Cellular Oncology

, Volume 40, Issue 3, pp 199–208 | Cite as

Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1

  • Rohit Sharma
  • Rohini Sharma
  • Tejinder Pal Khaket
  • Chanchala Dutta
  • Bornisha Chakraborty
  • Tapan Kumar Mukherjee
Review

Abstract

Background

Breast cancer is a notable cause of cancer-related death in women worldwide. Metastasis to distant organs is responsible for ~90% of this death. Breast cells convert to malignant cancer cells after acquiring the capacity of invasion/intravasation into surrounding tissues and, finally, extravasation/metastasis to distant organs (i.e., lymph nodes, lungs, bone, brain). Metastasis to distant organs depends on interactions between disseminated tumor cells (DTCs) and the endothelium of blood vessels present in the tumor microenvironment. Among several known endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) has been found to be involved in this process. It has been shown that VCAM-1 is aberrantly expressed in breast cancer cells and that it can bind to its natural ligand α4β1integrin, also denoted as very late antigen 4 (VLA-4). This binding appears to be responsible for the metastasis of breast cancer cells to lung, bone and brain. The α4β1 integrin - VCAM-1 interaction thus represents a potential therapeutic target for metastatic breast cancer cells. The development of inhibitors of this interaction may be instrumental for the clinical management of breast cancer patients.

Conclusions

This study focuses on recent progress on the role of VCAM-1, an important glycoprotein belonging to the immunoglobulin (Ig) superfamily of cell surface adhesion molecules in breast cancer angiogenesis, survival and metastasis. Targeting VCAM-1, expressed on the surface of breast cancer cells, and/or its specific ligand VLA-4/α4β1 integrin, expressed on cells at the site of metastasis, may be a useful strategy to reduce breast cancer cell invasion and metastasis. Various approaches to therapeutically target VCAM-1 and VLA-4 are also discussed.

Keywords

Breast cancer Vascular cell adhesion molecule 1 (VCAM-1) α4β1 integrin Angiogenesis Survival Metastasis 

Notes

Acknowledgements

T.P. Khaket was supported by the Korea Research Fellowship Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (KRF Grant No.2016H1D3A1938249).

Compliance with ethical standards

Conflict of interest

The authors have no potential conflict of interest.

References

  1. 1.
    M. Bendre, D. Gaddy, R.W. Nicholas, L.J. Suva, Breast cancer metastasis to bone: It is not all about PTHrP. Clin Orthop Relat Res 415, S39–S45 (2003)CrossRefGoogle Scholar
  2. 2.
    D. Wolczyk, M. Zaremba-Czogalla, A. Hryniewicz-Jankowska, R. Tabola, K. Grabowski, A.F. Sikorski, K. Augoff, TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol 39, 353–363 (2016)Google Scholar
  3. 3.
    J.H. Howard, K.I. Bland, Current management and treatment strategies for breast cancer. Curr Opin Obstet Gynecol 24, 44–48 (2012)CrossRefPubMedGoogle Scholar
  4. 4.
    E. Robles-Escajeda, U. Das, N.M. Ortega, K. Parra, G. Francia, J.R. Dimmock, A. Varela-Ramirez, R.J. Aguilera, A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell Oncol 39, 265–277 (2016)Google Scholar
  5. 5.
    D. E. Berardi, C. Flumian, P. B. Campodonico, A. J Urtreger, M. I. Diaz Bessone, A. N. Motter, E. D. Bal de Kier Joffe, E. F. Farias, L. B. Todaro, Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid. Cell Oncol 38, 289–305 (2015)Google Scholar
  6. 6.
    D. Alexiou, A.J. Karayiannakis, K.N. Syrigos, A. Zbar, A. Kremmyda, I. Bramis, C. Tsigris, Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: Correlations with clinicopathological features, patient survival and tumour surgery. Eur J Cancer 37, 2392–2397 (2001)CrossRefPubMedGoogle Scholar
  7. 7.
    Y.B. Ding, G.Y. Chen, J.G. Xia, X.W. Zang, H.Y. Yang, L. Yang, Association of VCAM-1 overexpression with oncogenesis, tumor angiogenesis and metastasis of gastric carcinoma. World J Gastroenterol 9, 1409–1414 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    B. Hemmerlein, J. Scherbening, A. Kugler, H.J. Radzun, Expression of VCAM-1, ICAM-1. E- and P-selectin and tumour-associated macrophages in renal cell carcinoma Histopathology 37, 78–83 (2000)Google Scholar
  9. 9.
    L.P. Ruco, P.A. de Laat, C. Matteucci, S. Bernasconi, F.M. Sciacca, T.H. van der Kwast, H.C. Hoogsteden, S. Uccini, A. Mantovani, M.A. Versnel, Expression of ICAM-1 and VCAM-1 in human malignant mesothelioma. J Pathol 179, 266–271 (1996)CrossRefPubMedGoogle Scholar
  10. 10.
    J. Huang, J. Zhang, H. Li, Z. Lu, W. Shan, I. Mercado-Uribe, J. Liu, VCAM1 expression correlated with tumorigenesis and poor prognosis, in high grade serous ovarian cancer. Am J Transl Res 5, 336–346 (2013)PubMedPubMedCentralGoogle Scholar
  11. 11.
    Y. Okugawa, C. Miki, Y. Toiyama, Y. Koike, T. Yokoe, S. Saigusa, K. Tanaka, Y. Inoue, M. Kusunoki, Soluble VCAM-1 and its relation to disease progression in colorectal carcinoma. Exp Ther Med 1, 463–469 (2010)Google Scholar
  12. 12.
    M. van Oosten, E. van de Bilt, H.E. de Vries, T.J. van Berkel, J. Kuiper, Vascular adhesion molecule-1 and intercellular adhesion molecule-1 expression on rat liver cells after lipopolysaccharide administration in vivo. Hepatology 22, 1538–1546 (1995)CrossRefPubMedGoogle Scholar
  13. 13.
    D. Feuerbach, J.H. Feyen, Expression of the cell-adhesion molecule VCAM-1 by stromal cells is necessary for osteoclastogenesis. FEBS Lett 402, 21–24 (1997)CrossRefPubMedGoogle Scholar
  14. 14.
    A. C. Stanley, J. E. Dalton, S. H. Rossotti, K. P. MacDonald, Y. Zhou, F. Rivera, W. A., Schroder, A. Maroof, G. R. Hil, P. M. Kaye, C. R. Engwerda, VCAM-1 and VLA-4 modulate dendritic cell IL-12p40 production in experimental visceral leishmaniasis. PLoS Pathol 4, e1000158 (2008)Google Scholar
  15. 15.
    A.C. Van Dinther-Janssen, E. Horst, G. Koopman, W. Newmann, R.J. Scheper, C.J. Meijer, S.T. Pals, The VLA-4/VCAM-1 pathway is involved in lymphocyte adhesion to endothelium in rheumatoid synovium. J Immunol 147, 4207–4210 (1991)PubMedGoogle Scholar
  16. 16.
    L. Devine, S.L. Lightman, J. Greenwood, Role of LFA-1, ICAM-1, VLA-4 and VCAM-1 in lymphocyte migration across retinal pigment epithelial monolayers in vitro. Immunology 88, 456–462 (1996)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    I. Mitroulis, V.I. Alexaki, I. Kourtzelis, A. Ziogas, G. Hajishengallis, T. Chavakis, Leukocyte integrins: Role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 147, 123–135 (2015)CrossRefPubMedGoogle Scholar
  18. 18.
    Y. Takada, M. J. Elices, C. Crouse, M. E. Hemler, The primary structure of the alpha 4 subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function. EMBO J 8, 1361–1368 (1989)Google Scholar
  19. 19.
    W.S. Argraves, S. Suzuki, H. Arai, K. Thompso, M.D. Pierschbacher, E. Ruoslahti, Amino acid sequence of the human fibronectin receptor. J Cell Biol 105, 1183–1190 (1987)CrossRefPubMedGoogle Scholar
  20. 20.
    R. H. Vonderheide, T. F. Tedder, Springer T. A., Staunton D. E., Residues within a conserved amino acid motif of domains 1 and 4 of VCAM-1 are required for binding to VLA-4. J Cell Biol 125, 215–222 (1994)Google Scholar
  21. 21.
    R.H. Vonderheide, T.A. Springer, Lymphocyte adhesion through very late antigen 4: Evidence for a novel binding site in the alternatively spliced domain of vascular cell adhesion molecule 1 and an additional alpha 4 integrin counter-receptor on stimulated endothelium. J Exp Med 175, 1433–1442 (1992)CrossRefPubMedGoogle Scholar
  22. 22.
    T. Tatsumi, C. Shimazaki, H. Goto, S. Araki, Y. Sudo, N. Yamagata, E. Ashihara, T. Inaba, N. Fujita, M. Nakagawa, Expression of adhesion molecules on myeloma cells. Jpn J Cancer Res 87, 837–842 (1996)CrossRefPubMedGoogle Scholar
  23. 23.
    B.S. Bochner, F.W. Luscinskas, M.A. Gimbrone, W. Newman, S.A. Sterbinsky, C.P. Derse-Anthony, D. Klunk, R.P. Schleimer, Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: Contributions of endothelial cell adhesion molecules. J Exp Med 173, 1553–1557 (1991)CrossRefPubMedGoogle Scholar
  24. 24.
    X. Zhang, S.E. Craig, H. Kirby, M.J. Humphries, V.T. Moy, Molecular basis for the dynamic strength of the integrin alpha4beta1/VCAM-1 interaction. Biophys J 87, 3470–3478 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    R.R. Langley, I.J. Fidler, The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128, 2527–2535 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39(397–410) (2016)
  27. 27.
    J. Fukushi, M. Ono, W. Morikawa, Y. Iwamoto, M. Kuwano, The activity of soluble VCAM-1 in angiogenesis stimulated by IL-4 and IL-13. J Immunol 165, 2818–2823 (2000)CrossRefPubMedGoogle Scholar
  28. 28.
    S. Karabulut, F. Tas, D. Tastekin, M. Karabulut, C.T. Yasasever, R. Ciftci, M. Güveli, M. Fayda, S. Vatansever, M. Serilmez, R. Disci, A. Aydıner, The diagnostic, predictive, and prognostic role of serum epithelial cell adhesion molecule (EpCAM) and vascular cell adhesion molecule-1 (VCAM-1) levels in breast cancer. Tumour Biol 35, 8849–8860 (2014)CrossRefPubMedGoogle Scholar
  29. 29.
    G.J. Byrne, A. Ghella, J. Iddon, A.D. Blann, V. Venizelos, S. Kumar, A. Howell, N.J. Bundred, Serum soluble vascular cell adhesion molecule-1: Role as a surrogate marker of angiogenesis. J Nat Cancer Inst 92, 1329–1336 (2000)CrossRefPubMedGoogle Scholar
  30. 30.
    P. Tesarova, J. Kvasnicka, A. Umlaufova, J. Homolkova, M. Kalousova, V. Tesar, Soluble adhesion molecules in female patients with breast carcinoma. CasLekCesk 142, 292–299 (2003)Google Scholar
  31. 31.
    H.C. Silva, F. Garcao, E.C. Coutinho, C.F. De Oliveira, F.J. Regateiro, Soluble VCAM-1 and E-selectin in breast cancer: Relationship with staging and with the detection of circulating cancer cells. Neoplasma 53, 538–543 (2006)PubMedGoogle Scholar
  32. 32.
    Y. Maimaiti, C. Wang, M. Mushajiang, J. Tan, B. Huang, J. Zhou, T. Huang, Overexpression of VCAM-1 is correlated with poor survival of patients with breast cancer. Int J Clin Exp Pathol 9, 7451–7457 (2016)Google Scholar
  33. 33.
    B.G. Susinia, C.J. Avraamidesa, J.S. Desgroselliera, M.C. Schmida, P. Fouberta, L.G. Elliesb, A.M. Lowya, S.L. Blaira, S.R. Vandenbergb, B. Datnowb, H.Y. Wang, D.A. Chereshb, J. Varner, PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes. Proc Natl Acad Sci U S A 110, 9042–9047 (2013)CrossRefGoogle Scholar
  34. 34.
    A.J. Minn, G.P. Gupta, P.M. Siegel, P.D. Bos, W. Shu, D.D. Giri, A. Viale, A.B. Olshen, W.L. Gerald, J. Massague, Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Q. Chen, X.H. Zhang, J. Massague, Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    R.G. Fehon, A.I. McClatchey, A. Bretscher, Organizing the cell cortex: The role of ERM proteins. Nat Rev Mol Cell Biol 11, 276–287 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    O. Barreiro, M. Yanez-Mo, J.M. Serrador, M.C. Montoya, M. Vicente-Manzanares, R. Tejedor, H. Furthmayr, F. Sanchez-Madrid, Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157, 1233–1245 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    X. Wang, Y. Wei, S. Yuan, G. Liu, Y. Lu, J. Zhang, W. Wang, Potential anticancer activity of tanshinone IIA against human breast cancer. Int J Cancer 116, 799–807 (2005)CrossRefPubMedGoogle Scholar
  39. 39.
    D.M.O. Hanlon, H. Fitzsimons, J. Lynch, S. Tormey, C. Malone, H.F. Given, Soluble adhesion molecules (E-selectin, ICAM-1 and VCAM-1) in breast carcinoma. Eur J Cancer 38, 2252–2257 (2002)CrossRefGoogle Scholar
  40. 40.
    Y. Zheng, W. Yang, K. Aldape, J. He, Z. Lu, Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (VCAM-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion. J Biol Chem 288, 31488–31495 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    C. Gialeli, M. Viola, D. Barbouri, D. Kletsas, A. Passi, N.K. Karamanos, Dynamic interplay between breast cancer cells and normal endothelium mediates the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Biochim Biophys Acta 1840, 2549–2559 (2014)CrossRefPubMedGoogle Scholar
  42. 42.
    H. Jin, S.Y. Eun, J.S. Lee, S.W. Park, J.H. Lee, K.C. Chang, H.J. Kim, P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res 16, R77 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    C. Chen, D.B. Khismatullin, Lipopolysaccharide induces the interactions of breast cancer and endothelial cells via activated monocytes. Cancer Lett 345, 75–84 (2014)CrossRefPubMedGoogle Scholar
  44. 44.
    L.A. Flores-Lopez, M.G. Martinez-Hernandez, R. Viedma-Rodríguez, M. Diaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression. ROS formation and invasiveness in breast cancer-derived cells. Cell Oncol 39, 365–378 (2016)Google Scholar
  45. 45.
    X. Huang, D. He, J. Ming, Y. He, C. Zhou, H. Ren, X. He, C. Wang, J. Jin, L. Ji, B. Willard, B. Pan, L. Zheng, High density lipoprotein of patients with breast cancer complicated with type 2 diabetes mellitus promotes cancer cells adhesion to vascular endothelium via ICAM-1 and VCAM-1 upregulation. Breast Cancer Res Treat 155, 441–455 (2016)CrossRefPubMedGoogle Scholar
  46. 46.
    A.J. Minn, G.P. Gupta, D. Padua, P. Bos, D.X. Nguyen, D. Nuyten, B. Kreike, Y. Zhang, Y. Wang, H. Ishwaran, J.A. Foekens, M. van de Vijver, J. Massague, Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci U S A 104, 6740–6745 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    M.F. Lipscomb, D.E. Bice, C.R. Lyons, M.R. Schuyler, D. Wilkes, The regulation of pulmonary immunity Adv. Immunol 59, 369–455 (1995)Google Scholar
  48. 48.
    M.Y. Kim, T. Oskarsson, S. Acharyya, D.X. Nguyen, X.H. Zhang, L. Norton, J. Massague, Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Y. Kang, W. He, S. Tulley, G.P. Gupta, I. Serganova, C.R. Chen, K. Manova-Todorova, R. Blasberg, W.L. Gerald, J. Massague, Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102, 13909–13914 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Y. Kang, P.M. Siegel, W. Shu, M. Drobnjak, S.M. Kakonen, C. Cordon-Cardo, T.A. Guise, J.A. Massague, Multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003)CrossRefPubMedGoogle Scholar
  51. 51.
    X. Lu, E. Mu, Y. Wei, S. Riethdorf, Q. Yang, M. Yuan, J. Yan, Y. Hua, B.J. Tiede, X. Lu, B.G. Haffty, K. Pantel, J. Massague, Y. Kang, VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    B.K. Park, H. Zhang, Q. Zeng, J. Dai, E.T. Keller, T. Giordano, K. Gu, V. Shah, L. Pei, R.J. Zarbo, L. McCauley, S. Shi, S. Chen, C.Y. Wang, NF-[kappa]B in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13, 62–69 (2007)CrossRefPubMedGoogle Scholar
  53. 53.
    I. Pecheur, O. Peyruchaud, C.M. Serre, J. Guglielmi, C. Voland, F. Bourre, C. Margue, M. Cohen-Solal, A. Buffet, N. Kieffer, P. Clezardin, Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J 16, 1266–1268 (2002)PubMedGoogle Scholar
  54. 54.
    S. Serres, M.S. Soto, A. Hamilton, M.A. McAteer, W.S. Carbonell, M.D. Robson, O. Ansorge, A. Khrapitchev, C. Bristow, L. Balathasan, T. Weissensteiner, D.C. Anthony, R.P. Choudhury, R.J. Muschel, N.R. Sibson, Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci USA 109, 6674–6679 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    M.S. Soto, S. Serres, D.C. Anthony, N.R. Sibson, Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro-Oncology 16, 540–551 (2014)CrossRefPubMedGoogle Scholar
  56. 56.
    T. Yoneda, P.J. Williams, T. Hiraga, M. Niewolna, R. Nishimura, A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16, 1486–1495 (2001)CrossRefPubMedGoogle Scholar
  57. 57.
    Q. Chen, J. Massague, Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res 18, 5520–5525 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    P.C. Wang, C.C. Weng, Y.S. Hou, S.F. Jian, K.T. Fang, M.F. Hou, K.H. Cheng, Activation of VCAM-1 and its associated molecule CD44 leads to increased malignant potential of breast cancer cells. Int J Mol Sci 15, 3560–3579 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    C.Y. Lee, H.F. Sher, H.W. Chen, C.C. Liu, C.H. Chen, C.S. Lin, P.C. Yang, H.S. Tsay, J.J. Chen, Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther 7, 3527–3538 (2008)CrossRefPubMedGoogle Scholar
  60. 60.
    I.T. Nizamutdinova, G.W. Lee, J.S. Lee, M.K. Cho, K.H. Son, S.J. Jeon, S.S. Kang, Y.S. Kim, J.H. Lee, H.G. Seo, K.C. Chang, H.J. Kim, Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis 29, 1885–1892 (2008)CrossRefPubMedGoogle Scholar
  61. 61.
    V. Nicolin, G. Fancellu, R. Valentini, Effect of tanshinone II on cell growth of breast cancer cell line type MCF-7 and MD-MB-231. Ital J Anat Embryol 119, 38–43 (2014)PubMedGoogle Scholar
  62. 62.
    C. Lin, L. Wang, H. Wang, L. Yang, H. Guo, X. Wang, Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J Cell Biochem 114, 2061–2070 (2013)CrossRefPubMedGoogle Scholar
  63. 63.
    H. Jin, W.S. Lee, J.W. Yun, J.H. Jung, S.M. Yi, H.J. Kim, Y.H. Choi, G. Kim, J.M. Jung, C.H. Ryu, S.C. Shin, S.C. Hong, Flavonoids from Citrus Unshiu Marc inhibit cancer cell adhesion to endothelial cells by selective inhibition of VCAM-1. Oncol Rep 30, 2336–2342 (2013)PubMedGoogle Scholar
  64. 64.
    O.J. Leger, T.A. Yednock, L. Tanner, H.C. Horner, D.K. Hines, S. Keen, J. Saldanha, S.T. Jones, L.C. Fritz, M.M. Bendig, Humanization of a mouse antibody against human alpha-4 integrin: A potential therapeutic for the treatment of multiple sclerosis. Hum Antibodies 8, 3–16 (1997)PubMedGoogle Scholar
  65. 65.
    K. Podar, A. Zimmerhackl, M. Fulciniti, G. Tonon, U. Hainz, Y.T. Tai, S. Vallet, N. Halama, D. Jager, D.L. Olson, M. Sattler, D. Chauhan, K.C. Anderson, The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvironment: Therapeutic implications. Br J Haematol 155, 438–448 (2011)CrossRefPubMedGoogle Scholar
  66. 66.
    C. Kibler, F. Schermutzki, H.D. Waller, R. Timpl, C.A. Muller, G. Klein, Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules. Cell Adhes Commun 5, 307–323 (1998)CrossRefPubMedGoogle Scholar
  67. 67.
    T. Michigami, N. Shimizu, P.J. Williams, M. Niewolna, S.L. Dallas, G.R. Mundy, T. Yoneda, Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 96, 1953–1960 (2000)PubMedGoogle Scholar
  68. 68.
    M.T. de la Fuente, B. Casanova, M. Garcia-Gila, A. Silva, A. Garcia-Pardo, Fibronectin interaction with alpha4beta1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: Correlation with Bcl-2 and Bax. Leukemia 13, 266–274 (1999)CrossRefPubMedGoogle Scholar
  69. 69.
    M. Watanabe, N. Yoshimura, S. Motoya, K. Tominaga, R. Iwakiri, K. Watanabe, T. Hibi, AJM300, an oral a4 integrin antagonist, for active ulcerative colitis: A multicenter, randomized, double-blind, placebo-controlled phase 2a study. Gastrointest Endosc 79, AB401 (2014)CrossRefGoogle Scholar
  70. 70.
    T. Sugiura, S. Kageyama, A. Andou, T. Miyazawa, C. Ejima, A. Nakayama, T. Dohi, H. Eda, Oral treatment with a novel small molecule alpha 4 integrin antagonist, AJM300, prevents the development of experimental colitis in mice. J Crohns Colitis 7, e533–e542 (2013)CrossRefPubMedGoogle Scholar
  71. 71.
    M. Takazoe, M. Watanabe, T. Kawaguchi, T. Matumoto, N. Oshitani, N. Hiwatashi, T. Hibi, S1066 Oral alpha-4 integrin inhibitor (AJM300) in patients with active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 136, A-181 (2009)Google Scholar
  72. 72.
    Biogen Idec Clinical Trials gov National Library of Medicine (US), Bethesda (MD):2008–2011 Study of Natalizumab in Relapsed/Refractory Multiple Myeloma. Available from: http://clinicaltrialsgov/show/NCT00675428 NLM Identifier: NCT00675428Google Scholar
  73. 73.
    C.G. Lee, H.W. Lee, B. Kim, D.K. Rhee, D. Pyo, Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: Regulation of association between p65 and ER-α. J Functional Foods 15, 172–185 (2015)CrossRefGoogle Scholar
  74. 74.
    H. Cao, Z. Zhang, S. Zhao, X. He, H. Yu, Q. Yin, Z. Zhang, W. Gu, L. Chen, Y. Li, Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression. J Control Release 205, 162–171 (2015)CrossRefPubMedGoogle Scholar
  75. 75.
    N. Zhang, C. Chittasupho, C. Duangrat, T.J. Siahaan, C. Berkland, PLGA nanoparticle-peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug Chem 19, 145–152 (2008)CrossRefPubMedGoogle Scholar
  76. 76.
    S. Gosk, T. Moos, C. Gottstein, G. Bendas, VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochimica Biophysica Acta-Biomembranes 1778, 854–863 (2008)CrossRefGoogle Scholar
  77. 77.
    D.I. Kang, S. Lee, J.T. Lee, B.J. Sung, J.Y. Yoon, J.K. Kim, J. Chung, S.J. Lim, Preparation and in vitro evaluation of anti-VCAM-1-Fab'-conjugated liposomes for the targeted delivery of the poorly water-soluble drug celecoxib. J Microencapsul 28, 220–227 (2011)CrossRefPubMedGoogle Scholar
  78. 78.
    M. Voinea, I. Manduteanu, E. Dragomir, M. Capraru, M. Simionescu, Immunoliposomes directed toward VCAM-1 interact specifically with activated endothelial cells--a potential tool for specific drug delivery. Pharm Res 22, 1906–1917 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2017

Authors and Affiliations

  • Rohit Sharma
    • 1
  • Rohini Sharma
    • 2
  • Tejinder Pal Khaket
    • 3
  • Chanchala Dutta
    • 1
  • Bornisha Chakraborty
    • 1
  • Tapan Kumar Mukherjee
    • 1
  1. 1.Department of BiotechnologyMaharishi Markandeshwar UniversityAmbalaIndia
  2. 2.Department of BotanyUniversity of JammuJammuIndia
  3. 3.Department of BiotechnologyDaegu UniversityGyeongsanRepublic of Korea

Personalised recommendations