Cellular Oncology

, Volume 41, Issue 2, pp 107–121 | Cite as

Expression and function of immune ligand-receptor pairs in NK cells and cancer stem cells: therapeutic implications

Review

Abstract

Background

The interplay between the immune system and cancer cells has come to the forefront of cancer therapeutics, with novel immune blockade inhibitors being approved for the treatment of an increasing list of cancers. However, the majority of cancer patients still display or develop resistance to these promising drugs. It is possible that cancer stem cells (CSCs) are contributing to this therapeutic resistance. Although CSCs usually represent a small percentage of the total number of cancer cells, they are endowed with the ability of self-renewal and to produce differentiated progeny. Additionally, they have shown the capacity to establish tumors after transplantation to animals, even in small numbers. CSCs have also been found to be resistant to various anti-cancer therapies, including chemotherapy, radiation therapy and, more recently, immunotherapy. This is true despite the sensitivity of CSCs to lysis in vitro by natural killer (NK) cells, the main effector cells of the innate immune system. In this paper the expression of ligands specific for NK cells on CSCs, the intracellular network responsible for the expression of the NK cytotoxicity receptors, and the status of activation of NK cells in the tumor micro-environment are reviewed. The aim of this review is to highlight potential strategies for overcoming CSC immune resistance, thereby enhancing the efficacy of current and future anti-cancer therapies.

Therapeutic implications

NK cell activation in the tumor micro-environment through drugs neutralizing inhibitory immune receptors, and combined with other drugs harnessing the potential of the adaptive immune system, could be the most effective approach for attacking both stem cell and non-stem cell cancer populations.

Keywords

NK cells Cancer stem cells Ligands Receptors Cytotoxicity Cancer immunotherapy Immune blockade 

Notes

Acknowledgements

The author thanks Joey Mercier and Stephane Thibodeau (Northern Ontario School of Medicine) for their careful reading of the manuscript.

Compliance with ethical standards

Conflicts of interest

None declared.

References

  1. 1.
    A. Shanker, F.M. Marincola, Cooperativity of adaptive and innate immunity: implications for cancer therapy. Cancer Immunol. Immunother. 60, 1061–1074 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    E. Narni-Mancinelli, S. Ugolini, E. Vivier, Tuning the threshold of natural kileer cell responses. Curr. Opin. Immunol. 25, 53–58 (2013)CrossRefPubMedGoogle Scholar
  3. 3.
    I.A. Voutsadakis, NK cells in allogeneic bone marrow transplantation. Cancer Immunol. Immunother. 52, 525–534 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    F. Reim, Y. Dombrowski, C. Ritter, M. Buttmann, S. Häusler, M. Ossadnik, M. Krockenberger, D. Beier, C.P. Beier, J. Dietl, J.C. Becker, A. Hönig, J. Wischhusen, Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: Selective escape of CD44high/CD24 low/HER2low breast cancer stem cells. Cancer Res. 69, 8058–8066 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell. Oncol. 40, 471–482 (2017)CrossRefGoogle Scholar
  6. 6.
    J.N. Rich, Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine 95, e4764 (2016)Google Scholar
  7. 7.
    S.S. Franco, K. Szczesna, M.S. Iliou, M. Al-Qahtani, A. Mobasheri, J. Kobolák, A. Dinnyés, In vitro models of cancer stem cells and clinical applications. BMC Cancer 16(Suppl 2), 738 (2016)CrossRefGoogle Scholar
  8. 8.
    I.A. Voutsadakis, Pluripotency transcription factors in the pathogenesis of colorectal cancer and implications for prognosis. Biomark. Med. 9, 349–361 (2015)CrossRefPubMedGoogle Scholar
  9. 9.
    S.R. Yoon, T.-D. Kim, I. Choi, Understanding of molecular mechanisms in natural killer cell therapy. Exp. Mol. Med. 47, e141 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    E.O. Long, H.S. Kim, D. Liu, M.E. Peterson, S. Rajagopalan, Controlling natural killer cell responses: Integration of signals for activation and inhibition. Annu. Rev. Immunol. 31, 227–258 (2013)CrossRefPubMedGoogle Scholar
  11. 11.
    J. Pahl, A. Cerwenka, Tricking the balance: NK cells in anti-cancer immunity. Immunobiology 222, 11–20 (2017)CrossRefPubMedGoogle Scholar
  12. 12.
    M.T. Orr, L.L. Lanier, Natural Killer cell education and tolerance. Cell 142, 847–856 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    L.M. Thomas, Current perspectives on natural killer cell education and tolerance: emerging roles for inhibitory receptors. Immuno.Targets Ther. 4, 45–53 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Kim, J. Poursine-Laurent, S.M. Truscott, L. Lybarger, Y.-J. Song, L. Yang, A.R. French, J.B. Sunwoo, S. Lemieux, T.H. Hansen, W.M. Yokoyama, Licensing of natural killer cell by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    D.H. Raulet, S. Gasser, B.G. Gowen, W. Deng, H. Jung, Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    W. Wang, A.K. Erbe, J.A. Hank, Z.S. Morris, P.M. Sondel, NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front. Immunol. 6, 368 (2015)PubMedCentralPubMedGoogle Scholar
  17. 17.
    S. Battella, M.C. Cox, A. Santoni, G. Palmieri, Natural killer (NK) cells and anti-tumor therapeutic mAb: unexplored interactions. J. Leukoc. Biol. 99, 87–96 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    M. Di Modica, L. Sfondrini, V. Regondi, S. Varchetta, B. Oliviero, G. Mariani, G.V. Bianchi, D. Generali, A. Balsari, T. Triulzi, E. Tagliabue, Taxanes enhance trastuzumab-mediated ADCC on tumor cells through NKG2D-mediated NK cell recognition. Oncotarget 7, 255–265 (2015)PubMedCentralGoogle Scholar
  19. 19.
    S. Boero, A. Morabito, B. Banelli, B. Cardinali, B. Dozin, G. Lunardi, P. Piccioli, S. Lastraioli, R. Carosio, S. Salvi, A. Levaggi, F. Poggio, A. D’Alonzo, M. Romani, L. Del Mastro, A. Poggi, M.P. Pistillo, Analysis of in vitro ADCCand clinical response to trastuzumab: possible relevance of FcγRIIIA/FcγRIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines. J. Transl. Med. 13, 324 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    W. Cao, X. Xi, Z. Hao, W. Li, Y. Kong, L. Cui, C. Ma, D. Ba, W. He, RAET1E2, a soluble isoform of the UL16-binding protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK cytotoxicity. J. Biol. Chem. 282, 18922–18928 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    S. Samuels, D.M. Ferns, D. Meijer, J.P. van Straalen, M.R. Buist, H.J. Zijlmans, G.G. Kenter, E.S. Jordanova, High levels of soluble MICA are significantly related to increased disease-free and disease-specific survival in patients with cervical adenocarcinoma. Tissue Antigens 85, 476–483 (2015)CrossRefPubMedGoogle Scholar
  22. 22.
    J.J. Li, K. Pan, M.F. Gu, M.S. Chen, J.J. Zhao, H. Wang, X.T. Liang, J.C. Sun, J.C. Xia, Prognostic value of soluble MICA levels in the serum of patients with advanced hepatocellular carcinoma. Chin. J. Cancer 32, 141–148 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    L. Narendra Bodduluru, E. Reddy Kasala, R. Mohan Rao, Madhana, C. Shaker Sriram, Natural killer cells: The journey from puzzles in biology to treatment of cancer. Cancer Lett. 357, 454–467 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Rajagopalan, E.O. Long, Found: a cellular activating ligand for NKp44. Blood 122, 2921–2922 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    T. Kaifu, B. Escalière, L.N. Gastinel, E. Vivier, M. Baratin, B7-H6/NKp30 interaction: a mechanism of alerting NK cells against tumors. Cell. Mol. Life Sci. 68, 3531–3539 (2011)CrossRefPubMedGoogle Scholar
  26. 26.
    F. Baychelier, A. Sennepin, M. Ermoval, K. Dorgham, P. Debré, V. Vieillard, Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 122, 2935–2942 (2013)CrossRefPubMedGoogle Scholar
  27. 27.
    A. Thielens, E. Vivier, F. Romagné, NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr. Opin. Immunol. 24, 239–245 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    D.M. Benson Jr., M.A. Caligiuri, Killer Immunoglobulin-like Receptors and tumor immunity. Cancer Immunol. Res. 2, 99–104 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    D. Wang, Y. Quan, Q. Yan, J.E. Morales, R.A. Wetsel, Targeted disruption of the β2-Microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cells Transl. Med. 4, 1234–1245 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    M.T. Orr, J. Wu, M. Fang, L.J. Sigal, P. Spee, T. Egebjerg, E. Dissen, S. Fossum, J.H. Phillips, L.L. Lanier, Development and function of CD94-deficient Natural Killer cells. PLoS One 5, e15184 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    X. Kang, J. Kim, M. Deng, S. John, H. Chen, G. Wu, H. Phan, C.C. Zhang, Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 15, 25–40 (2016)CrossRefPubMedGoogle Scholar
  32. 32.
    M.P. Roberti, E.P. Juliá, Y.S. Rocca, M. Amat, A.I. Bravo, J. Loza, F. Coló, C.M. Loza, V. Fabiano, M. Maino, A. Podhorzer, L. Fainboim, M.M. Barrio, J. Mordoh, E.M. Levy, Overexpression of CD85j in TNBC patients inhibits Cetuximab-mediated NK-cell ADCC but can be restored with CD85j functional blockade. Eur. J. Immunol. 45, 1560–1569 (2015)CrossRefPubMedGoogle Scholar
  33. 33.
    Y.S. Rocca, M.P. Roberti, E.P. Juliá, M.B. Pampena, L. Bruno, S. Rivero, E. Huertas, F. Sánchez Loria, A. Pairola, A. Caignard, J. Mordoh, E.M. Levy, Phenotypic and functional dysregulated blood NK cells in colorectal cancer patients can be activated by cetuximab plus IL-2 or IL-15. Front. Immunol. 7, 413 (2016)CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    S.N. Waggoner, V. Kumar, Evolving role of 2B4/CD244 in T and NK cell responses during virus infection. Front. Immunol. 3, 377 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    J.D. Schatzle, S. Sheu, S.E. Stepp, P.A. Mathew, M. Bennett, V. Kumar, Characterization of inhibitory and stimulatory forms of the murine natural killer cell receptor 2B4. Proc. Natl. Acad. Sci. U. S. A. 96, 3870–3875 (1999)CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    R.T. Taniguchi, D. Guzior, V. Kumar, 2B4 inhibits NK-cell fratricide. Blood 110, 2020–2023 (2007)CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    L. Martinet, M.J. Smyth, Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 15, 243–254 (2015)CrossRefPubMedGoogle Scholar
  38. 38.
    A. Muntasell, M.C. Ochoa, L. Cordeiro, P. Berraondo, A. López-Díaz de Cerio, M. Cabo, M. López-Botet, I. Melero, Targeting NK-cell checkpoints for cancer immunotherapy. Curr. Opin. Immunol. 45, 73–81 (2017)CrossRefPubMedGoogle Scholar
  39. 39.
    A. Beldi-Ferchiou, M. Lambert, S. Dogniaux, F. Vély, E. Vivier, D. Olive, S. Dupuy, F. Levasseur, D. Zucman, C. Lebbé, D. Sène, C. Hivroz, S. Caillat-Zucman, PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7, 72961–72977 (2016)CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    X.L. Raffo Iraolagoitia, R.G. Spallanzani, N.I. Torres, R.E. Araya, A. Ziblat, C.I. Domaica, J.M. Sierra, S.Y. Nuñez, F. Secchiari, T.F. Gajewski, N.W. Zwirner, M.B. Fuertes, NK cells restrain spontaneous antitumor CD8+ T cell priming through PD-1/PD-L1 interactions with dendritic cells. J. Immunol. 197, 953–961 (2016)CrossRefGoogle Scholar
  41. 41.
    F.J. Kohlhapp, J.R. Broucek, T. Hughes, E.J. Huelsmann, J. Lusciks, J.P. Zayas, H. Dolubizno, V.A. Fleetwood, A. Grin, G.E. Hill, J.L. Poshepny, A. Nabatiyan, C.E. Ruby, J.D. Snook, J.S. Rudra, J.M. Schnkel, D. Masopust, A. Zloza, H.L. Kaufman, NK cells and CD8+ T cells cooperate to improve therapeutic responses in melanoma treated with interleukin-2 (IL-2) and CTLA-4 blockade. J. Immunother. Cancer 3, 18 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    A. Stojanovic, N. Fiegler, M. Brunner-Weinzierl, A. Cerwenka, CTLA-4 is expressed by activated mouse NK cells and inhibits NK cell IFN-γ production in reponse to mature dendritic cells. J. Immunol. 192, 4184–4191 (2014)CrossRefPubMedGoogle Scholar
  43. 43.
    A. Assal, J. Kaner, G. Pendurti, X. Zang, Emerging targets in cancer immunotherapy: beyond CTLA-4 and PD-1. Immunotherapy 7, 1169–1186 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    C.D. Brenner, S. King, M. Przewoznik, I. Wolters, C. Adam, G.W. Bornkamm, D.H. Busch, M. Röcken, R. Mocikat, Requirements for control of B-cell lymphoma by NK cells. Eur. J. Immunol. 40, 494–504 (2010)CrossRefPubMedGoogle Scholar
  45. 45.
    W. Ling, J. Zhang, Z. Yuan, G. Ren, L. Zhang, X. Chen, A.B. Rabson, A.I. Roberts, Y. Wang, Y. Shi, Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res. 74, 1576–1587 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Y. Wang, Y. Ma, Y. Fang, S. Wu, L. Liu, D. Fu, X. Shen, Regulatory T cell: a protection for tumour cells. J. Cell. Mol. Med. 16, 425–436 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    A. Jewett, A. Arasteh, H.-C. Tseng, A. Behel, H. Arasteh, W. Yang, N.A. Cacalano, A. Paranjpe, Strategies to rescue mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) from NK cell mediated cytotoxicity. PLoS One 5, e9874 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    A. Jewett, Y. Man, N. Cacalano, J. Kos, H.-C. Tseng, Natural killer cells as effectors of selection and differentiation of stem cells: Role in resolution of inflammation. J. Immunotoxicol. 11, 297–307 (2014)CrossRefPubMedGoogle Scholar
  49. 49.
    A. Jewett, B. Bonavida, Target-induced anergy of natural killer cytotoxic function is restricted to the NK-target conjugate subset. Cell. Immunol. 160, 91–97 (1995)CrossRefPubMedGoogle Scholar
  50. 50.
    V. Kruse, C. Hamann, S. Monecke, L. Cyganek, L. Elsner, D. Hübscher, L. Walter, K. Streckfuss-Bömeke, K. Guan, R. Dressel, Human induced pluripotent stem cells are targets for allogeneic and autologous Natural Killer (NK) cells and killing is partly mediated by the activating NK receptor DNAM-1. PLoS One 10, e0125544 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    C. Cebo, I.A. Voutsadakis, S. Da Rocha, J.-H. Bourhis, A. Jalil, B. Azzarone, A.G. Turhan, M. Chelbi-Alix, S. Chouaib, A. Caignard, Altered IFN gamma signaling and preserved susceptibility to activated Natural Killer cell-mediated lysis of BCR/ABL targets. Cancer Res. 65, 2914–2920 (2005)CrossRefPubMedGoogle Scholar
  52. 52.
    R. Dressel, J. Nolte, L. Elsner, P. Novota, K. Guan, K. Streckfuss-Bömeke, G. Hasenfuss, R. Jaenisch, W. Engel, Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J. 24, 2164–2177 (2010)CrossRefPubMedGoogle Scholar
  53. 53.
    L.P. Frenzel, Z. Abdullah, A.K. Kriegeskorte, R. Dieterich, N. Lange, D.H. Busch, M. Krönke, O. Utermöhlen, J. Hescheler, T. Šarić, Role of Natural-Killer Group 2 Member D ligands and Intercellular Adhesion Molecule 1 in Natural Killer cell-mediated lysis of murine embryonic stem cells and embryonic stem cell-derived cardiomyocytes. Stem Cells 27, 307–316 (2009)CrossRefPubMedGoogle Scholar
  54. 54.
    R. Dressel, J. Schindehütte, T. Kuhlmann, L. Elsner, P. Novota, P.C. Baier, A. Schillert, H. Bickeböller, T. Hermann, C. Trenkwalder, W. Paulus, A. Mansouri, The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients’ immune response. PLoS One 3, e2622 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    D. Hübscher, D. Kaiser, L. Elsner, S. Monecke, R. Dressel, K. Guan, The tumorigenicity of multipotent adult germline stem cells transplanted into the heart is affected by natural killer cells and by cyclosporine A independent of its immunosuppressive effects. Front. Immunol. 8, 67 (2017)CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    E.Y.-T. Lau, N.P.-Y. Ho, T.K.-W. Lee, Cancer stem cells and their microenvironment: Biology and therapeutic implications. Stem Cells Int. 2017, 3714190 (2017)CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    T. Yin, G. Wang, S. He, Q. Liu, J. Sun, Y. Wang, Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell. Immunol. 300, 41–45 (2016)CrossRefPubMedGoogle Scholar
  58. 58.
    G.R. Kim, G.-H. Ha, J.-H. Bae, S.-O. Oh, S.-H. Kim, C.-D. Kang, Metastatic colon cancer cell populations contain more cancer stem-like cells with a higher susceptibility to natural killer cell-mediated lysis compared with primary colon cancer cells. Oncol. Lett. 9, 1641–1646 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P.N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, E. Carbone, Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class I molecules. J. Immunol. 190, 2381–2390 (2013)CrossRefPubMedGoogle Scholar
  60. 60.
    G. Pietra, C. Manzini, M. Vitale, M. Balsamo, E. Ognio, M. Boitano, P. Queirolo, L. Moretta, M.C. Mingari, Natural killer cells kill human melanoma cells with characteristics of cancer stem cells. Int. Immunol. 21, 793–801 (2009)CrossRefPubMedGoogle Scholar
  61. 61.
    H. Zhao, J. Zhang, H. Shao, J. Liu, M. Jin, J. Chen, Y. Huang, Transforming Growth Factor beta1/Smad4 signaling affects osteoclast differentiation via regulation of miR-155 expression. Mol. Cell 40, 211–221 (2017)Google Scholar
  62. 62.
    I.A. Voutsadakis, The Ubiquitin–Proteasome System and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J. Biomed. Sci. 19, 67 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    E. Ames, R.J. Canter, S.K. Grossenbacher, S. Mac, M. Chen, R.C. Smith, T. Hagino, J. Perez-Cunningham, G.D. Sckisel, S. Urayama, A.M. Monjazeb, R.C. Fragoso, T.J. Sayers, W.J. Murphy, NK cells preferentially target tumor cells with a cancer stem cell phenotype. J. Immunol. 195, 4010–4019 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    M. Ferreira-Teixeira, D. Paiva-Oliveira, B. Parada, V. Alves, V. Sousa, O. Chijioke, C. Münz, F. Reis, P. Rodrigues-Santos, C. Gomes, Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med. 14, 163 (2016)CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    C.J. Kearney, K.M. Ramsbottom, I. Voskoboinik, P.K. Darcy, J. Oliaro, Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. OncoImmunol. 5, e1196308 (2016)CrossRefGoogle Scholar
  66. 66.
    S.-J. Oh, J.-I. Yang, O. Kim, E.-J. Ahn, W.D. Kang, J.-H. Lee, K.-S. Moon, K.-H. Lee, D. Cho, Human U87 glioblastoma cells with stemness features display enhanced sensitivity to natural killer cell cytotoxicity through altered expression of NKG2D ligand. Cancer Cell Int. 17, 22 (2017)CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    R. Castriconi, A. Daga, A. Dondero, G. Zona, P.L. Poliani, A. Melotti, F. Griffero, D. Marubbi, R. Spaziante, F. Bellora, L. Moretta, A. Moretta, G. Corte, C. Bottino, NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J. Immunol. 182, 3530–3539 (2009)CrossRefPubMedGoogle Scholar
  68. 68.
    B.Y. Huang, Y.P. Zhan, W.J. Zong, C.J. Yu, J.F. Li, Y.M. Qu, S. Han, The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells. PLoS One 10, e0134715 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    P. Joshi, M. Kooshki, W. Aldrich, D. Varghai, M. Zborowski, A.D. Singh, P.L. Triozzi, Expression of natural killer cell regulatory microRNA by uveal melanoma cancer stem cells. Clin. Exp. Metastasis 33, 829–838 (2016)CrossRefPubMedGoogle Scholar
  70. 70.
    G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)CrossRefGoogle Scholar
  71. 71.
    H.-C. Tseng, A. Arasteh, A. Paranjpe, A. Teruel, W. Yang, A. Behel, J.A. Alva, G. Walter, C. Head, T. Ishikawa, H.R. Herschman, N. Cacalano, A.D. Pyle, N.-H. Park, A. Jewett, Increased lysis of stem cells but not their differentiated cells by natural killer cells; De-differentiation or reprogramming activates NK cells. PLoS One 5, e11590 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    B. Wang, Q. Wang, Z. Wang, J. Jiang, S.-C. Yu, Y.-F. Ping, J. Yang, S.-L. Xu, X.-Z. Ye, C. Xu, L. Yang, C. Qian, J.M. Wang, Y.-H. Cui, X. Zhang, X.-W. Bian, Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res. 74, 5746–5757 (2014)CrossRefPubMedGoogle Scholar
  73. 73.
    H.-C. Chen, A.S.-B. Chou, Y.-C. Liu, C.-H. Hsieh, C.-C. Kang, S.-T. Pang, C.-T. Yeh, H.-P. Liu, S.-K. Liao, Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UP-LN1 carcinoma cell line by IFN-γ. Lab. Investig. 91, 1502–1513 (2011)CrossRefPubMedGoogle Scholar
  74. 74.
    H. Matsushita, Y. Sato, T. Karasaki, T. Nakagawa, H. Kume, S. Ogawa, Y. Homma, K. Kakimi, Neoantigen load, antigen presentation machinery, and immune signatures determine prognosis in clear cell renal cell carcinoma. Cancer Immunol. Res. 4, 463–471 (2016)CrossRefPubMedGoogle Scholar
  75. 75.
    I.A. Voutsadakis, Proteasome expression and activity in cancer and cancer stem cells. Tumour Biol. 39, 1010428317692248 (2017)CrossRefPubMedGoogle Scholar
  76. 76.
    E.M. de Kruijf, A. Sajet, J.G.H. van Nes, R. Natanov, H. Putter, V.T.H.B.M. Smit, G.J. Liefers, P.J. van den Elsen, C.J.H. van de Velde, P.J.K. Kuppen, HLA-E and HLA-G expression in classical HLA classI-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J. Immunol. 185, 7452–7459 (2010)CrossRefPubMedGoogle Scholar
  77. 77.
    B. Seliger, S. Jasinski-Bergner, D. Quandt, C. Stoehr, J. Bukur, S. Wach, W. Legal, H. Taubert, B. Wullich, A. Hartmann, HLA-E expression and its clinical relevance in human renal cell carcinoma. Oncotarget 7, 67360–67372 (2016)CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    C. Bossard, S. Bézieau, T. Matysiak-Budnik, C. Volteau, C.L. Laboisse, F. Joterau, J.-F. Mosnier, HLA-E/β2 microglobulin overexpression in colorectal cancer is associated with recruitment of inhibitory immune cells and tumor progression. Int. J. Cancer 131, 855–863 (2012)CrossRefPubMedGoogle Scholar
  79. 79.
    R.B. Özgül Özdemir, A.T. Özdemir, F. Oltulu, K. Kurt, G. Yiğittürk, C. Kirmaz, A comparison of cancer stem cell markers and nonclassical major histocompatibility complex antigens in colorectal tumor and noncancerous tissues. Ann. Diagn. Pathol. 25, 60–63 (2016)CrossRefPubMedGoogle Scholar
  80. 80.
    L. Zhao, B. Purandare, J. Zhang, B.M. Hantash, β2-Microglobulin-free HLA-G activates natural killer cells by increasing cytotoxicity and proinflammatory cytokine production. Hum. Immunol. 74, 417–424 (2013)CrossRefPubMedGoogle Scholar
  81. 81.
    F. Wolpert, P. Roth, K. Lamszus, G. Tabatabai, M. Weller, G. Eisele, HLA-E contributes to an immune-inhibitory phenotype of glioblastoma stem-like cells. J. Neuroimmunol. 250, 27–34 (2012)CrossRefPubMedGoogle Scholar
  82. 82.
    A. López-Soto, L. Huergo-Zapico, J.A. Galván, L. Rodrigo, A. García de Herreros, A. Astudillo, S. Gonzalez, Epithelial-Mesenchymal Transition induces an antitumor immune response mediated by NKG2D receptor. J. Immunol. 190, 4408–4419 (2013)CrossRefPubMedGoogle Scholar
  83. 83.
    A. Sathyanarayanan, K. Subramanian Chandrasekaran, D. Karunagaran, microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. Cell. Oncol. 40, 119–131 (2017)CrossRefGoogle Scholar
  84. 84.
    S. Bugide, V. Kumar Gonugunta, V. Penugurti, V. Lakshmi Malisetty, R.K. Vadlamudi, B. Manavathi, HPIP promotes epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer cells through PI3K/AKT pathway activation. Cell. Oncol. 40, 133–144 (2017)CrossRefGoogle Scholar
  85. 85.
    I.A. Voutsadakis, Epithelial-Mesenchymal Transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: A review and in silico investigation. J. Clin. Med. 5, 1 (2016)CrossRefGoogle Scholar
  86. 86.
    N.F.S. Watson, I. Spendlove, Z. Madjd, R. McGilvray, A.R. Green, I.O. Ellis, J.H. Scholefield, L.G. Durrant, Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int. J. Cancer 118, 1445–1452 (2006)CrossRefPubMedGoogle Scholar
  87. 87.
    R. Bedel, A. Thiery-Vuillemin, C. Grandclement, J. Balland, J.-P. Remy-Martin, B. Kantelip, J.-R. Pallandre, X. Pivot, C. Ferrand, P. Tiberghien, C. Borg, Novel role for STAT3 in transcriptional regulation of NK immune cell targeting receptor MICA on cancer cells. Cancer Res. 71, 1615–1626 (2011)CrossRefPubMedGoogle Scholar
  88. 88.
    H. Jung, B. Hsiung, K. Pestal, E. Procyk, D.H. Raulet, RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. J. Exp. Med. 209, 2409–2422 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  89. 89.
    X.V. Liu, S.S.W. Ho, J.J. Tan, N. Kamran, S. Gasser, Ras activation induces expression of Raet1 family NK receptor ligands. J. Immunol. 189, 1826–1834 (2012)CrossRefPubMedGoogle Scholar
  90. 90.
    N.A. Manieri, E.Y. Chiang, J.L. Grogan, TIGIT: A key inhibitor of the cancer immunity cycle. Trends Immunol. 38, 20–28 (2017)CrossRefPubMedGoogle Scholar
  91. 91.
    S. Textor, F. Bossler, K.-O. Henrich, M. Gartlgruber, J. Pollmann, N. Fiegler, A. Arnold, F. Westermann, N. Waldburger, K. Breuhahn, S. Golfier, M. Witzens-Harig, A. Cerwenka, The proto-oncogene Myc drives expression of the NK cell-activating NKp30 ligand B7-H6 in tumor cells. OncoImmunol. 5, e1116674 (2016)CrossRefGoogle Scholar
  92. 92.
    N. Hosen, H. Ichihara, A. Mugitani, Y. Aoyama, Y. Fukuda, S. Kishida, Y. Matsuoka, H. Nakajima, M. Kawakami, T. Yamagami, S. Fuji, H. Tamaki, T. Nakao, S. Nishida, A. Tsuboi, S. Iida, M. Hino, Y. Oka, H. Sugiyama, CD48 as a novel molecular target for antibody therapy in multiple myeloma. Br. J. Haematol. 156, 213–224 (2012)CrossRefPubMedGoogle Scholar
  93. 93.
    I. Kim, S. He, O.H. Yilmaz, M.J. Kiel, S.J. Morrison, Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood 108, 737–744 (2006)CrossRefPubMedCentralPubMedGoogle Scholar
  94. 94.
    Y. Yang, K. Wu, E. Zhao, W. Li, L. Shi, G. Xie, B. Jiang, Y. Wang, R. Li, P. Zhang, X. Shuai, G. Wang, K. Tao, B7-H1 enhances proliferation ability of gastric cancer stem-like cells as a receptor. Oncol. Lett. 9, 1833–1838 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  95. 95.
    Y. Zhi, Z. Mou, J. Chen, Y. He, H. Dong, X. Fu, Y. Wu, B7H1 expression and epithelial-to mesenchymal transition phenotypes on colorectal cancer stem-like cells. PLoS One 10, 1–15 (2015)Google Scholar
  96. 96.
    A. Alsuliman, D. Colak, O. Al-Harazi, H. Fitwi, A. Tulbah, T. Al-Tweigeri, M. Al-Alwan, H. Ghebeh, Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: significance in claudin-low breast cancer cells. Mol. Cancer 14, 149 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  97. 97.
    Y. Yao, R. Tao, X. Wang, Y. Wang, Y. Mao, L.F. Zhou, B7-H1 is correlated with malignancy-grade gliomas but is not expressed exclusively on tumor stem-like cells. Neuro Oncol. 11, 757–766 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  98. 98.
    J. Chen, C.C. Jiang, L. Jin, X.D. Zhang, Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol. 27, 409–416 (2016)CrossRefPubMedGoogle Scholar
  99. 99.
    E. Mamessier, C. Bourgin, D. Olive, When breast cancer cells start to fend the educational process of NK cells off. OncoImmunol. 2, e26688 (2013)CrossRefGoogle Scholar
  100. 100.
    W.-C. Chang, C.-H. Li, L.-H. Chu, P.-S. Huang, B.-C. Sheu, S.-C. Huang, Regulatory T cells suppress natural killer cell immunityin patients with human cervical carcinoma. Int. J. Gynecol. Cancer 26, 156–162 (2016)CrossRefPubMedGoogle Scholar
  101. 101.
    Y. He, P.A. Bunn, C. Zhou, D. Chan, KIR 2D (L1, L3, L4, S4) and KIR 3DL1 protein expression in non-small cell lung cancer. Oncotarget 7, 82104–82111 (2016)PubMedCentralPubMedGoogle Scholar
  102. 102.
    M. Carlsten, H. Norell, Y.T. Bryceson, I. Poschke, K. Schedvins, H.-G. Ljunggren, R. Kiessling, K.-J. Malmberg, Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J. Immunol. 183, 4921–4930 (2009)CrossRefPubMedGoogle Scholar
  103. 103.
    G. Pietra, C. Manzini, S. Rivara, M. Vitale, C. Cantoni, A. Petretto, M. Balsamo, R. Conte, R. Benelli, S. Minghelli, N. Solari, M. Gualco, P. Queirolo, L. Moretta, M.C. Mingari, Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res. 72, 1407–1415 (2012)CrossRefPubMedGoogle Scholar
  104. 104.
    G. Sconocchia, R. Arriga, L. Tornillo, L. Terracciano, S. Ferrone, G.C. Spagnoli, Melanoma cells inhibit NK cell functions-Letter. Cancer Res. 72, 5428–5429 (2012)CrossRefPubMedGoogle Scholar
  105. 105.
    G. Erdag, J.T. Schaefer, M.E. Smolkin, D.H. Deacon, S.M. Shea, L.T. Dengel, J.W. Patterson, C.L. Slingluff Jr., Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 72, 1070–1080 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  106. 106.
    M. Balsamo, G. Pietra, W. Vermi, L. Moretta, M.C. Mingari, M. Vitale, Melanoma immunoediting by NK cells. OncoImmunol. 1, 1607–1609 (2012)CrossRefGoogle Scholar
  107. 107.
    B. Le Maux Chansac, A. Moretta, I. Vergnon, P. Opolon, Y. Lécluse, D. Grunenwald, M. Kubin, J.-C. Soria, S. Chouaib, F. Mami-Chouaib, NK cells infiltrating a MHC class I-deficient lung adenocarcinoma display impaired cytotoxic activity toward autologous tumor cells associated with altered NK cell-triggering receptors. J. Immunol. 175, 5790–5798 (2005)CrossRefPubMedGoogle Scholar
  108. 108.
    I. Levi, H. Amsalem, A. Nissan, M. Darash-Yahana, T. Peretz, O. Mandelboim, J. Rachmilewitz, Characterization of tumor infiltrating Natural Killer cell subset. Oncotarget 6, 13835–13843 (2015)PubMedCentralPubMedGoogle Scholar
  109. 109.
    B. Xu, L. Chen, J. Li, X. Zheng, L. Shi, C. Wu, J. Jiang, Prognostic value of tumor infiltrating NK cells and macrophages in stage II+III esophageal cancer patients. Oncotarget 7, 74904–74916 (2016)PubMedCentralPubMedGoogle Scholar
  110. 110.
    K. Geissler, P. Fornara, C. Lautenschläger, H.-J. Holzhausen, B. Seliger, D. Riemann, Immune signature of tumor infiltrating immune cells in renal cancer. OncoImmunol. 4, e985082 (2015)CrossRefGoogle Scholar
  111. 111.
    M. Balsamo, W. Vermi, M. Parodi, G. Pietra, C. Manzini, P. Queirolo, S. Lonardi, R. Augugliaro, A. Moretta, F. Facchetti, L. Moretta, M.C. Mingari, M. Vitale, Melanoma cells become resistant to NK-cll-mediated killing when exposed to NK-cell numbers compatible with NK-cell infiltration in the tumor. Eur. J. Immunol. 42, 1833–1842 (2012)CrossRefPubMedGoogle Scholar
  112. 112.
    C. Verma, V. Kaewkangsadan, J.M. Eremin, G.P. Cowley, M. Ilyas, M.A. El-Sheemy, O. Eremin, Natural killer (NK) cell profiles in blood and tumour in women with large and locally advanced breast cancer (LLABC) and their contribution to a pathological complete response (PCR) in the tumour following neoadjuvant chemotherapy (NAC): differential restoration of blood profiles by NAC and surgery. J. Transl. Med. 13, 180 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  113. 113.
    N.G. Nieto-Velázquez, Y.D. Torres-Ramos, J.L. Muñoz-Sánchez, L. Espinosa-Godoy, S. Gómez-Cortés, J. Moreno, M.A. Moreno-Eutimio, Altered expression of natural cytotoxicity receptors and NKG2D on peripheral blood NK cell subsets in breast cancer patients. Transl. Oncol. 9, 384–391 (2016)CrossRefPubMedCentralPubMedGoogle Scholar
  114. 114.
    L.M. Alwan, K. Grossmann, D. Sageser, J. Van Atta, N. Agarwal, J.A. Gilreath, Comparison of acute toxicity and mortality after two different dosing regimens of high-dose interleukin-2 for patients with metastatic melanoma. Target. Oncol. 9, 63–71 (2014)CrossRefPubMedGoogle Scholar
  115. 115.
    H. Zhao, Y. Wang, J. Yu, F. Wei, S. Cao, X. Zhang, N. Dong, H. Li, X. Ren, Autologous cytokine-induced killer cells improves overall survival of metastatic colorectal cancer patients: Results from a phase II clinical trial. Clin. Colorectal Cancer 15, 228–235 (2016)CrossRefPubMedGoogle Scholar
  116. 116.
    P. Yu, J.C. Steel, M. Zhang, J.C. Morris, T.A. Waldmann, Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin. Cancer Res. 16, 6019–6028 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  117. 117.
    B. Huang, R. Sikorski, P. Sampath, S.H. Thorne, Modulation of NKG2D-ligand cell surface expression enhances immune cell therapy of cancer. J. Immunother. 34, 289–296 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  118. 118.
    A. Baragaño Raneros, B. Suarez Álvarez, C. López Larrea, Secretory pathways generating immunosuppressive NKG2D ligands: New targets for therapeutic intervention. OncoImmunol. 3, e28497 (2014)CrossRefGoogle Scholar
  119. 119.
    D.M. Benson Jr., A.D. Cohen, S. Jagannath, N.C. Munshi, G. Spitzer, C.C. Hofmeister, Y.A. Efebera, P. Andre, R. Zerbib, M.A. Caligiuri, A phase I trial of the Anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin. Cancer Res. 21, 4055–4061 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  120. 120.
    B.K. Kaiser, D. Yim, I.T. Chow, S. Gonzalez, Z. Dai, H.H. Mann, R.K. Strong, V. Groh, T. Spies, Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447, 482–486 (2007)CrossRefPubMedGoogle Scholar
  121. 121.
    C. Kandoth, M.D. Mclellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J.F. Mcmichael, M.A. Wyczalkowski, M.D.M. Leiserson, C.A. Miller, J.S. Welch, M.J. Walter, M.C. Wendl, T.J. Ley, R.K. Wilson, B.J. Raphael, L. Ding, Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013)CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  1. 1.Algoma District Cancer ProgramSault Area HospitalSault Ste. MarieCanada
  2. 2.Division of Clinical SciencesNorthern Ontario School of MedicineSudburyCanada
  3. 3.Division of Medical OncologySault Area HospitalSault Ste MarieCanada

Personalised recommendations