012). CrossRefPubMedGoogle Scholar
  18. 18.
    J.C. Lauscher, C. Loddenkemper, L. Kosel, J. Grone, H.J. Buhr, O. Huber, Increased pontin expression in human colorectal cancer tissue. Hum Pathol 38, 978–985 (2007). CrossRefPubMedGoogle Scholar
  19. 19.
    J. Ren, W. Li, H. Liu, L. Yan, W. Jiao, D. Li, Y. Tang, G. Gu, Z. Xu, Overexpression of reptin in renal cell carcinoma contributes to tumor malignancies and its inhibition triggers senescence of cancer cells. Urol Oncol 31, 1358–1366 (2013). CrossRefPubMedGoogle Scholar
  20. 20.
    V. Haurie, L. Menard, A. Nicou, C. Touriol, P. Metzler, J. Fernandez, D. Taras, P. Lestienne, C. Balabaud, P. Bioulac-Sage, H. Prats, J. Zucman-Rossi, J. Rosenbaum, Adenosine triphosphatase pontin is overexpressed in hepatocellular carcinoma and coregulated with reptin through a new posttranslational mechanism. Hepatology 50, 1871–1883 (2009). CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    O. Breig, S. Bras, N. Martinez Soria, D. Osman, O. Heidenreich, M. Haenlin, L. Waltzer, Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia 28, 1271–1279 (2014). CrossRefPubMedGoogle Scholar
  22. 22.
    J. Elkaim, M. Castroviejo, D. Bennani, S. Taouji, N. Allain, M. Laguerre, J. Rosenbaum, J. Dessolin, P. Lestienne, First identification of small-molecule inhibitors of Pontin by combining virtual screening and enzymatic assay. Biochem J 443, 549–559 (2012). CrossRefPubMedGoogle Scholar
  23. 23.
    A. Bauer, O. Huber, R. Kemler, Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci U S A 95, 14787–14792 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    A. Bauer, S. Chauvet, O. Huber, F. Usseglio, U. Rothbacher, D. Aragnol, R. Kemler, J. Pradel, Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 19, 6121–6130 (2000). CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    O. Tetsu, F. McCormick, Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999). CrossRefPubMedGoogle Scholar
  26. 26.
    A. Skalova, T. Vanecek, R. Sima, J. Laco, I. Weinreb, B. Perez-Ordonez, I. Starek, M. Geierova, R.H. Simpson, F. Passador-Santos, A. Ryska, I. Leivo, Z. Kinkor, M. Michal, Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: A hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 34, 599–608 (2010). PubMedCrossRefGoogle Scholar
  27. 27.
    N. Friedrichs, L. Kriegl, C. Poremba, K.L. Schaefer, H.E. Gabbert, A. Shimomura, E. Paggen, S. Merkelbach-Bruse, R. Buettner, Pitfalls in the detection of t(11;22) translocation by fluorescence in situ hybridization and RT-PCR: A single-blinded study. Diagn Mol Pathol 15, 83–89 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    H.U. Schildhaus, L.C. Heukamp, S. Merkelbach-Bruse, K. Riesner, K. Schmitz, E. Binot, E. Paggen, K. Albus, W. Schulte, Y.D. Ko, A. Schlesinger, S. Ansen, W. Engel-Riedel, M. Brockmann, M. Serke, U. Gerigk, S. Huss, F. Goke, S. Perner, K. Hekmat, K.F. Frank, M. Reiser, R. Schnell, M. Bos, C. Mattonet, M. Sos, E. Stoelben, J. Wolf, T. Zander, R. Buettner, Definition of a fluorescence in-situ hybridization score identifies high- and low-level FGFR1 amplification types in squamous cell lung cancer. Mod Pathol 25, 1473–1480 (2012). CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    J. Weiske, O. Huber, The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-beta-catenin-mediated transcription. J Cell Sci 118, 3117–3129 (2005). CrossRefPubMedGoogle Scholar
  30. 30.
    J.H. Kim, B. Kim, L. Cai, H.J. Choi, K.A. Ohgi, C. Tran, C. Chen, C.H. Chung, O. Huber, D.W. Rose, C.L. Sawyers, M.G. Rosenfeld, S.H. Baek, Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature 434, 921–926 (2005). CrossRefPubMedGoogle Scholar
  31. 31.
    L. Menard, D. Taras, A. Grigoletto, V. Haurie, A. Nicou, N. Dugot-Senant, P. Costet, B. Rousseau, J. Rosenbaum, In vivo silencing of Reptin blocks the progression of human hepatocellular carcinoma in xenografts and is associated with replicative senescence. J Hepatol 52, 681–689 (2010). CrossRefPubMedGoogle Scholar
  32. 32.
    X. Zhang, J. Ren, L. Yan, Y. Tang, W. Zhang, D. Li, Y. Zang, F. Kong, Z. Xu, Cytoplasmic expression of pontin in renal cell carcinoma correlates with tumor invasion, metastasis and patients' survival. PLoS One 10, e0118659 (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    M.V. Suzzi, A. Alessi, C. Bertarelli, A. Cancellieri, L. Procaccio, D. Dall'olio, P. Laudadio, Prognostic relevance of cell proliferation in major salivary gland carcinomas. Acta Otorhinolaryngol Ital 25, 161–168 (2005)PubMedGoogle Scholar
  34. 34.
    C.J. Gottardi, E. Wong, B.M. Gumbiner, E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 153, 1049–1060 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    C.J. Gottardi, B.M. Gumbiner, Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167, 339–349 (2004). CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    W. Rottbauer, A.J. Saurin, H. Lickert, X. Shen, C.G. Burns, Z.G. Wo, R. Kemler, R. Kingston, C. Wu, M. Fishman, Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 111, 661–672 (2002)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  1. 1.Department of Medicine AUniversity Hospital of MünsterMünsterGermany
  2. 2.Gerhard-Domagk-Institute for PathologyUniversity Hospital of MünsterMünsterGermany
  3. 3.Department of Biochemistry IIJena University HospitalJenaGermany
  4. 4.Department of Otorhinolaryngology, Head and Neck Surgery, School of MedicineUniversity Hospital of MünsterMünsterGermany

Personalised recommendations