The versatile role of exosomes in cancer progression: diagnostic and therapeutic implications

  • Vignesh Sundararajan
  • Fazlul H. Sarkar
  • Thamil Selvee Ramasamy
Review
  • 78 Downloads

Abstract

Background

Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules.

Conclusions

This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.

Keywords

Exosomes Extracellular vesicles Metastasis Tumour microenvironment Anti-cancer therapeutics Pre-metastatic niche Angiogenesis Metastasis Drug resistance Epithelial-mesenchymal transition 

Notes

Acknowledgements

This work was supported by University of Malaya Programme Grant RP032-14HTM. The authors would like to thank Miss Yew Hong Wen, from Stem Cell Biology Laboratory, for her assistance in preparing the artwork and figures.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S.E.L. Andaloussi, I. Mager, X.O. Breakefield, M.J. Wood, Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013)Google Scholar
  2. 2.
    R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006)PubMedGoogle Scholar
  3. 3.
    D.D. Yu, Y. Wu, H.Y. Shen, M.M. Lv, W.X. Chen, X.H. Zhang, S.L. Zhong, J.H. Tang, J.H. Zhao, Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 106, 959–964 (2015)PubMedPubMedCentralGoogle Scholar
  4. 4.
    C. Thery, L. Zitvogel, S. Amigorena, Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002)PubMedGoogle Scholar
  5. 5.
    L. Muller, M. Mitsuhashi, P. Simms, W.E. Gooding, T.L. Whiteside, Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci. Rep. 6, 20254 (2016)PubMedPubMedCentralGoogle Scholar
  6. 6.
    H. Zhao, L. Yang, J. Baddour, A. Achreja, V. Bernard, T. Moss, J.C. Marini, T. Tudawe, E.G. Seviour, F.A. San Lucas, H. Alvarez, S. Gupta, S.N. Maiti, L. Cooper, D. Peehl, P.T. Ram, A. Maitra, D. Nagrath, Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. elife 5, e10250 (2016)PubMedPubMedCentralGoogle Scholar
  7. 7.
    A.S. Azmi, B. Bao, F.H. Sarkar, Exosomes in cancer development, metastasis and drug resistance: a comprehensive review. Cancer Metastasis Rev. 32, 623–642 (2013).  https://doi.org/10.1007/s10555-013-9441-9 PubMedGoogle Scholar
  8. 8.
    S.N. Chatterjee, J. Das, Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J. Gen. Microbiol. 49, 1–11 (1967)PubMedGoogle Scholar
  9. 9.
    T.N. Ellis, M.J. Kuehn, Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81–94 (2010)PubMedPubMedCentralGoogle Scholar
  10. 10.
    X. Yu, S.L. Harris, A.J. Levine, The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006)PubMedGoogle Scholar
  11. 11.
    A. Lespagnol, D. Duflaut, C. Beekman, L. Blanc, G. Fiucci, J.C. Marine, M. Vidal, R. Amson, A. Telerman, Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15, 1723–1733 (2008)PubMedGoogle Scholar
  12. 12.
    C. Thery, M. Ostrowski, E. Segura, Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009)PubMedGoogle Scholar
  13. 13.
    W. Li, Y. Hu, T. Jiang, Y. Han, G. Han, J. Chen, X. Li, Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64. APMIS 122, 1080–1087 (2014)PubMedGoogle Scholar
  14. 14.
    I. Parolini, C. Federici, C. Raggi, L. Lugini, S. Palleschi, A. De Milito, C. Coscia, E. Iessi, M. Logozzi, A. Molinari, M. Colone, M. Tatti, M. Sargiacomo, S. Fais, Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34211–34222 (2009)PubMedPubMedCentralGoogle Scholar
  15. 15.
    J. Faure, G. Lachenal, M. Court, J. Hirrlinger, C. Chatellard-Causse, B. Blot, J. Grange, G. Schoehn, Y. Goldberg, V. Boyer, F. Kirchhoff, G. Raposo, J. Garin, R. Sadoul, Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642–648 (2006)PubMedGoogle Scholar
  16. 16.
    G. Lachenal, K. Pernet-Gallay, M. Chivet, F.J. Hemming, A. Belly, G. Bodon, B. Blot, G. Haase, Y. Goldberg, R. Sadoul, Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 46, 409–418 (2011)PubMedGoogle Scholar
  17. 17.
    N. Blanchard, D. Lankar, F. Faure, A. Regnault, C. Dumont, G. Raposo, C. Hivroz, TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 168, 3235–3241 (2002)PubMedGoogle Scholar
  18. 18.
    C.T. Roberts Jr., P. Kurre, Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication. Cancer Res. 73, 3200–3205 (2013)PubMedGoogle Scholar
  19. 19.
    E.G. Trams, C.J. Lauter, N. Salem Jr., U. Heine, Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70 (1981)PubMedGoogle Scholar
  20. 20.
    B.T. Pan, R.M. Johnstone, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983)PubMedGoogle Scholar
  21. 21.
    C. Harding, J. Heuser, P. Stahl, Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984)PubMedGoogle Scholar
  22. 22.
    L. Balaj, R. Lessard, L. Dai, Y.J. Cho, S.L. Pomeroy, X.O. Breakefield, J. Skog, Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011)PubMedPubMedCentralGoogle Scholar
  23. 23.
    H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007)PubMedGoogle Scholar
  24. 24.
    C. Admyre, S.M. Johansson, K.R. Qazi, J.J. Filen, R. Lahesmaa, M. Norman, E.P. Neve, A. Scheynius, S. Gabrielsson, Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969–1978 (2007)PubMedGoogle Scholar
  25. 25.
    M.P. Caby, D. Lankar, C. Vincendeau-Scherrer, G. Raposo, C. Bonnerot, Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17, 879–887 (2005)PubMedGoogle Scholar
  26. 26.
    R. Shi, P.Y. Wang, X.Y. Li, J.X. Chen, Y. Li, X.Z. Zhang, C.G. Zhang, T. Jiang, W.B. Li, W. Ding, S.J. Cheng, Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 6, 26971–26981 (2015)PubMedPubMedCentralGoogle Scholar
  27. 27.
    M. Gonzalez-Begne, B. Lu, X. Han, F.K. Hagen, A.R. Hand, J.E. Melvin, J.R. Yates, Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res. 8, 1304–1314 (2009)PubMedPubMedCentralGoogle Scholar
  28. 28.
    M. Tokuhisa, Y. Ichikawa, N. Kosaka, T. Ochiya, M. Yashiro, K. Hirakawa, T. Kosaka, H. Makino, H. Akiyama, C. Kunisaki, I. Endo, Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One 10, e0130472 (2015)PubMedPubMedCentralGoogle Scholar
  29. 29.
    T. Pisitkun, R.F. Shen, M.A. Knepper, Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. U. S. A. 101, 13368–13373 (2004)PubMedPubMedCentralGoogle Scholar
  30. 30.
    D.D. Taylor, C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008)PubMedGoogle Scholar
  31. 31.
    C. Thery, S. Amigorena, G. Raposo and A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3 22 (2006)Google Scholar
  32. 32.
    K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brugger, M. Simons, Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008)PubMedGoogle Scholar
  33. 33.
    T. Wollert, J.H. Hurley, Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010)PubMedPubMedCentralGoogle Scholar
  34. 34.
    T. Ravid, J.M. Heidinger, P. Gee, E.M. Khan, T. Goldkorn, c-Cbl-mediated ubiquitinylation is required for epidermal growth factor receptor exit from the early endosomes. J. Biol. Chem. 279, 37153–37162 (2004)PubMedGoogle Scholar
  35. 35.
    L. Duan, Y. Miura, M. Dimri, B. Majumder, I.L. Dodge, A.L. Reddi, A. Ghosh, N. Fernandes, P. Zhou, K. Mullane-Robinson, N. Rao, S. Donoghue, R.A. Rogers, D. Bowtell, M. Naramura, H. Gu, V. Band, H. Band, Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J. Biol. Chem. 278, 28950–28960 (2003)PubMedGoogle Scholar
  36. 36.
    O. Schmidt, D. Teis, The ESCRT machinery. Curr. Biol. 22, R116–R120 (2012)PubMedPubMedCentralGoogle Scholar
  37. 37.
    S. Stuffers, C. Sem Wegner, H. Stenmark, A. Brech, Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009)PubMedGoogle Scholar
  38. 38.
    T. Kajimoto, T. Okada, S. Miya, L. Zhang, S. Nakamura, Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun. 4, 2712 (2013)PubMedGoogle Scholar
  39. 39.
    D. Perez-Hernandez, C. Gutierrez-Vazquez, I. Jorge, S. Lopez-Martin, A. Ursa, F. Sanchez-Madrid, J. Vazquez, M. Yanez-Mo, The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 288, 11649–11661 (2013)PubMedPubMedCentralGoogle Scholar
  40. 40.
    A.V. Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820, 940–948 (2012)PubMedGoogle Scholar
  41. 41.
    M. Record, K. Carayon, M. Poirot, S. Silvente-Poirot, Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841, 108–120 (2014)PubMedGoogle Scholar
  42. 42.
    F. Coutant, L. Perrin-Cocon, S. Agaugué, T. Delair, P. André, V. Lotteau, Mature dendritic cell generation promoted by lysophosphatidylcholine. J. Immunol. 169, 1688–1695 (2002)PubMedGoogle Scholar
  43. 43.
    L. Perrin-Cocon, S. Agaugué, F. Coutant, A. Masurel, S. Bezzine, G. Lambeau, P. André, V. Lotteau, Secretory phospholipase A2 induces dendritic cell maturation. Eur. J. Immunol. 34, 2293–2302 (2004)PubMedPubMedCentralGoogle Scholar
  44. 44.
    Q. Ge, Y. Zhou, J. Lu, Y. Bai, X. Xie, Z. Lu, miRNA in plasma exosome is stable under different storage conditions. Molecules 19, 1568–1575 (2014)PubMedGoogle Scholar
  45. 45.
    C. Kahlert, R. Kalluri, Exosomes in tumor microenvironment influence cancer progression and metastasis. J. Mol. Med. 91, 431–437 (2013)PubMedPubMedCentralGoogle Scholar
  46. 46.
    L.A. Mulcahy, R.C. Pink and D.R.F. Carter, Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3,  https://doi.org/10.3402/jev.v3403.24641 (2014)
  47. 47.
    T. Tian, Y.L. Zhu, Y.Y. Zhou, G.F. Liang, Y.Y. Wang, F.H. Hu, Z.D. Xiao, Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J. Biol. Chem. 289, 22258–22267 (2014)PubMedPubMedCentralGoogle Scholar
  48. 48.
    K.J. Svensson, H.C. Christianson, A. Wittrup, E. Bourseau-Guilmain, E. Lindqvist, L.M. Svensson, M. Morgelin, M. Belting, Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem. 288, 17713–17724 (2013)PubMedPubMedCentralGoogle Scholar
  49. 49.
    D. Zech, S. Rana, M.W. Büchler, M. Zöller, Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Commun. Signaling 10, 37 (2012)Google Scholar
  50. 50.
    S. Rana, S. Yue, D. Stadel, M. Zoller, Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44, 1574–1584 (2012)PubMedGoogle Scholar
  51. 51.
    T.I. Naslund, D. Paquin-Proulx, P.T. Paredes, H. Vallhov, J.K. Sandberg, S. Gabrielsson, Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS 28, 171–180 (2014)PubMedGoogle Scholar
  52. 52.
    J.R. Goldenring, A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer 13, 813–820 (2013)PubMedPubMedCentralGoogle Scholar
  53. 53.
    N. Jae, D.G. McEwan, Y. Manavski, R.A. Boon, S. Dimmeler, Rab7a and Rab27b control secretion of endothelial microRNA through extracellular vesicles. FEBS Lett. 589, 3182–3188 (2015)PubMedGoogle Scholar
  54. 54.
    S.N. Hurwitz, M.M. Conlon, M.A. Rider, N.C. Brownstein, D.G. Meckes Jr., Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J. Extracell. Vesicles 5, 31295 (2016)PubMedGoogle Scholar
  55. 55.
    C. Hsu, Y. Morohashi, S. Yoshimura, N. Manrique-Hoyos, S. Jung, M.A. Lauterbach, M. Bakhti, M. Gronborg, W. Mobius, J. Rhee, F.A. Barr, M. Simons, Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010)PubMedPubMedCentralGoogle Scholar
  56. 56.
    C.A. Thompson, A. Purushothaman, V.C. Ramani, I. Vlodavsky, R.D. Sanderson, Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J. Biol. Chem. 288, 10093–10099 (2013)PubMedPubMedCentralGoogle Scholar
  57. 57.
    A. Savina, C.M. Fader, M.T. Damiani, M.I. Colombo, Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005)PubMedGoogle Scholar
  58. 58.
    H.W. King, M.Z. Michael, J.M. Gleadle, Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12, 1–10 (2012)Google Scholar
  59. 59.
    A.Z. Ayob, T.S. Ramasamy, Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 25, 20 (2018)PubMedPubMedCentralGoogle Scholar
  60. 60.
    K. Al-Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha, J. Rak, Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008)PubMedGoogle Scholar
  61. 61.
    M.M. Valenzuela, H.R. Ferguson Bennit, A. Gonda, C.J. Diaz Osterman, A. Hibma, S. Khan, N.R. Wall, Exosomes secreted from human cancer cell lines contain inhibitors of apoptosis (IAP). Cancer Microenviron. 8, 65–73 (2015)PubMedPubMedCentralGoogle Scholar
  62. 62.
    E. Donnarumma, D. Fiore, M. Nappa, G. Roscigno, A. Adamo, M. Iaboni, V. Russo, A. Affinito, I. Puoti, C. Quintavalle, A. Rienzo, S. Piscuoglio, R. Thomas, G. Condorelli, Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8, 19592–19608 (2017)PubMedPubMedCentralGoogle Scholar
  63. 63.
    A. Ramteke, H. Ting, C. Agarwal, S. Mateen, R. Somasagara, A. Hussain, M. Graner, B. Frederick, R. Agarwal, G. Deep, Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol. Carcinog. 54, 554–565 (2015)PubMedGoogle Scholar
  64. 64.
    S. Bao, Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li, A.B. Hjelmeland, Q. Shi, R.E. McLendon, D.D. Bigner, J.N. Rich, Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006)PubMedGoogle Scholar
  65. 65.
    L. Ricci-Vitiani, R. Pallini, M. Biffoni, M. Todaro, G. Invernici, T. Cenci, G. Maira, E.A. Parati, G. Stassi, L.M. Larocca, R. De Maria, Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010)PubMedGoogle Scholar
  66. 66.
    P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)PubMedGoogle Scholar
  67. 67.
    C. Grange, M. Tapparo, F. Collino, L. Vitillo, C. Damasco, M.C. Deregibus, C. Tetta, B. Bussolati, G. Camussi, Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71, 5346–5356 (2011)PubMedGoogle Scholar
  68. 68.
    A. Conigliaro, V. Costa, A. Lo Dico, L. Saieva, S. Buccheri, F. Dieli, M. Manno, S. Raccosta, C. Mancone, M. Tripodi, G. De Leo, R. Alessandro, CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer 14, 155 (2015)PubMedPubMedCentralGoogle Scholar
  69. 69.
    E.J. Ekstrom, C. Bergenfelz, V. von Bulow, F. Serifler, E. Carlemalm, G. Jonsson, T. Andersson, K. Leandersson, WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol. Cancer 13, 88 (2014)PubMedPubMedCentralGoogle Scholar
  70. 70.
    S.K. Gopal, D.W. Greening, E.G. Hanssen, H.J. Zhu, R.J. Simpson, R.A. Mathias, Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget 7, 19709–19722 (2016)PubMedPubMedCentralGoogle Scholar
  71. 71.
    Y. Liu, F. Luo, B. Wang, H. Li, Y. Xu, X. Liu, L. Shi, X. Lu, W. Xu, L. Lu, Y. Qin, Q. Xiang, Q. Liu, STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 370, 125–135 (2016)PubMedGoogle Scholar
  72. 72.
    Y.K. Chan, H. Zhang, P. Liu, S.W. Tsao, M.L. Lung, N.K. Mak, R. Ngok-Shun Wong, P. Ying-Kit Yue, Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int. J. Cancer 137, 1830–1841 (2015)PubMedGoogle Scholar
  73. 73.
    K. Pakravan, S. Babashah, M. Sadeghizadeh, S.J. Mowla, M. Mossahebi-Mohammadi, F. Ataei, N. Dana, M. Javan, MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1alpha/VEGF signaling axis in breast cancer cells. Cell. Oncol. 40, 457–470 (2017)Google Scholar
  74. 74.
    H. Tadokoro, T. Umezu, K. Ohyashiki, T. Hirano, J.H. Ohyashiki, Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J. Biol. Chem. 288, 34343–34351 (2013)PubMedPubMedCentralGoogle Scholar
  75. 75.
    T. Umezu, H. Tadokoro, K. Azuma, S. Yoshizawa, K. Ohyashiki, J.H. Ohyashiki, Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124, 3748–3757 (2014)PubMedPubMedCentralGoogle Scholar
  76. 76.
    R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009)PubMedPubMedCentralGoogle Scholar
  77. 77.
    S. Shi, Q. Zhang, Y. Xia, B. You, Y. Shan, L. Bao, L. Li, Y. You, Z. Gu, Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am. J. Cancer Res. 6, 459–472 (2016)Google Scholar
  78. 78.
    C.A. Franzen, R.H. Blackwell, V. Todorovic, K.A. Greco, K.E. Foreman, R.C. Flanigan, P.C. Kuo, G.N. Gupta, Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogene 4, e163 (2015)Google Scholar
  79. 79.
    M. Aga, G.L. Bentz, S. Raffa, M.R. Torrisi, S. Kondo, N. Wakisaka, T. Yoshizaki, J.S. Pagano, J. Shackelford, Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33, 4613–4622 (2014)PubMedPubMedCentralGoogle Scholar
  80. 80.
    W. Qin, Y. Tsukasaki, S. Dasgupta, N. Mukhopadhyay, M. Ikebe, E.R. Sauter, Exosomes in human breast milk promote emt. Clin. Cancer Res. 22, 4517–4524 (2016)PubMedGoogle Scholar
  81. 81.
    J. Zhang, L. Ma, MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 31, 653–662 (2012)PubMedPubMedCentralGoogle Scholar
  82. 82.
    D. Xiao, S. Barry, D. Kmetz, M. Egger, J. Pan, S.N. Rai, J. Qu, K.M. McMasters, H. Hao, Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 376, 318–327 (2016)PubMedPubMedCentralGoogle Scholar
  83. 83.
    I.J. Fidler, The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003)PubMedGoogle Scholar
  84. 84.
    M. Rodriguez, J. Silva, A. Herrera, M. Herrera, C. Pena, P. Martin, B. Gil-Calderon, M.J. Larriba, M.J. Coronado, B. Soldevilla, V.S. Turrion, M. Provencio, A. Sanchez, F. Bonilla, V. Garcia-Barberan, Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer. Oncotarget 6, 40575–40587 (2015)PubMedPubMedCentralGoogle Scholar
  85. 85.
    T. Arita, D. Ichikawa, H. Konishi, S. Komatsu, A. Shiozaki, S. Ogino, Y. Fujita, H. Hiramoto, J. Hamada, K. Shoda, T. Kosuga, H. Fujiwara, K. Okamoto, E. Otsuji, Tumor exosome-mediated promotion of adhesion to mesothelial cells in gastric cancer cells. Oncotarget 7, 56855–56863 (2016)PubMedPubMedCentralGoogle Scholar
  86. 86.
    L. Li, C. Li, S. Wang, Z. Wang, J. Jiang, W. Wang, X. Li, J. Chen, K. Liu, C. Li, G. Zhu, Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver mir-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 76, 1770–1780 (2016)PubMedGoogle Scholar
  87. 87.
    J. Liao, R. Liu, Y.J. Shi, L.H. Yin, Y.P. Pu, Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int. J. Oncol. 48, 2567–2579 (2016)PubMedGoogle Scholar
  88. 88.
    M. Yang, J. Chen, F. Su, B. Yu, F. Su, L. Lin, Y. Liu, J.-D. Huang, E. Song, Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer 10, 1–13 (2011)Google Scholar
  89. 89.
    X.L. Bai, Q. Zhang, L.Y. Ye, F. Liang, X. Sun, Y. Chen, Q.D. Hu, Q.H. Fu, W. Su, Z. Chen, Z.P. Zhuang, T.B. Liang, Myocyte enhancer factor 2C regulation of hepatocellular carcinoma via vascular endothelial growth factor and Wnt/beta-catenin signaling. Oncogene 34, 4089–4097 (2015)PubMedGoogle Scholar
  90. 90.
    M.Y. Fong, W. Zhou, L. Liu, A.Y. Alontaga, M. Chandra, J. Ashby, A. Chow, S.T. O'Connor, S. Li, A.R. Chin, G. Somlo, M. Palomares, Z. Li, J.R. Tremblay, A. Tsuyada, G. Sun, M.A. Reid, X. Wu, P. Swiderski, X. Ren, Y. Shi, M. Kong, W. Zhong, Y. Chen, S.E. Wang, Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 17, 183–194 (2015)PubMedPubMedCentralGoogle Scholar
  91. 91.
    M.M. Gottesman, Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627 (2002)PubMedGoogle Scholar
  92. 92.
    W.X. Chen, X.M. Liu, M.M. Lv, L. Chen, J.H. Zhao, S.L. Zhong, M.H. Ji, Q. Hu, Z. Luo, J.Z. Wu, J.H. Tang, Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9, e95240 (2014)PubMedPubMedCentralGoogle Scholar
  93. 93.
    M.M. Lv, X.Y. Zhu, W.X. Chen, S.L. Zhong, Q. Hu, T.F. Ma, J. Zhang, L. Chen, J.H. Tang, J.H. Zhao, Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol. 35, 10773–10779 (2014)PubMedGoogle Scholar
  94. 94.
    C.L. Au Yeung, N.N. Co, T. Tsuruga, T.L. Yeung, S.Y. Kwan, C.S. Leung, Y. Li, E.S. Lu, K. Kwan, K.K. Wong, R. Schmandt, K.H. Lu, S.C. Mok, Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun. 7, 11150 (2016)PubMedPubMedCentralGoogle Scholar
  95. 95.
    Y. Hu, C. Yan, L. Mu, K. Huang, X. Li, D. Tao, Y. Wu, J. Qin, Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One 10, e0125625 (2015)PubMedPubMedCentralGoogle Scholar
  96. 96.
    R. Ji, B. Zhang, X. Zhang, J. Xue, X. Yuan, Y. Yan, M. Wang, W. Zhu, H. Qian, W. Xu, Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle 14, 2473–2483 (2015)PubMedPubMedCentralGoogle Scholar
  97. 97.
    T. Aung, B. Chapuy, D. Vogel, D. Wenzel, M. Oppermann, M. Lahmann, T. Weinhage, K. Menck, T. Hupfeld, R. Koch, L. Trumper, G.G. Wulf, Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc. Natl. Acad. Sci. U. S. A. 108, 15336–15341 (2011)PubMedPubMedCentralGoogle Scholar
  98. 98.
    V. Ciravolo, V. Huber, G.C. Ghedini, E. Venturelli, F. Bianchi, M. Campiglio, D. Morelli, A. Villa, P. Della Mina, S. Menard, P. Filipazzi, L. Rivoltini, E. Tagliabue, S.M. Pupa, Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J. Cell. Physiol. 227, 658–667 (2012)PubMedGoogle Scholar
  99. 99.
    R. Safaei, B.J. Larson, T.C. Cheng, M.A. Gibson, S. Otani, W. Naerdemann, S.B. Howell, Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther. 4, 1595–1604 (2005)PubMedGoogle Scholar
  100. 100.
    S. Loewer, M.N. Cabili, M. Guttman, Y.H. Loh, K. Thomas, I.H. Park, M. Garber, M. Curran, T. Onder, S. Agarwal, P.D. Manos, S. Datta, E.S. Lander, T.M. Schlaeger, G.Q. Daley, J.L. Rinn, Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010)PubMedPubMedCentralGoogle Scholar
  101. 101.
    Y. Pan, C. Li, J. Chen, K. Zhang, X. Chu, R. Wang, L. Chen, The emerging roles of long noncoding rna ror (lincrna-ror) and its possible mechanisms in human cancers. Cell. Physiol. Biochem. 40, 219–229 (2016)PubMedGoogle Scholar
  102. 102.
    K. Takahashi, I.K. Yan, T. Kogure, H. Haga, T. Patel, Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio. 4, 458–467 (2014)PubMedPubMedCentralGoogle Scholar
  103. 103.
    J. Fan, Y. Xing, X. Wen, R. Jia, H. Ni, J. He, X. Ding, H. Pan, G. Qian, S. Ge, A.R. Hoffman, H. Zhang, X. Fan, Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol. 16, 139 (2015)PubMedPubMedCentralGoogle Scholar
  104. 104.
    T.H. Cheung, T.A. Rando, Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329–340 (2013)PubMedGoogle Scholar
  105. 105.
    P.K. Lim, S.A. Bliss, S.A. Patel, M. Taborga, M.A. Dave, L.A. Gregory, S.J. Greco, M. Bryan, P.S. Patel, P. Rameshwar, Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71, 1550–1560 (2011)PubMedGoogle Scholar
  106. 106.
    M. Ono, N. Kosaka, N. Tominaga, Y. Yoshioka, F. Takeshita, R.-u. Takahashi, M. Yoshida, H. Tsuda, K. Tamura, T. Ochiya, Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 7, ra63 (2014)PubMedGoogle Scholar
  107. 107.
    S.A. Bliss, G. Sinha, O. Sandiford, L. Williams, D.J. Engelberth, K. Guiro, L.L. Isenalumhe, S.J. Greco, S. Ayer, M. Bryan, R. Kumar, N. Ponzio, P. Rameshwar, Mesenchymal stem cell-derived exosomes stimulates cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 76, 5832–5844 (2016)PubMedGoogle Scholar
  108. 108.
    M. Collado, M.A. Blasco, M. Serrano, Cellular senescence in cancer and aging. Cell 130, 223–233 (2007)PubMedGoogle Scholar
  109. 109.
    P. Kahlem, B. Dorken, C.A. Schmitt, Cellular senescence in cancer treatment: friend or foe? J. Clin. Invest. 113, 169–174 (2004)PubMedPubMedCentralGoogle Scholar
  110. 110.
    H.D. Skinner, V.C. Sandulache, T.J. Ow, R.E. Meyn, J.S. Yordy, B.M. Beadle, A.L. Fitzgerald, U. Giri, K.K. Ang, J.N. Myers, TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin. Cancer Res. 18, 290–300 (2012)PubMedGoogle Scholar
  111. 111.
    B. Jonchere, A. Vetillard, B. Toutain, D. Lam, A.C. Bernard, C. Henry, S. De Carne Trecesson, E. Gamelin, P. Juin, C. Guette, O. Coqueret, Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget 6, 409–426 (2015)PubMedGoogle Scholar
  112. 112.
    A.L.C. Ong, T.S. Ramasamy, Role of sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res. Rev. 43, 64–80 (2018)PubMedGoogle Scholar
  113. 113.
    X. Yu, T. Riley, A.J. Levine, The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 276, 2201–2212 (2009)PubMedGoogle Scholar
  114. 114.
    Y. Sun, W. Zheng, Z. Guo, Q. Ju, L. Zhu, J. Gao, L. Zhou, F. Liu, Y. Xu, Q. Zhan, Z. Zhou, W. Sun, X. Zhao, A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci. Rep. 6, 28083 (2016)PubMedPubMedCentralGoogle Scholar
  115. 115.
    N. Malaquin, A. Martinez, F. Rodier, Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp. Gerontol. 82, 39–49 (2016)PubMedGoogle Scholar
  116. 116.
    J.P. Coppe, K. Kauser, J. Campisi, C.M. Beausejour, Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568–29574 (2006)PubMedGoogle Scholar
  117. 117.
    X. Sun, M. Vale, E. Leung, J.R. Kanwar, R. Gupta, G.W. Krissansen, Mouse B7-H3 induces antitumor immunity. Gene Ther. 10, 1728–1734 (2003)PubMedGoogle Scholar
  118. 118.
    B.D. Lehmann, M.S. Paine, A.M. Brooks, J.A. McCubrey, R.H. Renegar, R. Wang, D.M. Terrian, Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008)PubMedGoogle Scholar
  119. 119.
    K. Weiner-Gorzel, E. Dempsey, M. Milewska, A. McGoldrick, V. Toh, A. Walsh, S. Lindsay, L. Gubbins, A. Cannon, D. Sharpe, J. O'Sullivan, M. Murphy, S.F. Madden, M. Kell, A. McCann, F. Furlong, Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 4, 745–758 (2015)PubMedPubMedCentralGoogle Scholar
  120. 120.
    F. Furlong, P. Fitzpatrick, S. O'Toole, S. Phelan, B. McGrogan, A. Maguire, A. O'Grady, M. Gallagher, M. Prencipe, A. McGoldrick, P. McGettigan, D. Brennan, O. Sheils, C. Martin, E. W. Kay, J. O'Leary, A. McCann, Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J. Pathol. 226, 746–755 (2012)PubMedPubMedCentralGoogle Scholar
  121. 121.
    B.W. van Balkom, O.G. de Jong, M. Smits, J. Brummelman, K. den Ouden, P.M. de Bree, M.A. van Eijndhoven, D.M. Pegtel, W. Stoorvogel, T. Wurdinger, M.C. Verhaar, Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121, 3997–4006 (2013)PubMedGoogle Scholar
  122. 122.
    S. Baroni, S. Romero-Cordoba, I. Plantamura, M. Dugo, E. D'Ippolito, A. Cataldo, G. Cosentino, V. Angeloni, A. Rossini, M.G. Daidone, M.V. Iorio, Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7, e2312 (2016)PubMedPubMedCentralGoogle Scholar
  123. 123.
    A. Gutkin, O. Uziel, E. Beery, J. Nordenberg, M. Pinchasi, H. Goldvaser, S. Henick, M. Goldberg, M. Lahav, Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells. Oncotarget 7, 59173–59188 (2016)PubMedPubMedCentralGoogle Scholar
  124. 124.
    J. Gu, H. Qian, L. Shen, X. Zhang, W. Zhu, L. Huang, Y. Yan, F. Mao, C. Zhao, Y. Shi, W. Xu, Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-beta/Smad pathway. PLoS One 7, e52465 (2012)PubMedPubMedCentralGoogle Scholar
  125. 125.
    J. Webber, R. Steadman, M.D. Mason, Z. Tabi, A. Clayton, Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70, 9621–9630 (2010)PubMedGoogle Scholar
  126. 126.
    A. Orimo, Y. Tomioka, Y. Shimizu, M. Sato, S. Oigawa, K. Kamata, Y. Nogi, S. Inoue, M. Takahashi, T. Hata, M. Muramatsu, Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin. Cancer Res. 7, 3097–3105 (2001)PubMedGoogle Scholar
  127. 127.
    L.M. Sobral, A. Bufalino, M.A. Lopes, E. Graner, T. Salo, R.D. Coletta, Myofibroblasts in the stroma of oral cancer promote tumorigenesis via secretion of activin A. Oral Oncol. 47, 840–846 (2011)PubMedGoogle Scholar
  128. 128.
    S. Vong, R. Kalluri, The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer 2, 1139–1145 (2011)PubMedPubMedCentralGoogle Scholar
  129. 129.
    C. Corrado, L. Saieva, S. Raimondo, A. Santoro, G. De Leo, R. Alessandro, Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. J. Cell. Mol. Med. 20, 1829–1839 (2016)PubMedPubMedCentralGoogle Scholar
  130. 130.
    L. Wu, X. Zhang, B. Zhang, H. Shi, X. Yuan, Y. Sun, Z. Pan, H. Qian, W. Xu, Exosomes derived from gastric cancer cells activate NF-kappaB pathway in macrophages to promote cancer progression. Tumour Biol. 37, 12169–12180 (2016)PubMedGoogle Scholar
  131. 131.
    M. Egeblad, E.S. Nakasone, Z. Werb, Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010)PubMedPubMedCentralGoogle Scholar
  132. 132.
    L.R. Languino, A. Singh, M. Prisco, G.J. Inman, A. Luginbuhl, J.M. Curry, A.P. South, Exosome-mediated transfer from the tumor microenvironment increases TGFbeta signaling in squamous cell carcinoma. Am. J. Transl. Res. 8, 2432–2437 (2016)PubMedPubMedCentralGoogle Scholar
  133. 133.
    M.C. Boelens, T.J. Wu, B.Y. Nabet, B. Xu, Y. Qiu, T. Yoon, D.J. Azzam, C. Twyman-Saint Victor, B.Z. Wiemann, H. Ishwaran, P.J. Ter Brugge, J. Jonkers, J. Slingerland, A.J. Minn, Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499–513 (2014)PubMedPubMedCentralGoogle Scholar
  134. 134.
    D.J. Prockop, Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997)PubMedGoogle Scholar
  135. 135.
    G. Lazennec, C. Jorgensen, Concise Review: Adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26, 1387–1394 (2008)PubMedPubMedCentralGoogle Scholar
  136. 136.
    B. Cousin, E. Ravet, S. Poglio, F. De Toni, M. Bertuzzi, H. Lulka, I. Touil, M. Andre, J.L. Grolleau, J.M. Peron, J.P. Chavoin, P. Bourin, L. Penicaud, L. Casteilla, L. Buscail, P. Cordelier, Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4, e6278 (2009)PubMedPubMedCentralGoogle Scholar
  137. 137.
    L. Qiao, Z.L. Xu, T.J. Zhao, L.H. Ye, X.D. Zhang, Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 269, 67–77 (2008)PubMedGoogle Scholar
  138. 138.
    Y. Yulyana, I.A. Ho, K.C. Sia, J.P. Newman, X.Y. Toh, B.B. Endaya, J.K. Chan, M. Gnecchi, H. Huynh, A.Y. Chung, K.H. Lim, H.S. Leong, N.G. Iyer, K.M. Hui, P.Y. Lam, Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/Akt signaling. Mol. Ther. 23, 746–756 (2015)PubMedPubMedCentralGoogle Scholar
  139. 139.
    O. Attar-Schneider, V. Zismanov, L. Drucker, M. Gottfried, Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumor Biol. 37, 4755–4765 (2016)Google Scholar
  140. 140.
    J.K. Lee, S.R. Park, B.K. Jung, Y.K. Jeon, Y.S. Lee, M.K. Kim, Y.G. Kim, J.Y. Jang, C.W. Kim, Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 8, e84256 (2013)PubMedPubMedCentralGoogle Scholar
  141. 141.
    A.Y. Khakoo, S. Pati, S.A. Anderson, W. Reid, M.F. Elshal, I.I. Rovira, A.T. Nguyen, D. Malide, C.A. Combs, G. Hall, J. Zhang, M. Raffeld, T.B. Rogers, W. Stetler-Stevenson, J.A. Frank, M. Reitz, T. Finkel, Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J. Exp. Med. 203, 1235–1247 (2006)PubMedPubMedCentralGoogle Scholar
  142. 142.
    J.F. Ji, B.P. He, S.T. Dheen, S.S.W. Tay, Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22, 415–427 (2004)PubMedGoogle Scholar
  143. 143.
    B.M. Beckermann, G. Kallifatidis, A. Groth, D. Frommhold, A. Apel, J. Mattern, A.V. Salnikov, G. Moldenhauer, W. Wagner, A. Diehlmann, R. Saffrich, M. Schubert, A.D. Ho, N. Giese, M.W. Buchler, H. Friess, P. Buchler, I. Herr, VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br. J. Cancer 99, 622–631 (2008)PubMedPubMedCentralGoogle Scholar
  144. 144.
    A. Schmidt, D. Ladage, T. Schinköthe, U. Klausmann, C. Ulrichs, F.J. Klinz, K. Brixius, S. Arnhold, B. Desai, U. Mehlhorn, R.H.G. Schwinger, P. Staib, K. Addicks, W. Bloch, Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24, 1750–1758 (2006)PubMedGoogle Scholar
  145. 145.
    C. Ke, J. Chen, Y. Guo, Z.W. Chen, J. Cai, Migration mechanism of mesenchymal stem cells studied by QD/NSOM. Biochim. Biophys. Acta Biomembr. 1848, 859–868 (2015)Google Scholar
  146. 146.
    G. Ren, X. Zhao, Y. Wang, X. Zhang, X. Chen, C. Xu, Z.R. Yuan, A.I. Roberts, L. Zhang, B. Zheng, T. Wen, Y. Han, A.B. Rabson, J.A. Tischfield, C. Shao, Y. Shi, CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell 11, 812–824 (2012)PubMedPubMedCentralGoogle Scholar
  147. 147.
    B.G. Cuiffo, A. Campagne, G.W. Bell, A. Lembo, F. Orso, E.C. Lien, M.K. Bhasin, M. Raimo, S.E. Hanson, A. Marusyk, D. El-Ashry, P. Hematti, K. Polyak, F. Mechta-Grigoriou, O. Mariani, S. Volinia, A. Vincent-Salomon, D. Taverna, A.E. Karnoub, MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell 15, 762–774 (2014)PubMedGoogle Scholar
  148. 148.
    A. De Boeck, P. Pauwels, K. Hensen, J.L. Rummens, W. Westbroek, A. Hendrix, D. Maynard, H. Denys, K. Lambein, G. Braems, C. Gespach, M. Bracke, O. De Wever, Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 62, 550–560 (2013)PubMedGoogle Scholar
  149. 149.
    Y. Huang, P. Yu, W. Li, G. Ren, A.I. Roberts, W. Cao, X. Zhang, J. Su, X. Chen, Q. Chen, P. Shou, C. Xu, L. Du, L. Lin, N. Xie, L. Zhang, Y. Wang, Y. Shi, p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene 33, 3830–3838 (2014)PubMedGoogle Scholar
  150. 150.
    K. McLean, Y. Gong, Y. Choi, N. Deng, K. Yang, S. Bai, L. Cabrera, E. Keller, L. McCauley, K.R. Cho, R.J. Buckanovich, Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J. Clin. Invest. 121, 3206–3219 (2011)PubMedPubMedCentralGoogle Scholar
  151. 151.
    F. Vianello, F. Villanova, V. Tisato, S. Lymperi, K.-K. Ho, A.R. Gomes, D. Marin, D. Bonnet, J. Apperley, E.W.F. Lam, F. Dazzi, Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 95, 1081–1089 (2010)PubMedPubMedCentralGoogle Scholar
  152. 152.
    L.Y. Lin, L.M. Du, K. Cao, Y. Huang, P.F. Yu, L.Y. Zhang, F.Y. Li, Y. Wang, Y.F. Shi, Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene 35, 6038–6042 (2016)PubMedPubMedCentralGoogle Scholar
  153. 153.
    X. Song, Y. Ding, G. Liu, X. Yang, R. Zhao, Y. Zhang, X. Zhao, G.J. Anderson, G. Nie, Cancer Cell-derived exosomes induce mitogen-activated protein kinase-dependent monocyte survival by transport of functional receptor tyrosine kinases. J. Biol. Chem. 291, 8453–8464 (2016)PubMedPubMedCentralGoogle Scholar
  154. 154.
    J. Choi, J. Gyamfi, H. Jang and J.S. Koo, The role of tumor-associated macrophage in breast cancer biology. Histol. Histopathol. 33, 133–145 (2018)Google Scholar
  155. 155.
    F. Leonard, L.T. Curtis, M.J. Ware, T. Nosrat, X. Liu, K. Yokoi, H.B. Frieboes, B. Godin, Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel. Front. Immunol. 8, 693 (2017)PubMedPubMedCentralGoogle Scholar
  156. 156.
    Z. Chen, X. Feng, C.J. Herting, V. Alvarez Garcia, K. Nie, W.W. Pong, R. Rasmussen, B. Dwivedi, S. Seby, S.A. Wolf, D.H. Gutmann, D. Hambardzumyan, Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77, 2266–2278 (2017)PubMedGoogle Scholar
  157. 157.
    M. Yin, X. Li, S. Tan, H.J. Zhou, W. Ji, S. Bellone, X. Xu, H. Zhang, A.D. Santin, G. Lou, W. Min, Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J. Clin. Invest. 126, 4157–4173 (2016)PubMedPubMedCentralGoogle Scholar
  158. 158.
    H. Shinohara, Y. Kuranaga, M. Kumazaki, N. Sugito, Y. Yoshikawa, T. Takai, K. Taniguchi, Y. Ito, Y. Akao, Regulated polarization of tumor-associated macrophages by mir-145 via colorectal cancer–derived extracellular vesicles. J. Immunol. 199, 1505–1515 (2017)PubMedGoogle Scholar
  159. 159.
    J. Wang, K. De Veirman, S. Faict, M.A. Frassanito, D. Ribatti, A. Vacca, E. Menu, Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J. Pathol. 239, 162–173 (2016)PubMedGoogle Scholar
  160. 160.
    U. Putz, J. Howitt, A. Doan, C.-P. Goh, L.-H. Low, J. Silke, S.-S. Tan, The tumor suppressor pten is exported in exosomes and has phosphatase activity in recipient cells. Sci. Signal. 5, ra70 (2012)PubMedGoogle Scholar
  161. 161.
    A.M.M.T. Reza, Y.-J. Choi, H. Yasuda, J.-H. Kim, Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci. Rep. 6, 38498 (2016)PubMedPubMedCentralGoogle Scholar
  162. 162.
    S.F. Ko, H.K. Yip, Y.Y. Zhen, C.C. Lee, C.C. Lee, C.C. Huang, S.H. Ng, J.W. Lin, Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer t-cell responses, and histopathological features. Stem Cells Int. 2015, 853506 (2015)PubMedPubMedCentralGoogle Scholar
  163. 163.
    F. Alcayaga-Miranda, P.L. Gonzalez, A. Lopez-Verrilli, M. Varas-Godoy, C. Aguila-Diaz, L. Contreras, M. Khoury, Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget 7, 44462–44477 (2016)PubMedPubMedCentralGoogle Scholar
  164. 164.
    H.D. Lee, B.H. Koo, Y.H. Kim, O.H. Jeon, D.S. Kim, Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. FASEB J. 26, 3084–3095 (2012)PubMedGoogle Scholar
  165. 165.
    B. Costa-Silva, N.M. Aiello, A.J. Ocean, S. Singh, H. Zhang, B.K. Thakur, A. Becker, A. Hoshino, M.T. Mark, H. Molina, J. Xiang, T. Zhang, T.M. Theilen, G. Garcia-Santos, C. Williams, Y. Ararso, Y. Huang, G. Rodrigues, T.L. Shen, K.J. Labori, I.M. Lothe, E.H. Kure, J. Hernandez, A. Doussot, S.H. Ebbesen, P.M. Grandgenett, M.A. Hollingsworth, M. Jain, K. Mallya, S.K. Batra, W.R. Jarnagin, R.E. Schwartz, I. Matei, H. Peinado, B.Z. Stanger, J. Bromberg, D. Lyden, Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015)PubMedPubMedCentralGoogle Scholar
  166. 166.
    J. Sceneay, M.J. Smyth, A. Moller, The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 32, 449–464 (2013)PubMedGoogle Scholar
  167. 167.
    H. Peinado, M. Aleckovic, S. Lavotshkin, I. Matei, B. Costa-Silva, G. Moreno-Bueno, M. Hergueta-Redondo, C. Williams, G. Garcia-Santos, C. Ghajar, A. Nitadori-Hoshino, C. Hoffman, K. Badal, B.A. Garcia, M.K. Callahan, J. Yuan, V.R. Martins, J. Skog, R.N. Kaplan, M.S. Brady, J.D. Wolchok, P.B. Chapman, Y. Kang, J. Bromberg, D. Lyden, Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012)PubMedPubMedCentralGoogle Scholar
  168. 168.
    T. Jung, D. Castellana, P. Klingbeil, I. Cuesta Hernandez, M. Vitacolonna, D.J. Orlicky, S.R. Roffler, P. Brodt, M. Zoller, CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11, 1093–1105 (2009)PubMedPubMedCentralGoogle Scholar
  169. 169.
    J.L. Hood, R.S. San and S.A. Wickline, Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71, 3792–3801 (2011)Google Scholar
  170. 170.
    C.A. Sanchez, E.I. Andahur, R. Valenzuela, E.A. Castellon, J.A. Fulla, C.G. Ramos, J.C. Trivino, Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 7, 3993–4008 (2016)PubMedGoogle Scholar
  171. 171.
    A. Hoshino, B. Costa-Silva, T.L. Shen, G. Rodrigues, A. Hashimoto, M. Tesic Mark, H. Molina, S. Kohsaka, A. Di Giannatale, S. Ceder, S. Singh, C. Williams, N. Soplop, K. Uryu, L. Pharmer, T. King, L. Bojmar, A.E. Davies, Y. Ararso, T. Zhang, H. Zhang, J. Hernandez, J.M. Weiss, V.D. Dumont-Cole, K. Kramer, L.H. Wexler, A. Narendran, G.K. Schwartz, J.H. Healey, P. Sandstrom, K.J. Labori, E.H. Kure, P.M. Grandgenett, M.A. Hollingsworth, M. de Sousa, S. Kaur, M. Jain, K. Mallya, S.K. Batra, W.R. Jarnagin, M.S. Brady, O. Fodstad, V. Muller, K. Pantel, A.J. Minn, M.J. Bissell, B.A. Garcia, Y. Kang, V.K. Rajasekhar, C.M. Ghajar, I. Matei, H. Peinado, J. Bromberg, D. Lyden, Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015)PubMedPubMedCentralGoogle Scholar
  172. 172.
    S. Keller, J. Ridinger, A.K. Rupp, J.W. Janssen, P. Altevogt, Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 9, 86 (2011)PubMedPubMedCentralGoogle Scholar
  173. 173.
    C.L. Chen, Y.F. Lai, P. Tang, K.Y. Chien, J.S. Yu, C.H. Tsai, H.W. Chen, C.C. Wu, T. Chung, C.W. Hsu, C.D. Chen, Y.S. Chang, P.L. Chang, Y.T. Chen, Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J. Proteome Res. 11, 5611–5629 (2012)PubMedGoogle Scholar
  174. 174.
    A. Kannan, R.B. Wells, S. Sivakumar, S. Komatsu, K.P. Singh, B. Samten, J.V. Philley, E.R. Sauter, M. Ikebe, S. Idell, S. Gupta, S. Dasgupta, Mitochondrial reprogramming regulates breast cancer progression. Clin. Cancer Res. 22, 3348–3360 (2016)PubMedGoogle Scholar
  175. 175.
    M.J. Donovan, M. Noerholm, S. Bentink, S. Belzer, J. Skog, V. O'Neill, J.S. Cochran, G.A. Brown, A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 18, 370–375 (2015)PubMedGoogle Scholar
  176. 176.
    M. He, H. Qin, T.C. Poon, S.C. Sze, X. Ding, N.N. Co, S.M. Ngai, T.F. Chan, N. Wong, Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis 36, 1008–1018 (2015)PubMedGoogle Scholar
  177. 177.
    G.K. Joshi, S. Deitz-McElyea, T. Liyanage, K. Lawrence, S. Mali, R. Sardar, M. Korc, Label-free nanoplasmonic-based short noncoding rna sensing at attomolar concentrations allows for quantitative and highly specific assay of microrna-10b in biological fluids and circulating exosomes. ACS Nano 9, 11075–11089 (2015)PubMedPubMedCentralGoogle Scholar
  178. 178.
    L. Manterola, E. Guruceaga, J. Gallego Perez-Larraya, M. Gonzalez-Huarriz, P. Jauregui, S. Tejada, R. Diez-Valle, V. Segura, N. Sampron, C. Barrena, I. Ruiz, A. Agirre, A. Ayuso, J. Rodriguez, A. Gonzalez, E. Xipell, A. Matheu, A. Lopez de Munain, T. Tunon, I. Zazpe, J. Garcia-Foncillas, S. Paris, J.Y. Delattre, M.M. Alonso, A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-Oncology 16, 520–527 (2014)PubMedPubMedCentralGoogle Scholar
  179. 179.
    J. Skog, T. Wurdinger, S. van Rijn, D.H. Meijer, L. Gainche, W.T. Curry, B.S. Carter, A.M. Krichevsky, X.O. Breakefield, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008)PubMedPubMedCentralGoogle Scholar
  180. 180.
    P. Kharaziha, D. Chioureas, D. Rutishauser, G. Baltatzis, L. Lennartsson, P. Fonseca, A. Azimi, K. Hultenby, R. Zubarev, A. Ullen, J. Yachnin, S. Nilsson, T. Panaretakis, Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. Oncotarget 6, 21740–21754 (2015)PubMedPubMedCentralGoogle Scholar
  181. 181.
    K. Kawakami, Y. Fujita, T. Kato, K. Mizutani, K. Kameyama, H. Tsumoto, Y. Miura, T. Deguchi, M. Ito, Integrin beta4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int. J. Oncol. 47, 384–390 (2015)PubMedGoogle Scholar
  182. 182.
    Y.Y. Yeh, H.G. Ozer, A.M. Lehman, K. Maddocks, L. Yu, A.J. Johnson, J.C. Byrd, Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood 125, 3297–3305 (2015)PubMedPubMedCentralGoogle Scholar
  183. 183.
    J. Silva, V. Garcia, M. Rodriguez, M. Compte, E. Cisneros, P. Veguillas, J.M. Garcia, G. Dominguez, Y. Campos-Martin, J. Cuevas, C. Pena, M. Herrera, R. Diaz, N. Mohammed, F. Bonilla, Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosom. Cancer 51, 409–418 (2012)PubMedGoogle Scholar
  184. 184.
    N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, T. Ochiya, Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010)PubMedPubMedCentralGoogle Scholar
  185. 185.
    M. Fabbri, A. Paone, F. Calore, R. Galli, E. Gaudio, R. Santhanam, F. Lovat, P. Fadda, C. Mao, G.J. Nuovo, N. Zanesi, M. Crawford, G.H. Ozer, D. Wernicke, H. Alder, M.A. Caligiuri, P. Nana-Sinkam, D. Perrotti, C.M. Croce, MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. U. S. A. 109, E2110–E2116 (2012)PubMedPubMedCentralGoogle Scholar
  186. 186.
    F. Chalmin, S. Ladoire, G. Mignot, J. Vincent, M. Bruchard, J.P. Remy-Martin, W. Boireau, A. Rouleau, B. Simon, D. Lanneau, A. De Thonel, G. Multhoff, A. Hamman, F. Martin, B. Chauffert, E. Solary, L. Zitvogel, C. Garrido, B. Ryffel, C. Borg, L. Apetoh, C. Rebe, F. Ghiringhelli, Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. 120, 457–471 (2010)PubMedPubMedCentralGoogle Scholar
  187. 187.
    A. Bobrie, S. Krumeich, F. Reyal, C. Recchi, L.F. Moita, M.C. Seabra, M. Ostrowski, C. Théry, Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 72, 4920–4930 (2012)PubMedGoogle Scholar
  188. 188.
    M. Ruiz-Martinez, A. Navarro, R.M. Marrades, N. Vinolas, S. Santasusagna, C. Munoz, J. Ramirez, L. Molins, M. Monzo, YKT6 expression, exosome release, and survival in non-small cell lung cancer. Oncotarget 7, 51515–51524 (2016)PubMedPubMedCentralGoogle Scholar
  189. 189.
    A. Bosque, L. Dietz, A. Gallego-Lleyda, M. Sanclemente, M. Iturralde, J. Naval, M.A. Alava, L. Martinez-Lostao, H.J. Thierse, A. Anel, Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein. Oncotarget 7, 29287–29305 (2016)PubMedPubMedCentralGoogle Scholar
  190. 190.
    C. Federici, F. Petrucci, S. Caimi, A. Cesolini, M. Logozzi, M. Borghi, S. D'Ilio, L. Lugini, N. Violante, T. Azzarito, C. Majorani, D. Brambilla, S. Fais, Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One 9, e88193 (2014)PubMedPubMedCentralGoogle Scholar
  191. 191.
    X.Q. Li, J.T. Liu, L.L. Fan, Y. Liu, L. Cheng, F. Wang, H.Q. Yu, J. Gao, W. Wei, H. Wang, G.P. Sun, Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy. Oncotarget 7, 24585–24595 (2016)PubMedPubMedCentralGoogle Scholar
  192. 192.
    H.G. Zhang, H. Kim, C. Liu, S. Yu, J. Wang, W.E. Grizzle, R.P. Kimberly, S. Barnes, Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim. Biophys. Acta 1773, 1116–1123 (2007)PubMedPubMedCentralGoogle Scholar
  193. 193.
    T.S. Ramasamy, A.Z. Ayob, H.H. Myint, S. Thiagarajah, F. Amini, Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell Int. 15, 96 (2015)PubMedPubMedCentralGoogle Scholar
  194. 194.
    S. Amigorena, Cancer immunotherapy using dendritic cell-derived exosomes. Medicina (B Aires) 60 Suppl 2, 51–54 (2000)Google Scholar
  195. 195.
    G.G. Romagnoli, B.B. Zelante, P.A. Toniolo, I.K. Migliori, J.A.M. Barbuto, Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets. Front. Immunol. 5, 692 (2014)PubMedGoogle Scholar
  196. 196.
    Q. Rao, B. Zuo, Z. Lu, X. Gao, A. You, C. Wu, Z. Du, H. Yin, Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and human in vitro. Hepatology 64, 456–472 (2016)PubMedGoogle Scholar
  197. 197.
    J. Wang, L. Wang, Z. Lin, L. Tao, M. Chen, More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol. Med. Rep. 9, 125–131 (2014)PubMedGoogle Scholar
  198. 198.
    M. Damo, D.S. Wilson, E. Simeoni, J.A. Hubbell, TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci. Rep. 5, 17622 (2015)PubMedPubMedCentralGoogle Scholar
  199. 199.
    Y. Xie, O. Bai, H. Zhang, J. Yuan, S. Zong, R. Chibbar, K. Slattery, M. Qureshi, Y. Wei, Y. Deng, J. Xiang, Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8(+) CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. J. Cell. Mol. Med. 14, 2655–2666 (2010)PubMedGoogle Scholar
  200. 200.
    L.H. Lv, Y.L. Wan, Y. Lin, W. Zhang, M. Yang, G.L. Li, H.M. Lin, C.Z. Shang, Y.J. Chen, J. Min, Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J. Biol. Chem. 287, 15874–15885 (2012)PubMedPubMedCentralGoogle Scholar
  201. 201.
    G. Fuhrmann, A. Serio, M. Mazo, R. Nair, M.M. Stevens, Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release 205, 35–44 (2015)PubMedGoogle Scholar
  202. 202.
    F. Aqil, H. Kausar, A.K. Agrawal, J. Jeyabalan, A.H. Kyakulaga, R. Munagala, R. Gupta, Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp. Mol. Pathol. 101, 12–21 (2016)PubMedGoogle Scholar
  203. 203.
    M.S. Kim, M.J. Haney, Y. Zhao, V. Mahajan, I. Deygen, N.L. Klyachko, E. Inskoe, A. Piroyan, M. Sokolsky, O. Okolie, S.D. Hingtgen, A.V. Kabanov, E.V. Batrakova, Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12, 655–664 (2016)PubMedGoogle Scholar
  204. 204.
    R. Munagala, F. Aqil, J. Jeyabalan, R.C. Gupta, Bovine milk-derived exosomes for drug delivery. Cancer Lett. 371, 48–61 (2016)PubMedGoogle Scholar
  205. 205.
    S.C. Jang, O.Y. Kim, C.M. Yoon, D.S. Choi, T.Y. Roh, J. Park, J. Nilsson, J. Lotvall, Y.K. Kim, Y.S. Gho, Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7, 7698–7710 (2013)PubMedGoogle Scholar
  206. 206.
    K. O'Brien, M.C. Lowry, C. Corcoran, V.G. Martinez, M. Daly, S. Rani, W.M. Gallagher, M.W. Radomski, R.A. MacLeod, L. O'Driscoll, miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget 6, 32774–32789 (2015)PubMedPubMedCentralGoogle Scholar
  207. 207.
    S. Ohno, M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa, N. Matsuyama, K. Fujita, T. Mizutani, T. Ohgi, T. Ochiya, N. Gotoh, M. Kuroda, Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013)PubMedGoogle Scholar
  208. 208.
    K.A. Greco, C.A. Franzen, K.E. Foreman, R.C. Flanigan, P.C. Kuo, G.N. Gupta, PLK-1 silencing in bladder cancer by sirna delivered with exosomes. Urology 91, e241–e247 (2016)Google Scholar
  209. 209.
    J.L. Munoz, S.A. Bliss, S.J. Greco, S.H. Ramkissoon, K.L. Ligon, P. Rameshwar, Delivery of functional anti-mir-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids 2, e126 (2013)PubMedPubMedCentralGoogle Scholar
  210. 210.
    H. Qi, C. Liu, L. Long, Y. Ren, S. Zhang, X. Chang, X. Qian, H. Jia, J. Zhao, J. Sun, X. Hou, X. Yuan, C. Kang, Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano 10, 3323–3333 (2016)PubMedGoogle Scholar
  211. 211.
    Y. Tian, S. Li, J. Song, T. Ji, M. Zhu, G.J. Anderson, J. Wei, G. Nie, A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35, 2383–2390 (2014)PubMedGoogle Scholar
  212. 212.
    T. Yang, P. Martin, B. Fogarty, A. Brown, K. Schurman, R. Phipps, V.P. Yin, P. Lockman, S. Bai, Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res. 32, 2003–2014 (2015)PubMedPubMedCentralGoogle Scholar
  213. 213.
    C.S. Hong, L. Muller, M. Boyiadzis, T.L. Whiteside, Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS One 9, e103310 (2014)PubMedPubMedCentralGoogle Scholar
  214. 214.
    C.J. Beckham, J. Olsen, P.N. Yin, C.H. Wu, H.J. Ting, F.K. Hagen, E. Scosyrev, E.M. Messing, Y.F. Lee, Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J. Urol. 192, 583–592 (2014)PubMedGoogle Scholar
  215. 215.
    C. Berrondo, J. Flax, V. Kucherov, A. Siebert, T. Osinski, A. Rosenberg, C. Fucile, S. Richheimer, C.J. Beckham, Expression of the long non-coding rna hotair correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One 11, e0147236 (2016)PubMedPubMedCentralGoogle Scholar
  216. 216.
    C. Eichelser, I. Stuckrath, V. Muller, K. Milde-Langosch, H. Wikman, K. Pantel, H. Schwarzenbach, Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 5, 9650–9663 (2014)PubMedPubMedCentralGoogle Scholar
  217. 217.
    S. Khan, H.F. Bennit, D. Turay, M. Perez, S. Mirshahidi, Y. Yuan, N.R. Wall, Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 14, 176 (2014)PubMedPubMedCentralGoogle Scholar
  218. 218.
    I. Vardaki, S. Ceder, D. Rutishauser, G. Baltatzis, T. Foukakis, T. Panaretakis, Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget 7, 74966–74978 (2016)PubMedPubMedCentralGoogle Scholar
  219. 219.
    J. Liu, H. Sun, X. Wang, Q. Yu, S. Li, X. Yu, W. Gong, Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int. J. Mol. Sci. 15, 758–773 (2014)PubMedPubMedCentralGoogle Scholar
  220. 220.
    T. Matsumura, K. Sugimachi, H. Iinuma, Y. Takahashi, J. Kurashige, G. Sawada, M. Ueda, R. Uchi, H. Ueo, Y. Takano, Y. Shinden, H. Eguchi, H. Yamamoto, Y. Doki, M. Mori, T. Ochiya, K. Mimori, Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br. J. Cancer 113, 275–281 (2015)PubMedPubMedCentralGoogle Scholar
  221. 221.
    H. Ogata-Kawata, M. Izumiya, D. Kurioka, Y. Honma, Y. Yamada, K. Furuta, T. Gunji, H. Ohta, H. Okamoto, H. Sonoda, M. Watanabe, H. Nakagama, J. Yokota, T. Kohno, N. Tsuchiya, Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 9, e92921 (2014)PubMedPubMedCentralGoogle Scholar
  222. 222.
    Q. Li, Y. Shao, X. Zhang, T. Zheng, M. Miao, L. Qin, B. Wang, G. Ye, B. Xiao, J. Guo, Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 36, 2007–2012 (2015)PubMedGoogle Scholar
  223. 223.
    H. Wang, L. Hou, A. Li, Y. Duan, H. Gao, X. Song, Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed. Res. Int. 2014, 864894 (2014)PubMedPubMedCentralGoogle Scholar
  224. 224.
    K. Sugimachi, T. Matsumura, H. Hirata, R. Uchi, M. Ueda, H. Ueo, Y. Shinden, T. Iguchi, H. Eguchi, K. Shirabe, T. Ochiya, Y. Maehara, K. Mimori, Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br. J. Cancer 112, 532–538 (2015)PubMedPubMedCentralGoogle Scholar
  225. 225.
    J. Wang, Y. Zhou, J. Lu, Y. Sun, H. Xiao, M. Liu, L. Tian, Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med. Oncol. 31, 148 (2014)PubMedGoogle Scholar
  226. 226.
    M. Guan, X. Chen, Y. Ma, L. Tang, L. Guan, X. Ren, B. Yu, W. Zhang, B. Su, MDA-9 and GRP78 as potential diagnostic biomarkers for early detection of melanoma metastasis. Tumour Biol. 36, 2973–2982 (2015)PubMedGoogle Scholar
  227. 227.
    E. Alegre, M.F. Sanmamed, C. Rodriguez, O. Carranza, S. Martin-Algarra, A. Gonzalez, Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch. Pathol. Lab. Med. 138, 828–832 (2014)PubMedGoogle Scholar
  228. 228.
    J. Klibi, T. Niki, A. Riedel, C. Pioche-Durieu, S. Souquere, E. Rubinstein, S. Le Moulec, J. Guigay, M. Hirashima, F. Guemira, D. Adhikary, J. Mautner, P. Busson, Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 113, 1957–1966 (2009)PubMedGoogle Scholar
  229. 229.
    Y. Li, Y. Zhang, F. Qiu, Z. Qiu, Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 32, 1976–1983 (2011)PubMedGoogle Scholar
  230. 230.
    Y. Tanaka, H. Kamohara, K. Kinoshita, J. Kurashige, T. Ishimoto, M. Iwatsuki, M. Watanabe, H. Baba, Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119, 1159–1167 (2013)PubMedGoogle Scholar
  231. 231.
    D.D. Taylor and C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008)Google Scholar
  232. 232.
    X. Ying, Q. Wu, X. Wu, Q. Zhu, X. Wang, L. Jiang, X. Chen and X. Wang, Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 7, 43076–43087 (2016)Google Scholar
  233. 233.
    C. Kahlert, S.A. Melo, A. Protopopov, J. Tang, S. Seth, M. Koch, J. Zhang, J. Weitz, L. Chin, A. Futreal, R. Kalluri, Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014)PubMedPubMedCentralGoogle Scholar
  234. 234.
    S.A. Melo, L.B. Luecke, C. Kahlert, A.F. Fernandez, S.T. Gammon, J. Kaye, V.S. LeBleu, E.A. Mittendorf, J. Weitz, N. Rahbari, C. Reissfelder, C. Pilarsky, M.F. Fraga, D. Piwnica-Worms, R. Kalluri, Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015)PubMedPubMedCentralGoogle Scholar
  235. 235.
    P.J. Mitchell, J. Welton, J. Staffurth, J. Court, M.D. Mason, Z. Tabi, A. Clayton, Can urinary exosomes act as treatment response markers in prostate cancer? J. Transl. Med. 7, 4 (2009)PubMedPubMedCentralGoogle Scholar
  236. 236.
    T. Kato, K. Mizutani, K. Kameyama, K. Kawakami, Y. Fujita, K. Nakane, Y. Kanimoto, H. Ehara, H. Ito, M. Seishima, T. Deguchi, M. Ito, Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. Urol. Oncol. 33, e315–e320 (2015)Google Scholar
  237. 237.
    X. Huang, T. Yuan, M. Liang, M. Du, S. Xia, R. Dittmar, D. Wang, W. See, B.A. Costello, F. Quevedo, W. Tan, D. Nandy, G.H. Bevan, S. Longenbach, Z. Sun, Y. Lu, T. Wang, S.N. Thibodeau, L. Boardman, M. Kohli, L. Wang, Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol. 67, 33–41 (2015)PubMedGoogle Scholar
  238. 238.
    James Graham Brown Cancer Center. Phase I clinical trial investigating the ability of plant exosomes to deliver curcumin to normal and malignant colon tissue. http://clinicaltrials.gov/show/NCT01294072. Accessed 16 September 2016
  239. 239.
    James Graham Brown Cancer Center. preliminary clinical trial investigating the ability of plant exosomes to abrogate oral mucositis induced by combined chemotherapy and radiation in head and neck cancer patients. http://clinicaltrials.gov/show/NCT01668849. Accessed 16 September 2016
  240. 240.
    B. Besse, M. Charrier, V. Lapierre, E. Dansin, O. Lantz, D. Planchard, T. Le Chevalier, A. Livartoski, F. Barlesi, A. Laplanche, S. Ploix, N. Vimond, I. Peguillet, C. Thery, L. Lacroix, I. Zoernig, K. Dhodapkar, M. Dhodapkar, S. Viaud, J.C. Soria, K.S. Reiners, E. Pogge von Strandmann, F. Vely, S. Rusakiewicz, A. Eggermont, J.M. Pitt, L. Zitvogel, N. Chaput, Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5, e1071008 (2016)PubMedGoogle Scholar
  241. 241.
    S. Viaud, M. Terme, C. Flament, J. Taieb, F. Andre, S. Novault, B. Escudier, C. Robert, S. Caillat-Zucman, T. Tursz, L. Zitvogel, N. Chaput, Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 4, e4942 (2009)PubMedPubMedCentralGoogle Scholar
  242. 242.
    B. Escudier, T. Dorval, N. Chaput, F. Andre, M.P. Caby, S. Novault, C. Flament, C. Leboulaire, C. Borg, S. Amigorena, C. Boccaccio, C. Bonnerot, O. Dhellin, M. Movassagh, S. Piperno, C. Robert, V. Serra, N. Valente, J.B. Le Pecq, A. Spatz, O. Lantz, T. Tursz, E. Angevin, L. Zitvogel, Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J. Transl. Med. 3, 10 (2005)PubMedPubMedCentralGoogle Scholar
  243. 243.
    Exosome Diagnostics, Inc. Clinical validation of a urinary exosome gene signature in men presenting for suspicion of prostate cancer. http://www.clinicaltrials.gov/show/NCT02702856. Accessed 16 September 2016
  244. 244.
    Hospital Miguel Servet. Circulating exosomes as potential prognostic and predictive biomarkers in advanced gastric cancer patients. http://www.clinicaltrials.gov/show/NCT01779583. Accessed 16 September 2016
  245. 245.
    New Mexico Cancer Care Alliance. An observational, single-institution pilot/feasibility study of exosome testing as a screening modality for human papillomavirus-positive oropharyngeal squamous cell carcinoma. http://clinicaltrials.gov/show/NCT02147418. Accessed 16 September 2016
  246. 246.
    Centre Georges Francois Leclerc. Pilot study with the aim to quantify a stress protein in the blood and in the urine for early diagnosis of malgnant solid tumors. http://clinicaltrials.gov/show/NCT02662621. Accessed 16 September 2016
  247. 247.
    National Taiwan University Hospital. Anaplastic thyroid cancer and follicular thyroid cancer-derived exosomal analysis via treatment of lovastatin and vildagliptin and pilot prognostic study via urine exosomal biological markers in thyroid cancer patients. http://clinicaltrials.gov/show/NCT02862470. Accessed 16 September 2016
  248. 248.
    Thomas Jefferson University. Phase 1 study in humans evaluating the safety of rectus sheath implantation of diffusion chambers encapsulating autologous malignant glioma cells treated with insulin-like growth factor receptor-1 antisense oligodeoxynucleotide in 12 patients with recurrent malignant glioma. http://www.clinicaltrials.gov/show/NCT01550523. Accessed 16 September 2016
  249. 249.
    Thomas Jefferson University. Phase I study in humans evaluating the safety of rectus sheath implantation of diffusion chambers encapsulating autologous malignant glioma cells treated with insulin-like growth factor receptor-1 antisense oligodeoxynucleotide (igf-1r/as odn) in 32 patients with newly diagnosed malignant glioma. http://clinicaltrials.gov/show/NCT02507583. Accessed 16 September 2016
  250. 250.
    S. Dai, D. Wei, Z. Wu, X. Zhou, X. Wei, H. Huang, G. Li, I. Phase, clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790 (2008)PubMedGoogle Scholar
  251. 251.
    Centre Hospitalier Universitaire de Nice. Pilot study of exosomes before and after braf inhibitor therapy in patients with advanced unresectable or metastatic braf mutation-positive melanoma. http://www.clinicaltrials.gov/show/NCT02310451. Accessed 16 September 2016
  252. 252.
    Midwest Biomedical Research Foundation. Evaluation of microrna expression in blood and cytology specimens as a novel method for detecting barrett's esophagus. http://www.clinicaltrials.gov/show/NCT02464930. Accessed 16 September 2016
  253. 253.
    Xinqiao Hospital of Chongqing. Clinical research for the consistency analysis of pd-l1 in cancer tissue and plasma exosome. http://www.clinicaltrials.gov/show/NCT02890849. Accessed 16 September 2016
  254. 254.
    Xinqiao Hospital of Chongqing. Clinical research for the consistency analysis of pd-l1 in lung cancer tissue and plasma exosome before and after radiotherapy. http://www.clinicaltrials.gov/show/NCT02869685. Accessed 16 September 2016
  255. 255.
    Memorial Sloan Kettering Cancer Center. Interrogation of exosome-mediated intercellular signaling in patients with pancreatic cancer. http://www.clinicaltrials.gov/show/NCT02393703. Accessed 16 September 2016
  256. 256.
    Centre Oscar Lambret. Early biomarkers of tumor response in high dose hypofractionated radiotherapy word package 3: immune response. http://clinicaltrials.gov/show/NCT02439008. Accessed 16 September 2016

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  • Vignesh Sundararajan
    • 1
  • Fazlul H. Sarkar
    • 2
  • Thamil Selvee Ramasamy
    • 3
    • 4
  1. 1.Department of Biotechnology, School of BioengineeringSRM Institute of Science and TechnologyKattankulathurIndia
  2. 2.Department of PathologyWayne State University School of MedicineDetroitUSA
  3. 3.Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  4. 4.Cell and Molecular Biology Laboratory, Faculty of Medicine Dean’s OfficeUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations