Cellular Oncology

, Volume 41, Issue 1, pp 13–24 | Cite as

Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells

  • Trang H. Luu
  • Jean-Marie Bard
  • Delphine Carbonnelle
  • Chloé Chaillou
  • Jean-Michel Huvelin
  • Christine Bobin-Dubigeon
  • Hassan NazihEmail author
Original Paper



It has amply been documented that mammary tumor cells may exhibit an increased lipogenesis. Biliary acids are currently recognized as signaling molecules in the intestine, in addition to their classical roles in the digestion and absorption of lipids. The aim of our study was to evaluate the impact of lithocholic acid (LCA) on the lipogenesis of breast cancer cells. The putative cytotoxic effects of LCA on these cells were also examined.


The effects of LCA on breast cancer-derived MCF-7 and MDA-MB-231 cells were studied using MTT viability assays, Annexin-FITC and Akt phosphorylation assays to evaluate anti-proliferative and pro-apoptotic properties, qRT-PCR and Western blotting assays to assess the expression of the bile acid receptor TGR5 and the estrogen receptor ERα, and genes and proteins involved in apoptosis (Bax, Bcl-2, p53) and lipogenesis (SREBP-1c, FASN, ACACA). Intracellular lipid droplets were visualized using Oil Red O staining.


We found that LCA induces TGR5 expression and exhibits anti-proliferative and pro-apoptotic effects in MCF-7 and MDA-MB-231 cells. Also, an increase in pro-apoptotic p53 protein expression and a decrease in anti-apoptotic Bcl-2 protein expression were observed after LCA treatment of MCF-7 cells. In addition, we found that LCA reduced Akt phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells. We also noted that LCA reduced the expression of SREBP-1c, FASN and ACACA in both breast cancer-derived cell lines and that cells treated with LCA contained low numbers of lipid droplets compared to untreated control cells. Finally, a decrease in ERα expression was observed in MCF-7 cells treated with LCA.


Our data suggest a potential therapeutic role of lithocholic acid in breast cancer cells through a reversion of lipid metabolism deregulation.


Lithocholic acid MCF-7 cells MDA-MB-231 cells TGR5 activation Lipogenesis Breast cancer Gut microbiota 



This study was funded by a grant from La Ligue Contre le Cancer de la Charente et de Loire Atlantique. Trang H. Luu was also funded by a research fellowship from the Vietnam Ministry of Education and Training and the Phu Tho Pharmacy College.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    E. Robles-Escajeda, U. Das, N.M. Ortega, K. Parra, G. Francia, J.R. Dimmock, A. Varela-Ramirez, R.J. Aguilera, A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell. Oncol. 39, 265–277 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Beloribi-Djefaflia, S. Vasseur, F. Guillaumond, Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, 1–10 (2016)CrossRefGoogle Scholar
  4. 4.
    J.A. Menendez, R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    J.A. Menendez, R. Lupu, Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis 6, 1–11 (2017)CrossRefGoogle Scholar
  6. 6.
    J.M. Harvey, G.M. Clark, C.K. Osborne, D.C. Allred, Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 17, 1474–1481 (1999)CrossRefPubMedGoogle Scholar
  7. 7.
    P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, B. Staels, Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009)CrossRefPubMedGoogle Scholar
  8. 8.
    P.B. Hylemon, H. Zhou, W.M. Pandak, S. Ren, G. Gil, P. Dent, Bile acids as regulatory molecules. J. Lipid. Res. 50, 1509–1520 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    B.W. Katona, S. Anant, D.F. Covey, W.F. Stenson, Characterization of enantiomeric bile acid-induced apoptosis in colon cancer cell lines. J. Biol. Chem. 284, 3354–3564 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    A.A. Goldberg, A. Beach, G.F. Davies, T.A. Harkness, A. Leblanc, V.I. Titorenko, Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2, 761–782 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    A.A. Goldberg, V.I. Titorenko, A. Beach, J.T. Sanderson, Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. Peer J. 1, e122 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    A.A. Goldberg, V.R. Richard, P. Kyryakov, S.D. Bourque, A. Beach, M.T. Burstein, A. Glebov, O. Koupaki, T. Boukh-Viner, C. Gregg, M. Juneau, A.M. English, D.Y. Thomas, V.I. Titorenko, Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging 2, 393–414 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    V. Sepe, B. Renga, C. Festa, C. Finamore, D. Masullo, A. Carino, S. Cipriani, E. Distrutti, S. Fiorucci, A. Zampella, Investigation on bile acid receptor regulators. Discovery of cholanoic acid derivatives with dual G-protein coupled bile acid receptor 1 (GPBAR1) antagonistic and farnesoid X receptor (FXR) modulatory activity. Steroids 105, 59–67 (2015)CrossRefPubMedGoogle Scholar
  14. 14.
    A. Kawaguchi, H. Tomoda, S. Nozoe, S. Omura, S. Okuda, Mechanism of action of cerulenin on fatty acid synthetase. Effect of cerulenin on iodoacetamide-induced malonyl-CoA decarboxylase activity. J. Biochem. 92, 7–12 (1982)PubMedGoogle Scholar
  15. 15.
    H. Duboc, Y. Taché, A.F. Hofmann, The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig. Liver Dis. 46, 302–312 (2014)CrossRefPubMedGoogle Scholar
  16. 16.
    H. Sato, A. Macchiarulo, C. Thomas, A. Gioiello, M. Une, A.F. Hofmann, R. Saladin, K. Schoonjans, R. Pellicciari, J. Auwerx, Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure−activity relationships, and molecular modeling studies. J. Med. Chem. 51, 1831–1841 (2008)CrossRefPubMedGoogle Scholar
  17. 17.
    Y. Kawamata, R. Fujii, M. Hosoya, M. Harada, H. Yoshida, M. Miwa, S. Fukusumi, Y. Habata, T. Itoh, Y. Shintani, S. Hinuma, Y. Fujisawa, M. Fujino, A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    T.W. Pols, L.G. Noriega, M. Nomura, J. Auwerx, K. Schoonjans, The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol. 54, 1263–1272 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    J.S. Fridman, S.W. Lowe, Control of apoptosis by p53. Oncogene 22, 9030–9040 (2003)CrossRefPubMedGoogle Scholar
  20. 20.
    C.C. Harris, Structure and function of the p53 tumor suppressor gene: Clues for rational cancer therapeutic strategies. J Natl. Cancer Inst. 88, 1442–1455 (1996)CrossRefPubMedGoogle Scholar
  21. 21.
    H.A. Giebler, I. Lemasson, J.K. Nyborg, p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation. Mol. Cell Biol. 20, 4849–4858 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    T. Arnould, S. Vankoningsloo, P. Renard, A. Houbion, N. Ninane, C. Demazy, J. Remacle, M. Raes, CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J. 21, 53–63 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    S. Cory, D.C.S. Huang, J.M. Adams, The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590–8607 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    Rahimi A, Lee YY, Abdella H, Doerflinger M, Gangoda L, Srivastava R, Xiao K, Ekert PG, Puthalakath H. Role of p53 in cAMP/PKA pathway mediated apoptosis. Apoptosis 18, 1492–1499 (2013)Google Scholar
  25. 25.
    S.M. Vogel, M.R. Bauer, A.C. Joerger, R. Wilcken, T. Brandt, D.B. Veprintsev, T.J. Rutherford, A.R. Fersht, F.M. Boeckler, Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc. Natl. Acad. Sci. USA 109, 16906–16910 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    M. Yoeli-Lerner, A. Toker, Akt/PKB signaling in cancer: A function in cell motility and invasion. Cell Cycle 5, 603–605 (2006)CrossRefPubMedGoogle Scholar
  27. 27.
    B.S. Tan, K.H. Tiong, H.L. Choo, F.F. Chung, L.W. Hii, S.H. Tan, I.K. Yap, S. Pani, N.T. Khor, S.F. Wong, R. Rosli, S.K. Cheong, C.O. Leong, Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis. 6, e1826 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    C.R. Loehberg, P.L. Strissel, R. Dittrich, R. Strick, J. Dittmer, A. Dittmer, B. Fabry, W.A. Kalender, T. Koch, D.L. Wachter, N. Groh, A. Polier, I. Brandt, L. Lotz, I. Hoffmann, F. Koppitz, S. Oeser, A. Mueller, P.A. Fasching, M.P. Lux, M.W. Beckmann, M.G. Schrauder, Akt and p53 are potential mediators of reduced mammary tumor growth by cloroquine and the mTOR inhibitor RAD001. Biochem. Pharmacol. 83, 480–488 (2012)CrossRefPubMedGoogle Scholar
  29. 29.
    A. Astanehe, D. Arenillas, W.W. Wasserman, P.C. Leung, S.E. Dunn, B.R. Davies, G.B. Mills, N. Auersperg, Mechanisms underlying p53 regulation of PIK3CA transcription in ovarian surface epithelium and in ovarian cancer. J. Cell Sci. 121, 664–674 (2008)CrossRefPubMedGoogle Scholar
  30. 30.
    M. Agostini, L.Y. Almeida, D.C. Bastos, R.M. Ortega, F.S. Moreira, F. Seguin, K.G. Zecchin, H.F. Raposo, H.C. Oliveira, N.D. Amoêdo, T. Salo, R.D. Coletta, E. Graner, The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas. Mol. Cancer Ther. 13, 585–595 (2014)CrossRefPubMedGoogle Scholar
  31. 31.
    B. Corominas-Faja, E. Cuyàs, J. Gumuzio, J. Bosch-Barrera, O. Leis, Á.G. Martin, J.A. Menendez, Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 5, 8306–8316 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    R. Singh, V. Yadav, S. Kumar, N. Saini, MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci. Rep. 5, 1–15 (2015)Google Scholar
  33. 33.
    M. Lu, J.Y. Shyy, Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation. Am. J. Physiol. Cell Physiol. 290, C1477–C1486 (2006)CrossRefPubMedGoogle Scholar
  34. 34.
    T. Yamamoto, H. Shimano, N. Inoue, Y. Nakagawa, T. Matsuzaka, A. Takahashi, N. Yahagi, H. Sone, H. Suzuki, H. Toyoshima, N. Yamada, Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver. J. Biol. Chem. 282, 11687–11695 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    M.A. Welte, Expanding roles for lipid droplets. Curr. Biol. 25, R470–R481 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    P.T. Bozza, J.P. Viola, Lipid droplets in inflammation and cancer. Prostaglandins Leukot. Essent. Fatty Acids 82, 243–250 (2010)CrossRefPubMedGoogle Scholar
  37. 37.
    L. Tirinato, C. Liberale, S. Di Franco, P. Candeloro, A. Benfante, R. La Rocca, L. Potze, R. Marotta, R. Ruffilli, V.P. Rajamanickam, M. Malerba, F. De Angelis, A. Falqui, E. Carbone, M. Todaro, J.P. Medema, G. Stassi, E. Di Fabrizio, Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33, 35–44 (2015)CrossRefPubMedGoogle Scholar
  38. 38.
    H. Abramczyk, J. Surmacki, M. Kopec, A.K. Olejnik, K. Lubecka-Pietruszewska, K. Fabianowska-Majewska, The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 140, 2224–2235 (2015)CrossRefPubMedGoogle Scholar
  39. 39.
    G. Pérez-Tenorio, O. Stal, Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Brit. J. Cancer 86, 540–545 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    O. Stal, G. Pérez-Tenorio, L. Akerberg, B. Olsson, B. Nordenskjöld, L. Skoog, L.E. Rutqvist, Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res 5, R37–R44 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    J. Bostner, E. Karlsson, M.J. Pandiyan, H. Westman, L. Skoog, T. Fornander, B. Nordenskjöld, O. Stal, Activation of Akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res. Treat. 137, 397–406 (2013)CrossRefPubMedGoogle Scholar
  42. 42.
    R.A. Campbell, P. Bhat-Nakshatri, N.M. Patel, D. Constantinidou, S. Ali, H. Nakshatri, Phosphatidylinositol 3-Kinase/AKT-mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J. Biol. Chem. 276, 9817–9824 (2001)CrossRefPubMedGoogle Scholar
  43. 43.
    A. Belkaid, S.R. Duguay, R.J. Ouellette, M.E. Surette, 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells. BMC Cancer 15, 1–14 (2015)CrossRefGoogle Scholar
  44. 44.
    M.J. Duffy, Estrogen receptors: Role in breast cancer. Crit. Rev. Clin. Lab. Sci. 43, 325–347 (2006)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2017

Authors and Affiliations

  • Trang H. Luu
    • 1
  • Jean-Marie Bard
    • 1
    • 2
  • Delphine Carbonnelle
    • 1
  • Chloé Chaillou
    • 1
  • Jean-Michel Huvelin
    • 1
  • Christine Bobin-Dubigeon
    • 1
    • 2
  • Hassan Nazih
    • 1
    Email author
  1. 1.Faculté de Pharmacie, EA 2160 MMS - Institut Universitaire Mer et Littoral FR3473 CNRS, Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest)ULB Université de NantesNantesFrance
  2. 2.ICO René GauducheauUnicancerSt HerblainFrance

Personalised recommendations