Cellular Oncology

, Volume 38, Issue 5, pp 327–339 | Cite as

NF-κB signaling in cancer stem cells: a promising therapeutic target?

  • K. Vazquez-Santillan
  • J. Melendez-Zajgla
  • L. Jimenez-Hernandez
  • G. Martínez-Ruiz
  • V. Maldonado
Review

Abstract

Background

Cancer stem cells (CSCs) are regulated by several signaling pathways that ultimately control their maintenance and expansion. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) forms a protein complex that controls DNA transcription and, as such, plays an important role in proliferation, inflammation, angiogenesis, invasion and metastasis. The NF-κB signaling pathway, which has been found to be constitutively activated in CSCs from a variety of cancers, participates in the maintenance, expansion, proliferation and survival of CSCs. Targeted disruption of this pathway may profoundly impair the adverse phenotype of CSCs and may provide a therapeutic opportunity to remove the CSC fraction. In particular, it may be attractive to use specific NF-κB inhibitors in chronic therapeutic schemes to reduce disease progression. Exceptional low toxicity profiles of these inhibitors are a prerequisite for use in combined treatment regimens and to avoid resistance.

Conclusion

Although still preliminary, recent evidence shows that such targeted strategies may be useful in adjuvant chemo-preventive settings.

Keywords

NF-κB signaling Cancer stem cells 

Notes

Acknowledgments

The work at Jorge Melendez-Zajgla laboratory was funded by CONACyT grant 132931.

Conflict of Interest

The authors declare that they have no competing interest.

References

  1. 1.
    T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)CrossRefPubMedGoogle Scholar
  2. 2.
    J. Di, T. Duiveman-de Boer, P.L. Zusterzeel, C.G. Figdor, L.F. Massuger, R. Torensma, The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell. Oncol. 36, 363–374 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell. Oncol. 36, 265–275 (2013)CrossRefGoogle Scholar
  4. 4.
    N.A. Lobo, Y. Shimono, D. Qian, M.F. Clarke, The biology of cancer stem cells. Annu. Rev. Cell Dev. Biol. 23, 675–699 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    R. Bjerkvig, B.B. Tysnes, K.S. Aboody, J. Najbauer, A.J. Terzis, Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat. Rev. Cancer 5, 899–904 (2005)CrossRefPubMedGoogle Scholar
  6. 6.
    M.S. Hayden, S. Ghosh, Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004)CrossRefPubMedGoogle Scholar
  7. 7.
    M.S. Hayden, S. Ghosh, Shared principles in NF-kappaB signaling. Cell 132, 344–362 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    V.F. Shih, R. Tsui, A. Caldwell, A. Hoffmann, A single NFκB system for both canonical and non-canonical signaling. Cell Res. 21, 86–102 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    L. Ling, Z. Cao, D.V. Goeddel, NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. U. S. A. 95, 3792–3797 (1998)PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    G. Qing, Z. Qu, G. Xiao, Stabilization of basally translated NF-kB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kB2 p100. J. Biol. Chem. 280, 40578–40582 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    W.E. Naugler, M. Karin, NF-kappaB and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev. 18, 19–26 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    D.K. Biswas, Q. Shi, S. Baily, I. Strickland, S. Ghosh, A.B. Pardee, J.D. Iglehart, NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc. Natl. Acad. Sci. U. S. A. 101, 10137–10142 (2004)Google Scholar
  13. 13.
    J. Bollrath, F.R. Greten, IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 10, 1314–1319 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    F.R. Greten, L. Eckmann, T.F. Greten, J.M. Park, Z.W. Li, L.J. Egan, M.F. Kagnoff, M. Karin, IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    H.L. Pahl, Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18, 6853–6866 (1999)CrossRefPubMedGoogle Scholar
  16. 16.
    M. Karin, Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 (2006)CrossRefPubMedGoogle Scholar
  17. 17.
    E. Bandala, M. Espinosa, V. Maldonado, J. Melendez-Zajgla, Inhibitor of apoptosis-1 (IAP-1) expression and apoptosis in non-small-cell lung cancer cells exposed to gemcitabine. Biochem. Pharmacol. 62, 13–19 (2001)CrossRefPubMedGoogle Scholar
  18. 18.
    K. Mohankumar, S. Pajaniradje, S. Sridharan, V.K. Singh, L. Ronsard, A.C. Banerjea, B.C. Selvanesan, M.S. Coumar, L. Periyasamy, R. Rajagopalan, Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell. Oncol. 37, 439–454 (2014)CrossRefGoogle Scholar
  19. 19.
    V. Papanikolaou, N. Stefanou, S. Dubos, I. Papathanasiou, M. Palianopoulou, V. Valiakou, A. Tsezou, Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell. Oncol. 38, 155–164 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Dolcet, D. Llobet, J. Pallares, X. Matias-Guiu, NF-kB in development and progression of human cancer. Virchows Archiv : Int. J. Pathol. 446, 475–482 (2005)CrossRefGoogle Scholar
  21. 21.
    M.A. Huber, N. Azoitei, B. Baumann, S. Grunert, A. Sommer, H. Pehamberger, N. Kraut, H. Beug, T. Wirth, NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114, 569–581 (2004)PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    C.W. Li, W. Xia, L. Huo, S.O. Lim, Y. Wu, J.L. Hsu, C.H. Chao, H. Yamaguchi, N.K. Yang, Q. Ding, Y. Wang, Y.J. Lai, A.M. LaBaff, T.J. Wu, B.R. Lin, M.H. Yang, G.N. Hortobagyi, M.C. Hung, Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res. 72, 1290–1300 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    H. Korkaya, S. Liu, M.S. Wicha, Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin. Cancer. Res.: Off. J. Am. Assoc. Cancer Res. 17, 6125–6129 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Karin, NF-kappaB and cancer: mechanisms and targets. Mol. Carcinog. 45, 355–361 (2006)CrossRefPubMedGoogle Scholar
  25. 25.
    M.L. Guzman, S.J. Neering, D. Upchurch, B. Grimes, D.S. Howard, D.A. Rizzieri, S.M. Luger, C.T. Jordan, Nuclear factor-kappa B is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307 (2001)CrossRefPubMedGoogle Scholar
  26. 26.
    V.K. Rajasekhar, L. Studer, W. Gerald, N.D. Socci, H.I. Scher, Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat. Commun. 2, 162 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    R. Birnie, S.D. Bryce, C. Roome, V. Dussupt, A. Droop, S.H. Lang, P.A. Berry, C.F. Hyde, J.L. Lewis, M.J. Stower, N.J. Maitland, A.T. Collins, Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 9, R83 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    A.B.. Alvero, R. Chen, H.H. Fu, M. Montagna, P.E. Schwartz, T. Rutherford, D.A. Silasi, K.D. Steffensen, M. Waldstrom, I. Visintin, G. Mor, Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8, 158–166 (2009)Google Scholar
  29. 29.
    M. Murohashi, K. Hinohara, M. Kuroda, T. Isagawa, S. Tsuji, S. Kobayashi, K. Umezawa, A. Tojo, H. Aburatani, N. Gotoh, Gene set enrichment analysis provides insight into novel signalling pathways in breast cancer stem cells. Br. J. Cancer 102, 206–212 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    R. Liu, X. Wang, G.Y. Chen, P. Dalerba, A. Gurney, T. Hoey, G. Sherlock, J. Lewicki, K. Shedden, M.F. Clarke, The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007)CrossRefPubMedGoogle Scholar
  31. 31.
    J.M. Garner, M. Fan, C.H. Yang, Z. Du, M. Sims, A.M. Davidoff, L.M. Pfeffer, Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappaB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J. Biol. Chem. 288, 26167–26176 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Y. Kagoya, A. Yoshimi, K. Kataoka, M. Nakagawa, K. Kumano, S. Arai, H. Kobayashi, T. Saito, Y. Iwakura, M. Kurokawa, Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity. J. Clin. Invest. 124, 528–542 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    M.L. Guzman, C.F. Swiderski, D.S. Howard, B.A. Grimes, R.M. Rossi, S.J. Szilvassy, C.T. Jordan, Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl. Acad. Sci. U. S. A. 99, 16220–16225 (2002)PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    M.L. Guzman, R.M. Rossi, L. Karnischky, X. Li, D.R. Peterson, D.S. Howard, C.T. Jordan, The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105, 4163–4169 (2005)PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    M.L. Guzman, R.M. Rossi, S. Neelakantan, X. Li, C.A. Corbett, D.C. Hassane, M.W. Becker, J.M. Bennett, E. Sullivan, J.L. Lachowicz, A. Vaughan, C.J. Sweeney, W. Matthews, M. Carroll, J.L. Liesveld, P.A. Crooks, C.T. Jordan, An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110, 4427–4435 (2007)PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    H.L. Ang, V. Tergaonkar, Notch and NFkappaB signaling pathways: do they collaborate in normal vertebrate brain development and function? BioEssays: News Rev. Mol. Cell Dev. Biol. 29, 1039–1047 (2007)CrossRefGoogle Scholar
  37. 37.
    M. Patane, P. Porrati, E. Bottega, S. Morosini, G. Cantini, V. Girgenti, A. Rizzo, M. Eoli, B. Pollo, F.L. Sciacca, S. Pellegatta, G. Finocchiaro, Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres. Mol. Cancer 12, 160 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    M. Tafani, M. Di Vito, A. Frati, L. Pellegrini, E. De Santis, G. Sette, A. Eramo, P. Sale, E. Mari, A. Santoro, A. Raco, M. Salvati, R. De Maria, M.A. Russo, Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. J. Neuroinflammation 8, 32 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    A.B.. Hjelmeland, Q. Wu, S. Wickman, C. Eyler, J. Heddleston, Q. Shi, J.D. Lathia, J. Macswords, J. Lee, R.E. McLendon, J.N. Rich, Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol. 8, e1000319 (2010)Google Scholar
  40. 40.
    L. Nogueira, P. Ruiz-Ontanon, A. Vazquez-Barquero, M. Lafarga, M.T. Berciano, B. Aldaz, L. Grande, I. Casafont, V. Segura, E.F. Robles, D. Suarez, L.F. Garcia, J.A. Martinez-Climent, J.L. Fernandez-Luna, Blockade of the NFkappaB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene 30, 3537–3548 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    D.W. Lee, D. Ramakrishnan, J. Valenta, I.F. Parney, K.J. Bayless, R. Sitcheran, The NF-kappaB RelB protein is an oncogenic driver of mesenchymal glioma. PLoS One 8, e57489 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    D. Iliopoulos, H.A. Hirsch, G. Wang, K. Struhl, Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. U. S. A. 108, 1397–1402 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    I. Chefetz, A.B.. Alvero, J.C. Holmberg, N. Lebowitz, V. Craveiro, Y. Yang-Hartwich, G. Yin, L. Squillace, M. Gurrea Soteras, P. Aldo, G. Mor, TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell Cycle 12, 511–521 (2013)Google Scholar
  44. 44.
    H. Long, R. Xie, T. Xiang, Z. Zhao, S. Lin, Z. Liang, Z. Chen, B. Zhu, Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-kappaB-mediated MMP-9 upregulation. Stem Cells 30, 2309–2319 (2012)CrossRefPubMedGoogle Scholar
  45. 45.
    R. Chen, A.B.. Alvero, D.A. Silasi, M.G. Kelly, S. Fest, I. Visintin, A. Leiser, P.E. Schwartz, T. Rutherford, G. Mor, Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 27, 4712–4723 (2008)Google Scholar
  46. 46.
    A.B.. Alvero, H.H. Fu, J. Holmberg, I. Visintin, L. Mor, C.C. Marquina, J. Oidtman, D.A. Silasi, G. Mor, Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27, 2405–2413 (2009)Google Scholar
  47. 47.
    M. Shipitsin, L.L. Campbell, P. Argani, S. Weremowicz, N. Bloushtain-Qimron, J. Yao, T. Nikolskaya, T. Serebryiskaya, R. Beroukhim, M. Hu, M.K. Halushka, S. Sukumar, L.M. Parker, K.S. Anderson, L.N. Harris, J.E. Garber, A.L. Richardson, S.J. Schnitt, Y. Nikolsky, R.S. Gelman, K. Polyak, Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273 (2007)CrossRefPubMedGoogle Scholar
  48. 48.
    J.H. Ju, K. Jang, K.M. Lee, M. Kim, J. Kim, J.Y. Yi, D.Y. Noh, I. Shin, CD24 enhances DNA damage-induced apoptosis by modulating NF-kappaB signaling in CD44-expressing breast cancer cells. Carcinogenesis 32, 1474–1483 (2011)CrossRefPubMedGoogle Scholar
  49. 49.
    M. Liu, T. Sakamaki, M.C. Casimiro, N.E. Willmarth, A.A. Quong, X. Ju, J. Ojeifo, X. Jiao, W.S. Yeow, S. Katiyar, L.A. Shirley, D. Joyce, M.P. Lisanti, C. Albanese, R.G. Pestell, The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 70, 10464–10473 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Y. Cao, J.L. Luo, M. Karin, IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc. Natl. Acad. Sci. U. S. A. 104, 15852–15857 (2007)PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    W. Zhang, W. Tan, X. Wu, M. Poustovoitov, A. Strasner, W. Li, N. Borcherding, M. Ghassemian, M. Karin, A NIK-IKKalpha module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1. Cancer Cell 23, 647–659 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    D. Schramek, A. Leibbrandt, V. Sigl, L. Kenner, J.A. Pospisilik, H.J. Lee, R. Hanada, P.A. Joshi, A. Aliprantis, L. Glimcher, M. Pasparakis, R. Khokha, C.J. Ormandy, M. Widschwendter, G. Schett, J.M. Penninger, Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468, 98–102 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    M. Palafox, I. Ferrer, P. Pellegrini, S. Vila, S. Hernandez-Ortega, A. Urruticoechea, F. Climent, M.T. Soler, P. Munoz, F. Vinals, M. Tometsko, D. Branstetter, W.C. Dougall, E. Gonzalez-Suarez, RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 72, 2879–2888 (2012)CrossRefPubMedGoogle Scholar
  54. 54.
    D. Iliopoulos, H.A. Hirsch, K. Struhl, An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    H. Korkaya, G.I. Kim, A. Davis, F. Malik, N.L. Henry, S. Ithimakin, A.A. Quraishi, N. Tawakkol, R. D’Angelo, A.K. Paulson, S. Chung, T. Luther, H.J. Paholak, S. Liu, K.A. Hassan, Q. Zen, S.G. Clouthier, M.S. Wicha, Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell 47, 570–584 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    M.D. Hale, J.D. Hayden, H.I. Grabsch, Tumour-microenvironment interactions: role of tumour stroma and proteins produced by cancer-associated fibroblasts in chemotherapy response. Cell. Oncol. 36, 95–112 (2013)CrossRefGoogle Scholar
  57. 57.
    M. Yamamoto, Y. Taguchi, T. Ito-Kureha, K. Semba, N. Yamaguchi, J. Inoue, NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat. Commun. 4, 2299 (2013)PubMedGoogle Scholar
  58. 58.
    G. Storci, P. Sansone, S. Mari, G. D’Uva, S. Tavolari, T. Guarnieri, M. Taffurelli, C. Ceccarelli, D. Santini, P. Chieco, K.B. Marcu, M. Bonafe, TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J. Cell. Physiol. 225, 682–691 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    S.A. Mani, W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, R.A. Weinberg, The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    A. Van den Broeck, H. Vankelecom, W. Van Delm, L. Gremeaux, J. Wouters, J. Allemeersch, O. Govaere, T. Roskams, B. Topal, Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes. PLoS One 8, e73968 (2013)CrossRefPubMedGoogle Scholar
  61. 61.
    G. Kallifatidis, V. Rausch, B. Baumann, A. Apel, B.M. Beckermann, A. Groth, J. Mattern, Z. Li, A. Kolb, G. Moldenhauer, P. Altevogt, T. Wirth, J. Werner, P. Schemmer, M.W. Buchler, A.V. Salnikov, I. Herr, Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58, 949–963 (2009)CrossRefPubMedGoogle Scholar
  62. 62.
    L. Sun, L.A. Mathews, S.M. Cabarcas, X. Zhang, A. Yang, Y. Zhang, M.R. Young, K.D. Klarmann, J.R. Keller, W.L. Farrar, Epigenetic regulation of SOX9 by the NF-kappaB signaling pathway in pancreatic cancer stem cells. Stem Cells 31, 1454–1466 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    K. Vlantis, A. Wullaert, Y. Sasaki, M. Schmidt-Supprian, K. Rajewsky, T. Roskams, M. Pasparakis, Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. J. Clin. Invest. 121, 2781–2793 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    S. Schwitalla, A.A. Fingerle, P. Cammareri, T. Nebelsiek, S.I. Goktuna, P.K. Ziegler, O. Canli, J. Heijmans, D.J. Huels, G. Moreaux, R.A. Rupec, M. Gerhard, R. Schmid, N. Barker, H. Clevers, R. Lang, J. Neumann, T. Kirchner, M.M. Taketo, G.R. van den Brink, O.J. Sansom, M.C. Arkan, F.R. Greten, Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013)CrossRefPubMedGoogle Scholar
  65. 65.
    K.B. Myant, P. Cammareri, E.J. McGhee, R.A. Ridgway, D.J. Huels, J.B. Cordero, S. Schwitalla, G. Kalna, E.L. Ogg, D. Athineos, P. Timpson, M. Vidal, G.I. Murray, F.R. Greten, K.I. Anderson, O.J. Sansom, ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12, 761–773 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Y. Ben-Neriah, M. Karin, Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat. Immunol. 12, 715–723 (2011)CrossRefPubMedGoogle Scholar
  67. 67.
    V. Maldonado, J. Melendez-Zajgla, A. Ortega, Modulation of NF-kappa B, and Bcl-2 in apoptosis induced by cisplatin in HeLa cells. Mutat. Res. 381, 67–75 (1997)CrossRefPubMedGoogle Scholar
  68. 68.
    C. Nakanishi, M. Toi, Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer 5, 297–309 (2005)CrossRefPubMedGoogle Scholar
  69. 69.
    L. Zhang, X. Ren, Y. Cheng, X. Liu, J.E. Allen, Y. Zhang, Y. Yuan, S.Y. Huang, W. Yang, A. Berg, B.S. Webb, J. Connor, C.G. Liu, Z. Lu, W.S. El-Deiry, J.M. Yang, The NFkappaB inhibitor, SN50, induces differentiation of glioma stem cells and suppresses their oncogenic phenotype. Cancer Biol. Ther. 15, 602–611 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    J.U. Marquardt, L. Gomez-Quiroz, L.O. Arreguin Camacho, F. Pinna, Y.H. Lee, M. Kitade, M.P. Dominguez, D. Castven, K. Breuhahn, E.A. Conner, P.R. Galle, J.B. Andersen, V.M. Factor and S.S. Thorgeirsson, Curcumin effectively inhibits oncogenic NF-kB signaling and restrains stemness features in liver cancer, J. Hepatol. (2015)Google Scholar
  71. 71.
    B.H. Kwok, B. Koh, M.I. Ndubuisi, M. Elofsson, C.M. Crews, The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem. Biol. 8, 759–766 (2001)CrossRefPubMedGoogle Scholar
  72. 72.
    K. Liao, B. Xia, Q.Y. Zhuang, M.J. Hou, Y.J. Zhang, B. Luo, Y. Qiu, Y.F. Gao, X.J. Li, H.F. Chen, W.H. Ling, C.Y. He, Y.J. Huang, Y.C. Lin, Z.N. Lin, Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-kappaB/COX-2 pathway. Theranostics 5, 302–321 (2015)PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    J. Zhou, H. Zhang, P. Gu, J. Bai, J.B. Margolick, Y. Zhang, NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res. Treat. 111, 419–427 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    J.H. Lee, T.H. Koo, H. Yoon, H.S. Jung, H.Z. Jin, K. Lee, Y.S. Hong, J.J. Lee, Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem. Pharmacol. 72, 1311–1321 (2006)CrossRefPubMedGoogle Scholar
  75. 75.
    D.C. Hassane, M.L. Guzman, C. Corbett, X. Li, R. Abboud, F. Young, J.L. Liesveld, M. Carroll, C.T. Jordan, Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood 111, 5654–5662 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    C. Lin, L. Wang, H. Wang, L. Yang, H. Guo, X. Wang, Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J. Cell. Biochem. 114, 2061–2070 (2013)CrossRefPubMedGoogle Scholar
  77. 77.
    C.H. Leung, S.P. Grill, W. Lam, W. Gao, H.D. Sun, Y.C. Cheng, Eriocalyxin B inhibits nuclear factor-kappaB activation by interfering with the binding of both p65 and p50 to the response element in a noncompetitive manner. Mol. Pharmacol. 70, 1946–1955 (2006)CrossRefPubMedGoogle Scholar
  78. 78.
    L. Wang, W.L. Zhao, J.S. Yan, P. Liu, H.P. Sun, G.B. Zhou, Z.Y. Weng, W.L. Wu, X.Q. Weng, X.J. Sun, Z. Chen, H.D. Sun, S.J. Chen, Eriocalyxin B induces apoptosis of t(8;21) leukemia cells through NF-kappaB and MAPK signaling pathways and triggers degradation of AML1-ETO oncoprotein in a caspase-3-dependent manner. Cell Death Differ. 14, 306–317 (2007)CrossRefPubMedGoogle Scholar
  79. 79.
    A.L. Leizer, A.B.. Alvero, H.H. Fu, J.C. Holmberg, Y.C. Cheng, D.A. Silasi, T. Rutherford, G. Mor, Regulation of inflammation by the NF-kappaB pathway in ovarian cancer stem cells. Am. J. Reprod. Immunol. 65, 438–447 (2011)Google Scholar
  80. 80.
    Y. Li, T. Zhang, Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol. 9, 1097–1103 (2013)CrossRefPubMedGoogle Scholar
  81. 81.
    V. Rausch, L. Liu, G. Kallifatidis, B. Baumann, J. Mattern, J. Gladkich, T. Wirth, P. Schemmer, M.W. Buchler, M. Zoller, A.V. Salnikov, I. Herr, Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res. 70, 5004–5013 (2010)CrossRefPubMedGoogle Scholar
  82. 82.
    G. Kallifatidis, S. Labsch, V. Rausch, J. Mattern, J. Gladkich, G. Moldenhauer, M.W. Buchler, A.V. Salnikov, I. Herr, Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther. 19, 188–195 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    A. Gomez-Cabrero, W. Wrasidlo, R.A. Reisfeld, IMD-0354 targets breast cancer stem cells: a novel approach for an adjuvant to chemotherapy to prevent multidrug resistance in a murine model. PLoS One 8, e73607 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    J.W. Pierce, R. Schoenleber, G. Jesmok, J. Best, S.A. Moore, T. Collins, M.E. Gerritsen, Novel inhibitors of cytokine-induced I kappa B alpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 272, 21096–21103 (1997)CrossRefPubMedGoogle Scholar
  85. 85.
    A. Ariga, J. Namekawa, N. Matsumoto, J. Inoue, K. Umezawa, Inhibition of tumor necrosis factor-alpha -induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J. Biol. Chem. 277, 24625–24630 (2002)CrossRefPubMedGoogle Scholar
  86. 86.
    K. Hinohara, S. Kobayashi, H. Kanauchi, S. Shimizu, K. Nishioka, E. Tsuji, K. Tada, K. Umezawa, M. Mori, T. Ogawa, J. Inoue, A. Tojo, N. Gotoh, ErbB receptor tyrosine kinase/NF-kappaB signaling controls mammosphere formation in human breast cancer. Proc. Natl. Acad. Sci. U. S. A. 109, 6584–6589 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    J. Adams, The proteasome: a suitable antineoplastic target. Nat. Rev. Cancer 4, 349–360 (2004)CrossRefPubMedGoogle Scholar
  88. 88.
    Y. Jin, Z. Lu, K. Ding, J. Li, X. Du, C. Chen, X. Sun, Y. Wu, J. Zhou, J. Pan, Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 70, 2516–2527 (2010)CrossRefPubMedGoogle Scholar
  89. 89.
    M.J. Thun, S.J. Henley, C. Patrono, Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 94, 252–266 (2002)CrossRefPubMedGoogle Scholar
  90. 90.
    W. Qiu, X. Wang, B. Leibowitz, H. Liu, N. Barker, H. Okada, N. Oue, W. Yasui, H. Clevers, R.E. Schoen, J. Yu, L. Zhang, Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc. Natl. Acad. Sci. U. S. A. 107, 20027–20032 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    A.M. Seo, S.W. Hong, J.S. Shin, I.C. Park, N.J. Hong, D.J. Kim, W.K. Lee, W.J. Lee, D.H. Jin, M.S. Lee, Sulindac induces apoptotic cell death in susceptible human breast cancer cells through, at least in part, inhibition of IKKbeta. Apoptosis: Int. J. Programmed Cell Death 14, 913–922 (2009)CrossRefGoogle Scholar
  92. 92.
    S.J. Shiff, B. Rigas, The role of cyclooxygenase inhibition in the antineoplastic effects of nonsteroidal antiinflammatory drugs (NSAIDs). J. Exp. Med. 190, 445–450 (1999)PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    C.V. Rao, B.S. Reddy, NSAIDs and chemoprevention. Curr. Cancer Drug Targets 4, 29–42 (2004)CrossRefPubMedGoogle Scholar
  94. 94.
    C. Zhu, K.W. Cheng, N. Ouyang, L. Huang, Y. Sun, P. Constantinides, B. Rigas, Phosphosulindac (OXT-328) selectively targets breast cancer stem cells in vitro and in human breast cancer xenografts. Stem Cells 30, 2065–2075 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    L. Seguin, S. Kato, A. Franovic, M.F. Camargo, J. Lesperance, K.C. Elliott, M. Yebra, A. Mielgo, A.M. Lowy, H. Husain, T. Cascone, L. Diao, J. Wang, I.I. Wistuba, J.V. Heymach, S.M. Lippman, J.S. Desgrosellier, S. Anand, S.M. Weis, D.A. Cheresh, An integrin beta(3)-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat. Cell Biol. 16, 457–468 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    E.C. Attar, P.C. Amrein, J.W. Fraser, A.T. Fathi, S. McAfee, M. Wadleigh, D.J. Deangelo, D.P. Steensma, R.M. Stone, J. Foster, D. Neuberg, K.K. Ballen, Phase I dose escalation study of bortezomib in combination with lenalidomide in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leuk. Res. 37, 1016–1020 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    E.C. Attar, D.J. De Angelo, J.G. Supko, F. D’Amato, D. Zahrieh, A. Sirulnik, M. Wadleigh, K.K. Ballen, S. McAfee, K.B. Miller, J. Levine, I. Galinsky, E.G. Trehu, D. Schenkein, D. Neuberg, R.M. Stone, P.C. Amrein, Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clin. Cancer Res. 14, 1446–1454 (2008)CrossRefPubMedGoogle Scholar
  98. 98.
    K.G. Troselj, R.N. Kujundzic, Curcumin in combined cancer therapy. Curr. Pharm. Des. 20, 6682–6696 (2014)CrossRefPubMedGoogle Scholar
  99. 99.
    R.E. Carroll, R.V. Benya, D.K. Turgeon, S. Vareed, M. Neuman, L. Rodriguez, M. Kakarala, P.M. Carpenter, C. McLaren, F.L. Meyskens Jr., D.E. Brenner, Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. 4, 354–364 (2011)Google Scholar
  100. 100.
    L.M. Howells, J. Mahale, S. Sale, L. McVeigh, W.P. Steward, A. Thomas, K. Brown, Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies. J. Pharmacol. Exp. Ther. 350, 483–494 (2014)CrossRefPubMedGoogle Scholar
  101. 101.
    S.S. Chung, J.V. Vadgama, Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFkappaB signaling. Anticancer Res. 35, 39–46 (2015)PubMedCentralPubMedGoogle Scholar
  102. 102.
    P.P. Sordillo, L. Helson, Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res. 35, 599–614 (2015)PubMedGoogle Scholar
  103. 103.
    A.M. Alizadeh, M. Sadeghizadeh, F. Najafi, S.K. Ardestani, V. Erfani-Moghadam, M. Khaniki, A. Rezaei, M. Zamani, S. Khodayari, H. Khodayari, M.A. Mohagheghi, Encapsulation of curcumin in diblock copolymer micelles for cancer therapy. Biomed. Res. Int. 2015, 824746 (2015)PubMedCentralCrossRefPubMedGoogle Scholar
  104. 104.
    M.J. Dehghan Esmatabadi, B. Farhangi, Z. Safari, H. Kazerooni, H. Shirzad, F. Zolghadr, M. Sadeghizadeh, Dendrosomal curcumin inhibits metastatic potential of human SW480 colon cancer cells through down-regulation of claudin1, zeb1 and hef1-1 gene expression. Asian Pac. J. Cancer Prev. 16, 2473–2481 (2015)PubMedGoogle Scholar
  105. 105.
    J.C. Lien, C.M. Hung, Y.J. Lin, H.C. Lin, T.C. Ko, L.C. Tseng, S.C. Kuo, C.T. Ho, J.C. Lee and T. Way, Pculin02H, a curcumin derivative, inhibits proliferation and clinical drug resistance of HER2-overexpressing cancer cells. Chem. Biol. Interact. 235, 17–26 (2015)Google Scholar
  106. 106.
    V. Zeighamian, M. Darabi, A. Akbarzadeh, M. Rahmati-Yamchi, N. Zarghami, F. Badrzadeh, R. Salehi, F.S. Tabatabaei Mirakabad, M. Taheri-Anganeh, PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells. Artif. Cells Nanomed. Biotechnol. 1–8 (2015)Google Scholar

Copyright information

© International Society for Cellular Oncology 2015

Authors and Affiliations

  1. 1.Epigenetics LaboratoryNational Institute of Genomic MedicineMexico CityMexico
  2. 2.Functional Cancer Genomics laboratoryNational Institute of Genomic MedicineMexico CityMexico

Personalised recommendations