Advertisement

Cellular Oncology

, Volume 39, Issue 3, pp 265–277 | Cite as

A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells

  • Elisa Robles-Escajeda
  • Umashankar Das
  • Nora M. Ortega
  • Karla Parra
  • Giulio Francia
  • Jonathan R. Dimmock
  • Armando Varela-RamirezEmail author
  • Renato J. AguileraEmail author
Original Paper

Abstract

Purpose

According to the World Health Organization (WHO), breast cancer is the most common cancer affecting women worldwide. In the USA ~12.3 % of all women are expected to be diagnosed with various types of breast cancer, exhibiting varying degrees of therapeutic response rates. Therefore, the identification of novel anti-breast cancer drugs is of paramount importance.

Methods

The 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore was incorporated into a number of cytotoxins. Three of the resulting dienones, 2a, 2b and 2c, were tested for their anti-neoplastic potencies in a variety of human breast cancer-derived cell lines, including the triple negative MDA-MB-231 cell line and its metastatic variant, using a live-cell bio-imaging method. Special emphasis was put on dienone 2c, since its anti-cancer activity and its mode of inflicting cell death have so far not been reported.

Results

We found that all three dienones exhibited potent cytotoxicities towards the breast cancer-derived cell lines tested, whereas significantly lower toxicities were observed towards the non-cancerous human breast cell line MCF-10A. The dienones 2b and 2c exhibited the greatest selective cytotoxicity at submicromolar concentration levels. We found that these two dienones induced phosphatidylserine externalization in MDA-MB-231 cells in a concentration-dependent manner, suggesting that their cytotoxic effect might be mediated by apoptosis. This possibility was confirmed by our observation that the dienone 2c can induce mitochondrial depolarization, caspase-3 activation, cell cycle disruption and DNA fragmentation in MDA-MB-231 cells.

Conclusion

Our findings indicate that dienone 2c uses the mitochondrial/intrinsic pathway to inflict apoptosis in triple negative MDA-MB-231 breast cancer-derived cells. This observation warrants further assessment of dienone 2c as a potential anti-breast cancer drug.

Keywords

Anti-cancer drug discovery Apoptosis Caspase-3 Cell cycle DNA fragmentation Mitochondrial depolarization Curcumin analogues 

Notes

Acknowledgments

Funding for this work was provided by the National Institute of General Medical Sciences-Support of Competitive Research grant 1SC3GM103713-03 to RJA, as well as a Canadian Institutes of Health Research-Regional Partnerships Program Saskatchewan grant to JRD and UD. The authors also thank the Cytometry, Screening and Imaging Core Facility at the University of Texas at El Paso (UTEP), which was supported by a Research Centers in Minority Institutions program grant 2G12MD007592 to the Border Biomedical Research Center in UTEP from the National Institute on Minority Health and Health Disparities, a component of National Institutes of Health. The authors thank Gladys Almodovar and Sarah T. Baca (both with UTEP) for critical reviews of the manuscript and cell culture expertise, and to Drs. Karen Carr and John Norman (both with Beckman Coulter) for advice and instructions on the cell-cycle protocol, and also for the generous gift of the NIM-DAPI reagent. NMO, KP and ER-E were supported by NIGMS RISE training grant R25 GM069621-12. NMO was also supported by a Maximizing Access to Research Careers U*STAR program grant 2T34GM008048. KP was supported by the Student Mentoring to Achieve Retention: Triads in Science (SMARTS) program from National Science Foundation, grant DUE-1153832.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    N. Howlader, A.M. Noone, M. Krapcho, J. Garshell, D. Miller, S.F. Altekruse, C.L. Kosary, M. Yu, J. Ruhl, Z. Tatalovich, A. Mariotto, D.R. Lewis, H.S. Chen, E.J. Feuer, K.A. Cronin, SEER Cancer Statistics Review, 1975-2012, National Cancer Institute, Bethesda, MD, http://seer.cancer.gov/csr/1975_2012/, based on November 2014 SEER data submission, posted to the SEER web site, April 2015. Accessed Jan 2016
  2. 2.
    J. Lu, P.S. Steeg, J.E. Price, S. Krishnamurthy, S.A. Mani, J. Reuben, M. Cristofanilli, G. Dontu, L. Bidaut, V. Valero, G.N. Hortobagyi, D. Yu, Breast cancer metastasis: challenges and opportunities. Cancer Res. 69, 4951–4953 (2009)CrossRefPubMedGoogle Scholar
  3. 3.
    Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012). doi: 10.1038/nature11412 CrossRefGoogle Scholar
  4. 4.
    D.E. Berardi, C. Flumian, P.B. Campodonico, A.J. Urtreger, M.I. Diaz Bessone, A.N. Motter, E.D. Bal de Kier Joffe, E.F. Farias, L.B. Todaro, Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid. Cell. Oncol. 38, 289–305 (2015). doi: 10.1007/s13402-015-0230-z CrossRefGoogle Scholar
  5. 5.
    I. Fkih M’hamed, M. Privat, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015). doi: 10.1007/s13402-015-0239-3 CrossRefGoogle Scholar
  6. 6.
    C.B. Moelans, E.J. Vlug, C. Ercan, P. Bult, H. Buerger, G. Cserni, P.J. van Diest, P.W. Derksen, Methylation biomarkers for pleomorphic lobular breast cancer - a short report. Cell. Oncol. 38, 397–405 (2015). doi: 10.1007/s13402-015-0241-9 CrossRefGoogle Scholar
  7. 7.
    Y. You, H. Li, X. Qin, Y. Zhang, W. Song, Y. Ran, F. Gao, Decreased CDK10 expression correlates with lymph node metastasis and predicts poor outcome in breast cancer patients - a short report. Cell. Oncol. 38, 485–491 (2015). doi: 10.1007/s13402-015-0246-4 CrossRefGoogle Scholar
  8. 8.
    T. Vargo-Gogola, J.M. Rosen, Modelling breast cancer: one size does not fit all. Nat. Rev. Cancer 7, 659–672 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    R. Dent, M. Trudeau, K.I. Pritchard, W.M. Hanna, H.K. Kahn, C.A. Sawka, L.A. Lickley, E. Rawlinson, P. Sun, S.A. Narod, Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res. 13, 4429–4434 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    S. Badve, D.J. Dabbs, S.J. Schnitt, F.L. Baehner, T. Decker, V. Eusebi, S.B. Fox, S. Ichihara, J. Jacquemier, S.R. Lakhani, J. Palacios, E.A. Rakha, A.L. Richardson, F.C. Schmitt, P.-H. Tan, G.M. Tse, B. Weigelt, I.O. Ellis, J.S. Reis-Filho, Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod. Pathol. 24, 157–167 (2011)CrossRefPubMedGoogle Scholar
  11. 11.
    R. Cailleau, R. Young, M. Olive, W.J. Reeves Jr., Breast tumor cell lines from pleural effusions. J. Natl. Cancer Inst. 53, 661–674 (1974)PubMedGoogle Scholar
  12. 12.
    R. Munoz, S. Man, Y. Shaked, C.R. Lee, J. Wong, G. Francia, R.S. Kerbel, Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Cancer Res. 66, 3386–3391 (2006)CrossRefPubMedGoogle Scholar
  13. 13.
    H.D. Soule, T.M. Maloney, S.R. Wolman, W.D. Peterson Jr., R. Brenz, C.M. McGrath, J. Russo, R.J. Pauley, R.F. Jones, S.C. Brooks, Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086 (1990)PubMedGoogle Scholar
  14. 14.
    E. Robles-Escajeda, A. Martinez, A. Varela-Ramirez, R.A. Sanchez-Delgado, R.J. Aguilera, Analysis of the cytotoxic effects of ruthenium-ketoconazole and ruthenium-clotrimazole complexes on cancer cells. Cell Biol. Toxicol. 29, 431–443 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    K. Mohankumar, S. Pajaniradje, S. Sridharan, V.K. Singh, L. Ronsard, A.C. Banerjea, B.C. Selvanesan, M.S. Coumar, L. Periyasamy, R. Rajagopalan, Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell. Oncol. 37, 439–454 (2014). doi: 10.1007/s13402-014-0207-3 CrossRefGoogle Scholar
  16. 16.
    M.A. Pereira, C.J. Grubbs, L.H. Barnes, H. Li, G.R. Olson, I. Eto, M. Juliana, L.M. Whitaker, G.J. Kelloff, V.E. Steele, R.A. Lubet, Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis 17, 1305–1311 (1996)CrossRefPubMedGoogle Scholar
  17. 17.
    T.S. Rao, N. Basu, H.H. Siddiqui, Anti-inflammatory activity of curcumin analogues. Indian J. Med. Res. 75, 574–578 (1982)PubMedGoogle Scholar
  18. 18.
    B. Mutus, J.D. Wagner, C.J. Talpas, J.R. Dimmock, O.A. Phillips, R.S. Reid, 1-p-Chlorophenyl-4,4-dimethyl-5-diethylamino-1-penten-3-one hydrobromide, a sulfhydryl-specific compound which reacts irreversibly with protein thiols but reversibly with small molecular weight thiols. Anal. Biochem. 177, 237–243 (1989)CrossRefPubMedGoogle Scholar
  19. 19.
    C.P. Page, Integrated pharmacology, 3rd edn. (Elsevier Mosby, Edinburgh, 2006)Google Scholar
  20. 20.
    U. Das, R.K. Sharma, J.R. Dimmock, 1,5-diaryl-3-oxo-1,4-pentadienes: a case for antineoplastics with multiple targets. Curr. Med. Chem. 16, 2001–2020 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    G. Chen, D.J. Waxman, Role of cellular glutathione and glutathione S-transferase in the expression of alkylating agent cytotoxicity in human breast cancer cells. Biochem. Pharmacol. 47, 1079–1087 (1994)CrossRefPubMedGoogle Scholar
  22. 22.
    J.B. Mitchell, A. Russo, The role of glutathione in radiation and drug induced cytotoxicity. Br. J. Cancer Suppl. 8, 96–104 (1987)PubMedPubMedCentralGoogle Scholar
  23. 23.
    J.R. Dimmock, M.P. Padmanilayam, R.N. Puthucode, A.J. Nazarali, N.L. Motaganahalli, G.A. Zello, J.W. Quail, E.O. Oloo, H.B. Kraatz, J.S. Prisciak, T.M. Allen, C.L. Santos, J. Balzarini, E. De Clercq, E.K. Manavathu, A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J. Med. Chem. 44, 586–593 (2001)CrossRefPubMedGoogle Scholar
  24. 24.
    U. Das, J. Alcorn, A. Shrivastav, R.K. Sharma, E. De Clercq, J. Balzarini, J.R. Dimmock, Design, synthesis and cytotoxic properties of novel 1-[4-(2-alkylaminoethoxy)phenylcarbonyl]-3,5-bis(arylidene)-4-piperidones and related compounds. Eur. J. Med. Chem. 42, 71–80 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    C. Lema, A. Varela-Ramirez, R.J. Aguilera, Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds. Curr Cell. Biochem. 1, 1–14 (2011)PubMedPubMedCentralGoogle Scholar
  26. 26.
    J. Debnath, S.K. Muthuswamy, J.S. Brugge, Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003)CrossRefPubMedGoogle Scholar
  27. 27.
    L.M. Nunes, E. Robles-Escajeda, Y. Santiago-Vazquez, N.M. Ortega, C. Lema, A. Muro, G. Almodovar, U. Das, S. Das, J.R. Dimmock, R.J. Aguilera, A. Varela-Ramirez, The gender of cell lines matters when screening for novel anti-cancer drugs. AAPS J. 16, 872–874 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    A. Varela-Ramirez, M. Costanzo, Y.P. Carrasco, K.H. Pannell, R.J. Aguilera, Cytotoxic effects of two organotin compounds and their mode of inflicting cell death on four mammalian cancer cells. Cell Biol. Toxicol. 27, 159–168 (2011)CrossRefPubMedGoogle Scholar
  29. 29.
    E. Robles-Escajeda, D. Lerma, A.M. Nyakeriga, J.A. Ross, R.A. Kirken, R.J. Aguilera, A. Varela-Ramirez, Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells. PLoS One 8, e73508 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    B. Valdez, K. Carr, J. Norman, Violet-excited nim-DAPI allows efficient and reproducible cell cycle analysis on the Gallios flow cytometer. Beckman Coulter Life Sciences. Houston, TX, http://www.bcilifesciences.com/flow/DAPIwhitepaper/BR-18940.pdf. Accesed Jan 2016
  31. 31.
    H. Li, H. Zhu, C.J. Xu, J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998)CrossRefPubMedGoogle Scholar
  32. 32.
    D.A. Pedroza, F. De Leon, A. Varela-Ramirez, C. Lema, R.J. Aguilera, S. Mito, The cytotoxic effect of 2-acylated-1,4-naphthohydroquinones on leukemia/lymphoma cells. Biorg. Med. Chem. 22, 842–847 (2014). doi: 10.1016/j.bmc.2013.12.007 CrossRefGoogle Scholar
  33. 33.
    B. Yadav, S. Taurin, R.J. Rosengren, M. Schumacher, M. Diederich, T.J. Somers-Edgar, L. Larsen, Synthesis and cytotoxic potential of heterocyclic cyclohexanone analogues of curcumin. Biorg. Med. Chem. 18, 6701–6707 (2010)CrossRefGoogle Scholar
  34. 34.
    J.-M. Shieh, Y.-C. Chen, Y.-C. Lin, J.-N. Lin, W.-C. Chen, Y.-Y. Chen, C.-T. Ho, T.-D. Way, Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells. J. Agric. Food Chem. 61, 6366–6375 (2013)CrossRefPubMedGoogle Scholar
  35. 35.
    E. Solary, N. Droin, A. Bettaieb, L. Corcos, M.T. Dimanche-Boitrel, C. Garrido, Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 14, 1833–1849 (2000)CrossRefPubMedGoogle Scholar
  36. 36.
    Z. Birsu Cincin, M. Unlu, B. Kiran, E. Sinem Bireller, Y. Baran, B. Cakmakoglu, Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell. Oncol. 38, 195–204 (2015). doi: 10.1007/s13402-015-0222-z CrossRefGoogle Scholar
  37. 37.
    T. Nakaoka, A. Ota, T. Ono, S. Karnan, H. Konishi, A. Furuhashi, Y. Ohmura, Y. Yamada, Y. Hosokawa, Y. Kazaoka, Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell. Oncol. 37, 119–129 (2014). doi: 10.1007/s13402-014-0167-7 CrossRefGoogle Scholar
  38. 38.
    L.A. Loeb, D.C. Wallace, G.M. Martin, The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. PNAS 102, 18769–18770 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    B. Westermann, Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010)CrossRefPubMedGoogle Scholar
  40. 40.
    M. Lahouel, S. Amedah, A. Zellagui, A. Touil, S. Rhouati, F. Benyache, E. Leghouchi, H. Bousseboua, The interaction of new plant flavonoids with rat liver mitochondria: relation between the anti- and pro-oxydant effect and flavonoids concentration. Therapie 61, 347–355 (2006)CrossRefPubMedGoogle Scholar
  41. 41.
    B.K. Adams, J. Cai, J. Armstrong, M. Herold, Y.J. Lu, A. Sun, J.P. Snyder, D.C. Liotta, D.P. Jones, M. Shoji, EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 16, 263–275 (2005)CrossRefPubMedGoogle Scholar
  42. 42.
    F.H. Igney, P.H. Krammer, Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002)CrossRefPubMedGoogle Scholar
  43. 43.
    S. Kothakota, T. Azuma, C. Reinhard, A. Klippel, J. Tang, K. Chu, T.J. McGarry, M.W. Kirschner, K. Koths, D.J. Kwiatkowski, L.T. Williams, Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294–298 (1997)CrossRefPubMedGoogle Scholar
  44. 44.
    J.D. Ly, D.R. Grubb, A. Lawen, The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8, 115–128 (2003)CrossRefPubMedGoogle Scholar
  45. 45.
    R. Gogada, M. Amadori, H. Zhang, A. Jones, A. Verone, J. Pitarresi, S. Jandhyam, V. Prabhu, J.D. Black, D. Chandra, Curcumin induces Apaf-1-dependent, p21-mediated caspase activation and apoptosis. Cell Cycle 10, 4128–4137 (2011). doi: 10.4161/cc.10.23.18292 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    B. Fadeel, S. Orrenius, B. Zhivotovsky, Apoptosis in human disease: a new skin for the old ceremony? Biochem. Biophys. Res. Commun. 266, 699–717 (1999). doi: 10.1006/bbrc.1999.1888 CrossRefPubMedGoogle Scholar
  47. 47.
    S. Nagata, Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12–18 (2000)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2016

Authors and Affiliations

  • Elisa Robles-Escajeda
    • 1
  • Umashankar Das
    • 2
  • Nora M. Ortega
    • 1
  • Karla Parra
    • 1
  • Giulio Francia
    • 1
  • Jonathan R. Dimmock
    • 2
  • Armando Varela-Ramirez
    • 1
    Email author
  • Renato J. Aguilera
    • 1
    Email author
  1. 1.Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciencesthe University of Texas at El PasoEl PasoUSA
  2. 2.Drug Discovery & Development Research Group, College of Pharmacy & NutritionUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations