Cellular Oncology

, Volume 38, Issue 2, pp 155–164 | Cite as

Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes

  • Vassilis Papanikolaou
  • Nikolaos Stefanou
  • Stephanie Dubos
  • Ioanna Papathanasiou
  • Maria Palianopoulou
  • Vaia Valiakou
  • Aspasia TsezouEmail author
Original Paper



Tamoxifen is a major treatment modality for estrogen receptor positive breast cancer, but the occurrence of resistance remains a problem. Recently, obesity-related leptin has been found to interfere with tamoxifen in breast cancer MCF-7 cells. In the present study we investigated the effect of leptin on three tamoxifen-treated breast cancer cell types (i.e., MDA-MB-231, MCF-7 and MCF-7/HER2).


The effect of tamoxifen/leptin treatment was evaluated using a MTT cell viability assay. mRNA expression was assessed by real time PCR and protein expression by Western blotting. WWOX, Survivin and BCL2 gene promoter activities were evaluated by chromatin immunoprecipitation.


Cell viability assays revealed that estrogen receptor negative MDA-MB-231 cells were resistant, that estrogen receptor positive MCF-7 cells were sensitive and that MCF-7/HER2 cells were relatively resistant to tamoxifen, while leptin co-administration ‘rescued’ MCF-7 and, especially, MCF-7/HER2 cells from the anti-proliferative effect of tamoxifen. The cell lines also exhibited a different phosphorylation status of STAT3, a transcription factor that is activated by the obesity related leptin receptor b (Ob-Rb). Most importantly, chromatin immunoprecipitation assays revealed differential STAT3 binding to the anti-apoptotic BCL2 and pro-apoptotic WWOX gene promoters in MCF-7 and MCF-7/HER2 cells, leading to concomitant modifications of its mRNA/protein expression levels, thus providing a selective advantage to HER2 over-expressing MCF-7/HER2 cells after treatment with tamoxifen and tamoxifen plus leptin.


Our study provides novel evidence indicating that synergy between the leptin/Ob-Rb/STAT3 signalling pathway and the HER2 receptor protects tamoxifen-treated HER2 over-expressing cells from the inhibitory effect of tamoxifen through differential regulation of apoptosis-related genes.


Tamoxifen Leptin HER2 receptor STAT3 Breast cancer BCL2 WWOX 


Conflict of interest

The authors have no conflict of interest to report with respect to this work.


  1. 1.
    K. McPherson, C.M. Steel, J.M. Dixon, ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ 321, 624–628 (2000)CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    B. Pula, M. Olbromski, A. Wojnar, A. Gomulkiewicz, W. Witkiewicz, M. Ugorski, P. Dziegiel, M. Podhorska-Okolow, Impact of SOX18 expression in cancer cells and vessels on the outcome of invasive ductal breast carcinoma. Cell. Oncol. 36, 469–483 (2013)Google Scholar
  3. 3.
    J.L. Botha, F. Bray, R. Sankila, D.M. Parkin, Breast cancer incidence and mortality trends in 16 European countries. Eur. J. Cancer 39, 1718–1729 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    J.S. de Groot, X. Pan, J. Meeldijk, E. van der Wall, P.J. van Diest, C.B. Moelans, Validation of DNA promoter hypermethylation biomarkers in breast cancer–a short report. Cell. Oncol. 37, 297–303 (2014)Google Scholar
  5. 5.
    S. Loi, B. Haibe-Kains, C. Desmedt, P. Wirapati, F. Lallemand, A.M. Tutt, C. Gillet, P. Ellis, K. Ryder, J.F. Reid, M.G. Daidone, M.A. Pierotti, E.M. Berns, M.P. Jansen, J.A. Foekens, M. Delorenzi, G. Bontempi, M.J. Piccart, C. Sotiriou, Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9, 239 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    A. Halon, P. Donizy, P. Surowiak, R. Matkowski, ERM/Rho protein expression in ductal breast cancer: a 15 year follow-up. Cell. Oncol. 36, 181–190 (2013)Google Scholar
  7. 7.
    S. Tabarestani, S.M. Ghaderian, H. Rezvani, R. Mirfakhraie, A. Ebrahimi, H. Attarian, J. Rafat, M. Ghadyani, H.A. Alavi, N. Kamalian, A. Rakhsha, E. Azargashb, Prognostic and predictive value of copy number alterations in invasive breast cancer as determined by multiplex ligation-dependent probe amplification. Cell. Oncol. 37, 107–118 (2014)Google Scholar
  8. 8.
    P.J. Goodwin, M. Ennis, I.G. Fantus, K.I. Pritchard, M.E. Trudeau, J. Koo, N. Hood, Is leptin a mediator of adverse prognostic effects of obesity in breast cancer? J. Clin. Oncol. 23, 6037–6042 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    M. Sulkowska, J. Golaszewska, A. Wincewicz, M. Koda, M. Baltaziak, S. Sulkowski, Leptin–from regulation of fat metabolism to stimulation of breast cancer growth. Pathol. Oncol. Res. 12, 69–72 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    E.E. Calle, C. Rodriguez, K. Walker-Thurmond, M.J. Thun, Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    D.P. Rose, E.M. Gilhooly, D.W. Nixon, Adverse effects of obesity on breast cancer prognosis, and the biological actions of leptin (review). Int. J. Oncol. 21, 1285–1292 (2002)PubMedGoogle Scholar
  12. 12.
    S.H. Kim, A. Nagalingam, N.K. Saxena, S.V. Singh, D. Sharma, Benzyl isothiocyanate inhibits oncogenic actions of leptin in human breast cancer cells by suppressing activation of signal transducer and activator of transcription 3. Carcinogenesis 32, 359–367 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman, Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994)CrossRefPubMedGoogle Scholar
  14. 14.
    R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)CrossRefPubMedGoogle Scholar
  15. 15.
    Y. Matsuzawa, Adipocytokines and metabolic syndrome. Semin. Vasc. Med. 5, 34–39 (2005)CrossRefPubMedGoogle Scholar
  16. 16.
    G. Fruhbeck, Intracellular signalling pathways activated by leptin. Biochem. J. 393, 7–20 (2006)CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    S. Collins, C.M. Kuhn, A.E. Petro, A.G. Swick, B.A. Chrunyk, R.S. Surwit, Role of leptin in fat regulation. Nature 380, 677 (1996)CrossRefPubMedGoogle Scholar
  18. 18.
    R.B. Harris, Leptin–much more than a satiety signal. Annu. Rev. Nutr. 20, 45–75 (2000)CrossRefPubMedGoogle Scholar
  19. 19.
    M.C. Henson, V.D. Castracane, Leptin in pregnancy. Biol. Reprod. 63, 1219–1228 (2000)CrossRefPubMedGoogle Scholar
  20. 20.
    F. Zhang, Y. Chen, M. Heiman, R. Dimarchi, Leptin: structure, function and biology. Vitam. Horm. 71, 345–372 (2005)CrossRefPubMedGoogle Scholar
  21. 21.
    L.A. Tartaglia, M. Dembski, X. Weng, N. Deng, J. Culpepper, R. Devos, G.J. Richards, L.A. Campfield, F.T. Clark, J. Deeds, C. Muir, S. Sanker, A. Moriarty, K.J. Moore, J.S. Smutko, G.G. Mays, E.A. Wool, C.A. Monroe, R.I. Tepper, Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995)CrossRefPubMedGoogle Scholar
  22. 22.
    X. Hu, S.C. Juneja, N.J. Maihle, M.P. Cleary, Leptin–a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl. Cancer Inst. 94, 1704–1711 (2002)CrossRefPubMedGoogle Scholar
  23. 23.
    K. Laud, I. Gourdou, L. Pessemesse, J.P. Peyrat, J. Djiane, Identification of leptin receptors in human breast cancer: functional activity in the T47-D breast cancer cell line. Mol. Cell. Endocrinol. 188, 219–226 (2002)CrossRefPubMedGoogle Scholar
  24. 24.
    D. Cirillo, A.M. Rachiglio, R. la Montagna, A. Giordano, N. Normanno, Leptin signaling in breast cancer: an overview. J. Cell. Biochem. 105, 956–964 (2008)CrossRefPubMedGoogle Scholar
  25. 25.
    S.N. O’Brien, B.H. Welter, T.M. Price, Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun. 259, 695–698 (1999)CrossRefPubMedGoogle Scholar
  26. 26.
    M. Ishikawa, J. Kitayama, H. Nagawa, Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res. 10, 4325–4331 (2004)CrossRefPubMedGoogle Scholar
  27. 27.
    C. Bjorbaek, S. Uotani, B. da Silva, J.S. Flier, Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem. 272, 32686–32695 (1997)CrossRefPubMedGoogle Scholar
  28. 28.
    R. Devos, Y. Guisez, J. Van der Heyden, D.W. White, M. Kalai, M. Fountoulakis, G. Plaetinck, Ligand-independent dimerization of the extracellular domain of the leptin receptor and determination of the stoichiometry of leptin binding. J. Biol. Chem. 272, 18304–18310 (1997)CrossRefPubMedGoogle Scholar
  29. 29.
    J.E. Darnell Jr., STATs and gene regulation. Science 277, 1630–1635 (1997)CrossRefPubMedGoogle Scholar
  30. 30.
    Q. Gao, M.J. Wolfgang, S. Neschen, K. Morino, T.L. Horvath, G.I. Shulman, X.Y. Fu, Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc. Natl. Acad. Sci. U. S. A. 101, 4661–4666 (2004)CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    H. Inoue, W. Ogawa, M. Ozaki, S. Haga, M. Matsumoto, K. Furukawa, N. Hashimoto, Y. Kido, T. Mori, H. Sakaue, K. Teshigawara, S. Jin, H. Iguchi, R. Hiramatsu, D. LeRoith, K. Takeda, S. Akira, M. Kasuga, Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat. Med. 10, 168–174 (2004)CrossRefPubMedGoogle Scholar
  32. 32.
    D.E. Levy, J.E. Darnell Jr., Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002)CrossRefPubMedGoogle Scholar
  33. 33.
    J. Abdulghani, L. Gu, A. Dagvadorj, J. Lutz, B. Leiby, G. Bonuccelli, M.P. Lisanti, T. Zellweger, K. Alanen, T. Mirtti, T. Visakorpi, L. Bubendorf, M.T. Nevalainen, Stat3 promotes metastatic progression of prostate cancer. Am. J. Pathol. 172, 1717–1728 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    R. Catlett-Falcone, T.H. Landowski, M.M. Oshiro, J. Turkson, A. Levitzki, R. Savino, G. Ciliberto, L. Moscinski, J.L. Fernandez-Luna, G. Nunez, W.S. Dalton, R. Jove, Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999)CrossRefPubMedGoogle Scholar
  35. 35.
    Z. Duan, R. Foster, D.A. Bell, J. Mahoney, K. Wolak, A. Vaidya, C. Hampel, H. Lee, M.V. Seiden, Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin. Cancer Res. 12, 5055–5063 (2006)CrossRefPubMedGoogle Scholar
  36. 36.
    T. Gritsko, A. Williams, J. Turkson, S. Kaneko, T. Bowman, M. Huang, S. Nam, I. Eweis, N. Diaz, D. Sullivan, S. Yoder, S. Enkemann, S. Eschrich, J.H. Lee, C.A. Beam, J. Cheng, S. Minton, C.A. Muro-Cacho, R. Jove, Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin. Cancer Res. 12, 11–19 (2006)CrossRefPubMedGoogle Scholar
  37. 37.
    B.B. Aggarwal, G. Sethi, K.S. Ahn, S.K. Sandur, M.K. Pandey, A.B. Kunnumakkara, B. Sung, H. Ichikawa, Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann. N. Y. Acad. Sci. 1091, 151–169 (2006)Google Scholar
  38. 38.
    S. Fletcher, J. Turkson, P.T. Gunning, Molecular approaches towards the inhibition of the signal transducer and activator of transcription 3 (Stat3) protein. ChemMedChem 3, 1159–1168 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    E.B.C.T.C. Group, Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 351, 1451–1467 (1998)CrossRefGoogle Scholar
  40. 40.
    E. Fiorio, A. Mercanti, M. Terrasi, R. Micciolo, A. Remo, A. Auriemma, A. Molino, V. Parolin, B. Di Stefano, F. Bonetti, A. Giordano, G.L. Cetto, E. Surmacz, Leptin/HER2 crosstalk in breast cancer: in vitro study and preliminary in vivo analysis. BMC Cancer 8, 305 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    X. Chen, X. Zha, W. Chen, T. Zhu, J. Qiu, O.D. Roe, J. Li, Z. Wang, Y. Yin, Leptin attenuates the anti-estrogen effect of tamoxifen in breast cancer. Biomed. Pharmacother. 67, 22–30 (2012)Google Scholar
  42. 42.
    M. Harvie, L. Hooper, A.H. Howell, Central obesity and breast cancer risk: a systematic review. Obes. Rev. 4, 157–173 (2003)CrossRefPubMedGoogle Scholar
  43. 43.
    P.H. Lahmann, K. Hoffmann, N. Allen, C.H. van Gils, K.T. Khaw, B. Tehard, F. Berrino, A. Tjonneland, J. Bigaard, A. Olsen, K. Overvad, F. Clavel-Chapelon, G. Nagel, H. Boeing, D. Trichopoulos, G. Economou, G. Bellos, D. Palli, R. Tumino, S. Panico, C. Sacerdote, V. Krogh, P.H. Peeters, H.B. Bueno-de-Mesquita, E. Lund, E. Ardanaz, P. Amiano, G. Pera, J.R. Quiros, C. Martinez, M.J. Tormo, E. Wirfalt, G. Berglund, G. Hallmans, T.J. Key, G. Reeves, S. Bingham, T. Norat, C. Biessy, R. Kaaks, E. Riboli, Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer And Nutrition (EPIC). Int. J. Cancer 111, 762–771 (2004)CrossRefPubMedGoogle Scholar
  44. 44.
    K.B. Michels, K.L. Terry, W.C. Willett, Longitudinal study on the role of body size in premenopausal breast cancer. Arch. Intern. Med. 166, 2395–2402 (2006)CrossRefPubMedGoogle Scholar
  45. 45.
    R.V. Considine, M.K. Sinha, M.L. Heiman, A. Kriauciunas, T.W. Stephens, M.R. Nyce, J.P. Ohannesian, C.C. Marco, L.J. McKee, T.L. Bauer et al., Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996)CrossRefPubMedGoogle Scholar
  46. 46.
    M. Maffei, J. Halaas, E. Ravussin, R.E. Pratley, G.H. Lee, Y. Zhang, H. Fei, S. Kim, R. Lallone, S. Ranganathan et al., Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995)CrossRefPubMedGoogle Scholar
  47. 47.
    S. Catalano, S. Marsico, C. Giordano, L. Mauro, P. Rizza, M.L. Panno, S. Ando, Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J. Biol. Chem. 278, 28668–28676 (2003)CrossRefPubMedGoogle Scholar
  48. 48.
    S. Catalano, L. Mauro, S. Marsico, C. Giordano, P. Rizza, V. Rago, D. Montanaro, M. Maggiolini, M.L. Panno, S. Ando, Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J. Biol. Chem. 279, 19908–19915 (2004)CrossRefPubMedGoogle Scholar
  49. 49.
    C. Garofalo, D. Sisci, E. Surmacz, Leptin interferes with the effects of the antiestrogen ICI 182,780 in MCF-7 breast cancer cells. Clin. Cancer Res. 10, 6466–6475 (2004)CrossRefPubMedGoogle Scholar
  50. 50.
    A. Valle, J. Sastre-Serra, J. Oliver, P. Roca, Chronic leptin treatment sensitizes MCF-7 breast cancer cells to estrogen. Cell Physiol. Biochem. 28, 823–32 (2011)Google Scholar
  51. 51.
    C. Carlomagno, F. Perrone, C. Gallo, M. De Laurentiis, R. Lauria, A. Morabito, G. Pettinato, L. Panico, A. D’Antonio, A.R. Bianco, S. De, Placido, c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J. Clin. Oncol. 14, 2702–8 (1996)PubMedGoogle Scholar
  52. 52.
    C.K. Osborne, V. Bardou, T.A. Hopp, G.C. Chamness, S.G. Hilsenbeck, S.A. Fuqua, J. Wong, D.C. Allred, G.M. Clark, R. Schiff, Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl. Cancer Inst. 95, 353–361 (2003)CrossRefPubMedGoogle Scholar
  53. 53.
    I.E. Smith, M. Dowsett, S.R. Ebbs, J.M. Dixon, A. Skene, J.U. Blohmer, S.E. Ashley, S. Francis, I. Boeddinghaus, G. Walsh, Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) multicenter double-blind randomized trial. J. Clin. Oncol. 23, 5108–5116 (2005)CrossRefPubMedGoogle Scholar
  54. 54.
    J. Shou, S. Massarweh, C.K. Osborne, A.E. Wakeling, S. Ali, H. Weiss, R. Schiff, Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl. Cancer Inst. 96, 926–935 (2004)CrossRefPubMedGoogle Scholar
  55. 55.
    C. Giordano, D. Vizza, S. Panza, I. Barone, D. Bonofiglio, M. Lanzino, D. Sisci, F. De Amicis, S.A. Fuqua, S. Catalano, S. Ando, Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol. Oncol. 7, 379–391 (2013)CrossRefPubMedGoogle Scholar
  56. 56.
    P.K. Epling-Burnette, J.H. Liu, R. Catlett-Falcone, J. Turkson, M. Oshiro, R. Kothapalli, Y. Li, J.M. Wang, H.F. Yang-Yen, J. Karras, R. Jove, T.P. Loughran Jr., Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J. Clin. Invest. 107, 351–362 (2001)CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    S. Alas, B. Bonavida, Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin’s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res. 61, 5137–5144 (2001)PubMedGoogle Scholar
  58. 58.
    S. Alas, B. Bonavida, Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin. Cancer Res. 9, 316–326 (2003)PubMedGoogle Scholar
  59. 59.
    N. Diaz, S. Minton, C. Cox, T. Bowman, T. Gritsko, R. Garcia, I. Eweis, M. Wloch, S. Livingston, E. Seijo, A. Cantor, J.H. Lee, C.A. Beam, D. Sullivan, R. Jove, C.A. Muro-Cacho, Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin. Cancer Res. 12, 20–28 (2006)CrossRefPubMedGoogle Scholar
  60. 60.
    D.C. Altieri, Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer 3, 46–54 (2003)CrossRefPubMedGoogle Scholar
  61. 61.
    A.K. Bednarek, C.L. Keck-Waggoner, R.L. Daniel, K.J. Laflin, P.L. Bergsagel, K. Kiguchi, A.J. Brenner, C.M. Aldaz, WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res. 61, 8068–8073 (2001)PubMedGoogle Scholar
  62. 62.
    N.S. Chang, J. Doherty, A. Ensign, JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J. Biol. Chem. 278, 9195–9202 (2003)CrossRefPubMedGoogle Scholar
  63. 63.
    N.S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G.B. Carey, N. Zevotek, Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J. Biol. Chem. 276, 3361–3370 (2001)CrossRefPubMedGoogle Scholar
  64. 64.
    G. Guler, A. Uner, N. Guler, S.Y. Han, D. Iliopoulos, P. McCue, K. Huebner, Concordant loss of fragile gene expression early in breast cancer development. Pathol. Int. 55, 471–478 (2005)CrossRefPubMedGoogle Scholar
  65. 65.
    M.I. Nunez, J. Ludes-Meyers, M.C. Abba, H. Kil, N.W. Abbey, R.E. Page, A. Sahin, A.J. Klein-Szanto, C.M. Aldaz, Frequent loss of WWOX expression in breast cancer: correlation with estrogen receptor status. Breast Cancer Res. Treat. 89, 99–105 (2005)CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    R.I. Aqeilan, Y. Pekarsky, J.J. Herrero, A. Palamarchuk, J. Letofsky, T. Druck, F. Trapasso, S.Y. Han, G. Melino, K. Huebner, C.M. Croce, Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc. Natl. Acad. Sci. U. S. A. 101, 4401–4406 (2004)CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    R.I. Aqeilan, A. Palamarchuk, R.J. Weigel, J.J. Herrero, Y. Pekarsky, C.M. Croce, Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. Cancer Res. 64, 8256–8261 (2004)CrossRefPubMedGoogle Scholar
  68. 68.
    E. Gaudio, A. Palamarchuk, T. Palumbo, F. Trapasso, Y. Pekarsky, C.M. Croce, R.I. Aqeilan, Physical association with WWOX suppresses c-Jun transcriptional activity. Cancer Res. 66, 11585–11589 (2006)CrossRefPubMedGoogle Scholar
  69. 69.
    N.S. Chang, L.J. Hsu, Y.S. Lin, F.J. Lai, H.M. Sheu, WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol. Med. 13, 12–22 (2007)CrossRefPubMedGoogle Scholar
  70. 70.
    D. Trivigno, F. Essmann, S.M. Huber, J. Rudner, Deubiquitinase USP9x confers radioresistance through stabilization of Mcl-1. Neoplasia, 14, 893–904 (2012)Google Scholar
  71. 71.
    J. Zhao, T. Tenev, L.M. Martins, J. Downward, N.R. Lemoine, The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J. Cell Sci. 113(Pt 23), 4363–4371 (2000)PubMedGoogle Scholar
  72. 72.
    V. Papanikolaou, D. Iliopoulos, I. Dimou, S. Dubos, C. Kappas, S. Kitsiou-Tzeli, A. Tsezou, Survivin regulation by HER2 through NF-kappaB and c-myc in irradiated breast cancer cells. J. Cell. Mol. Med. 15, 1542–1550 (2011)CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2014

Authors and Affiliations

  • Vassilis Papanikolaou
    • 1
  • Nikolaos Stefanou
    • 1
  • Stephanie Dubos
    • 1
  • Ioanna Papathanasiou
    • 2
  • Maria Palianopoulou
    • 2
  • Vaia Valiakou
    • 1
  • Aspasia Tsezou
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biomedical Research and Technology, Institute for Research and Technology-Thessaly (I.RE.TE.TH)Centre for Research and Technology-Hellas (CE.R.T.H.)LarissaGreece
  2. 2.Department of Cytogenetics and Molecular GeneticsUniversity of Thessaly, Faculty of MedicineLarissaGreece
  3. 3.Department of BiologyUniversity of Thessaly, Faculty of MedicineLarissaGreece

Personalised recommendations