Cellular Oncology

, Volume 38, Issue 1, pp 3–16 | Cite as

Intrinsic cancer subtypes-next steps into personalized medicine

  • Cristina Santos
  • Rebeca Sanz-Pamplona
  • Ernest Nadal
  • Julieta Grasselli
  • Sonia Pernas
  • Rodrigo Dienstmann
  • Victor Moreno
  • Josep Tabernero
  • Ramon SalazarEmail author
Original Paper


Recent technological advances have significantly improved our understanding of tumor biology by means of high-throughput mutation and transcriptome analyses. The application of genomics has revealed the mutational landscape and the specific deregulated pathways in different tumor types. At a transcriptional level, multiple gene expression signatures have been developed to identify biologically distinct subgroups of tumors. By supervised analysis, several prognostic signatures have been generated, some of them being commercially available. However, an unsupervised approach is required to discover a priori unknown molecular subtypes, the so-called intrinsic subtypes. Moreover, an integrative analysis of the molecular events associated with tumor biology has been translated into a better tumor classification. This molecular characterization confers new opportunities for therapeutic strategies in the management of cancer patients. However, the applicability of these new molecular classifications is limited because of several issues such as technological validation and cost. Further comparison with well-established clinical and pathological features is expected to accelerate clinical translation. In this review, we will focus on the data reported on molecular classification in the most common tumor types such as breast, colorectal and lung carcinoma, with special emphasis on recent data regarding tumor intrinsic subtypes. Likewise, we will review the potential applicability of these new classifications in the clinical routine.


Colorectal neoplasms Breast neoplasms Lung neoplasms Gene expression profiling Unsupervised analysis Intrinsic subtypes 



This study was supported by the Instituto de Salud Carlos III (FIS PI11-01439), CIBERESP CB07/02/2005, the Spanish Association Against Cancer (AECC) Scientific Foundation and Fundación Carolina-BBVA.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A. Jemal et al., Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90 (2011)CrossRefPubMedGoogle Scholar
  2. 2.
    I. Nishisho et al., Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253(5020), 665–669 (1991)CrossRefPubMedGoogle Scholar
  3. 3.
    W. Eiermann, Trastuzumab combined with chemotherapy for the treatment of HER2-positive metastatic breast cancer: pivotal trial data. Ann. Oncol. 12(Suppl 1), S57–S62 (2001)CrossRefPubMedGoogle Scholar
  4. 4.
    A. Goldhirsch, et al., 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet 382(9897), 1021–1028Google Scholar
  5. 5.
    S.M. Swain et al., Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 14(6), 461–471 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    B. Boyraz et al., Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr. Med. Res. Opin. 29(4), 405–414 (2013)CrossRefPubMedGoogle Scholar
  7. 7.
    M. Cronin et al., Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin. Chem. 53(6), 1084–1091 (2007)CrossRefPubMedGoogle Scholar
  8. 8.
    M.J. van de Vijver et al., A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347(25), 1999–2009 (2002)CrossRefPubMedGoogle Scholar
  9. 9.
    R. Salazar et al., Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J. Clin. Oncol. 29(1), 17–24 (2010)CrossRefPubMedGoogle Scholar
  10. 10.
    Director’s Challenge Consortium for the Molecular Classification of Lung, A et al., Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat. Med. 14(8), 822–827 (2008)CrossRefGoogle Scholar
  11. 11.
    C.M. Perou et al., Molecular portraits of human breast tumours. Nature 406(6797), 747–752 (2000)CrossRefPubMedGoogle Scholar
  12. 12.
    L.H. Sobin, TNM: evolution and relation to other prognostic factors. Semin. Surg. Oncol. 21(1), 3–7 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    M. Cianfrocca, L.J. Goldstein, Prognostic and predictive factors in early-stage breast cancer. Oncologist 9(6), 606–616 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    T. Utsumi, N. Kobayashi, H. Hanada, Recent perspectives of endocrine therapy for breast cancer. Breast Cancer 14(2), 194–199 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    C.A. Hudis, Trastuzumab–mechanism of action and use in clinical practice. N. Engl. J. Med. 357(1), 39–51 (2007)CrossRefPubMedGoogle Scholar
  16. 16.
    M.C. Paterson et al., Correlation between c-erbB-2 amplification and risk of recurrent disease in node-negative breast cancer. Cancer Res. 51(2), 556–567 (1991)PubMedGoogle Scholar
  17. 17.
    V. Guarneri, P.F. Conte, The curability of breast cancer and the treatment of advanced disease. Eur. J. Nucl. Med. Mol. Imaging 31(Suppl 1), S149–S161 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    X. Lu, Y. Kang, Organotropism of breast cancer metastasis. J. Mammary Gland Biol. Neoplasia 12(2–3), 153–162 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    M. Gnant et al., Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: using the PAM50 Risk of Recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone. Ann. Oncol. 25(2), 339–345 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    M. Martin et al., Clinical validation of the EndoPredict test in node-positive, chemotherapy-treated ER+/HER2- breast cancer patients: results from the GEICAM 9906 trial. Breast Cancer Res. 16(2), R38 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    R. Sanz-Pamplona et al., Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors. Am. J. Pathol. 179(2), 564–579 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Y. Kang et al., A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6), 537–549 (2003)CrossRefPubMedGoogle Scholar
  23. 23.
    A.J. Minn et al., Genes that mediate breast cancer metastasis to lung. Nature 436(7050), 518–524 (2005)CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    K. Driouch et al., Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin. Exp. Metastasis 24(8), 575–585 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    T. Sorlie et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U. S. A. 98(19), 10869–10874 (2001)CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    A. Prat, C.M. Perou, Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 5(1), 5–23 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    T. Sorlie et al., Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. U. S. A. 100(14), 8418–8423 (2003)CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    R.D. Baird, C. Caldas, Genetic heterogeneity in breast cancer: the road to personalized medicine? BMC Med. 11, 151 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    M. Smid et al., Subtypes of breast cancer show preferential site of relapse. Cancer Res. 68(9), 3108–3114 (2008)CrossRefPubMedGoogle Scholar
  30. 30.
    R. Rouzier et al., Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11(16), 5678–5685 (2005)CrossRefPubMedGoogle Scholar
  31. 31.
    J.S. Parker et al., Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27(8), 1160–1167 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    M. Dowsett et al., Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J. Clin. Oncol. 31(22), 2783–2790 (2013)CrossRefPubMedGoogle Scholar
  33. 33.
    J.I. Herschkowitz et al., Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8(5), R76 (2007)CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    A. Prat et al., Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12(5), R68 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    C. Curtis et al., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403), 346–352 (2012)PubMedCentralPubMedGoogle Scholar
  36. 36.
    Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70Google Scholar
  37. 37.
    P.J. Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403), 400–404 (2012)PubMedCentralPubMedGoogle Scholar
  38. 38.
    M.J. Ellis et al., Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486(7403), 353–360 (2012)PubMedCentralPubMedGoogle Scholar
  39. 39.
    S. Banerji et al., Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403), 405–409 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    M.J. Ellis, C.M. Perou, The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov. 3(1), 27–34 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    A. Goldhirsch et al., Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 24(9), 2206–2223 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    J.B. O’Connell, M.A. Maggard, C.Y. Ko, Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J. Natl. Cancer Inst. 96(19), 1420–1425 (2004)CrossRefPubMedGoogle Scholar
  43. 43.
    T. Andre et al., Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med. 350(23), 2343–2351 (2004)CrossRefPubMedGoogle Scholar
  44. 44.
    S. Gill et al., Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? J. Clin. Oncol. 22(10), 1797–1806 (2004)CrossRefPubMedGoogle Scholar
  45. 45.
    A.B.. Benson 3rd et al., American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J. Clin. Oncol. 22(16), 3408–3419 (2004)Google Scholar
  46. 46.
    E. Van Cutsem, J. Oliveira, Primary colon cancer: ESMO clinical recommendations for diagnosis, adjuvant treatment and follow-up. Ann. Oncol. 20(Suppl 4), 49–50 (2009)PubMedGoogle Scholar
  47. 47.
    E.R. Fearon, Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011)CrossRefPubMedGoogle Scholar
  48. 48.
    C. Sweeney et al., Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors. Genes Chromosom. Cancer 48(1), 1–9 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    M. Toyota et al., CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. U. S. A. 96(15), 8681–8686 (1999)CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    J.R. Jass, Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50(1), 113–130 (2007)CrossRefPubMedGoogle Scholar
  51. 51.
    S. Ogino, A. Goel, Molecular classification and correlates in colorectal cancer. J. Mol. Diagn. 10(1), 13–27 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    G.P. Kim et al., Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J. Clin. Oncol. 25(7), 767–772 (2007)CrossRefPubMedGoogle Scholar
  53. 53.
    G. Hutchins et al., Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol. 29(10), 1261–1270 (2011)CrossRefPubMedGoogle Scholar
  54. 54.
    G. Yothers et al., Validation of the 12-gene colon cancer recurrence score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus oxaliplatin. J. Clin. Oncol. 31(36), 4512–4519 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    S. Kopetz, et al., Genomic classifier (ColoPrint) to predict outcome and chemotherapy benefit in stage II and III colon cancer patients. J. Clin. Oncol. 31, (2013). ((suppl; abstr 3612))Google Scholar
  56. 56.
    L. Marisa et al., Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10(5), e1001453 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    A. Loboda et al., EMT is the dominant program in human colon cancer. BMC Med. Genom. 4, 9 (2011)CrossRefGoogle Scholar
  58. 58.
    E. Budinska et al., Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J. Pathol. 231(1), 63–76 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    P. Roepman et al., Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int. J. Cancer 134(3), 552–562 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    B. Perez-Villamil et al., Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer 12, 260 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    E.M.F. De Sousa et al., Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19(5), 614–618 (2013)CrossRefGoogle Scholar
  62. 62.
    A. Schlicker et al., Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med. Genom. 5, 66 (2013)CrossRefGoogle Scholar
  63. 63.
    A. Sadanandam et al., A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19(5), 619–625 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337 (2012)Google Scholar
  65. 65.
    S.C. Oh et al., Prognostic gene expression signature associated with two molecularly distinct subtypes of colorectal cancer. Gut 61(9), 1291–1298 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    R. Dienstmann, et al., Colorectal Cancer Subtyping Consortium (CRCSC) identification of a consensus of molecular subtypes. J. Clin. Oncol. 32, (2014). ((suppl; abstr 3511))Google Scholar
  67. 67.
    W.D. Travis et al., International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc. Am. Thorac. Soc. 8(5), 381–385 (2011)CrossRefPubMedGoogle Scholar
  68. 68.
    A. Warth et al., The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J. Clin. Oncol. 30(13), 1438–1446 (2012)CrossRefPubMedGoogle Scholar
  69. 69.
    F.C. Detterbeck, D.J. Boffa, L.T. Tanoue, The new lung cancer staging system. Chest 136(1), 260–271 (2009)CrossRefPubMedGoogle Scholar
  70. 70.
    National Comprehensive Cancer Network. Non-Small Cell Lung Cancer (v 3.2014). Available from:
  71. 71.
    L.M. Sholl et al., EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am. J. Clin. Pathol. 133(6), 922–934 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    K. Takeuchi et al., RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 18(3), 378–381 (2012)CrossRefPubMedGoogle Scholar
  73. 73.
    B.E. Johnson, et al., A multicenter effort to identify driver mutations and employ targeted therapy in patients with lung adenocarcinomas: the Lung Cancer Mutation Consortium (LCMC). J Clin Oncol. 31, (2013). (suppl; abstr 8019)Google Scholar
  74. 74.
    F. Barlesi, et al., Biomarkers (BM) France: Results of routine EGFR, HER2, KRAS, BRAF, PI3KCA mutations detection and EML4-ALK gene fusion assessment on the first 10,000 non-small cell lung cancer (NSCLC) patients (pts). J. Clin. Oncol. 31, (2013). (suppl; abstr 8000)Google Scholar
  75. 75.
    L. West et al., A novel classification of lung cancer into molecular subtypes. PLoS One 7(2), e31906 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    A. Bhattacharjee et al., Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. U. S. A. 98(24), 13790–13795 (2001)CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    M.E. Garber et al., Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. U. S. A. 98(24), 13784–13789 (2001)CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    D.G. Beer et al., Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8(8), 816–824 (2002)PubMedGoogle Scholar
  79. 79.
    S. Tomida et al., Gene expression-based, individualized outcome prediction for surgically treated lung cancer patients. Oncogene 23(31), 5360–5370 (2004)CrossRefPubMedGoogle Scholar
  80. 80.
    T. Takeuchi et al., Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. J. Clin. Oncol. 24(11), 1679–1688 (2006)CrossRefPubMedGoogle Scholar
  81. 81.
    S. Tomida et al., Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. J. Clin. Oncol. 27(17), 2793–2799 (2009)CrossRefPubMedGoogle Scholar
  82. 82.
    Y. Yatabe, T. Mitsudomi, T. Takahashi, TTF-1 expression in pulmonary adenocarcinomas. Am. J. Surg. Pathol. 26(6), 767–773 (2002)CrossRefPubMedGoogle Scholar
  83. 83.
    H.Y. Chen et al., A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 356(1), 11–20 (2007)CrossRefPubMedGoogle Scholar
  84. 84.
    A. Potti et al., A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N. Engl. J. Med. 355(6), 570–580 (2006)CrossRefPubMedGoogle Scholar
  85. 85.
    C.M. Bryant et al., Clinically relevant characterization of lung adenocarcinoma subtypes based on cellular pathways: an international validation study. PLoS One 5(7), e11712 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    D.N. Hayes et al., Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J. Clin. Oncol. 24(31), 5079–5090 (2006)CrossRefPubMedGoogle Scholar
  87. 87.
    M.D. Wilkerson et al., Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PLoS One 7(5), e36530 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    B. Angulo et al., Expression signatures in lung cancer reveal a profile for EGFR-mutant tumours and identify selective PIK3CA overexpression by gene amplification. J. Pathol. 214(3), 347–356 (2008)CrossRefPubMedGoogle Scholar
  89. 89.
    D. Chitale et al., An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 28(31), 2773–2783 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    H. Okayama et al., Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72(1), 100–111 (2012)CrossRefPubMedGoogle Scholar
  91. 91.
    M. Planck et al., Genomic and transcriptional alterations in lung adenocarcinoma in relation to EGFR and KRAS mutation status. PLoS One 8(10), e78614 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    M. Planck et al., Identification of transcriptional subgroups in EGFR-mutated and EGFR/KRAS wild-type lung adenocarcinoma reveals gene signatures associated with patient outcome. Clin. Cancer Res. 19(18), 5116–5126 (2013)CrossRefPubMedGoogle Scholar
  93. 93.
    K. Inamura et al., Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization. Oncogene 24(47), 7105–7113 (2005)CrossRefPubMedGoogle Scholar
  94. 94.
    J.E. Larsen et al., Expression profiling defines a recurrence signature in lung squamous cell carcinoma. Carcinogenesis 28(3), 760–766 (2007)CrossRefPubMedGoogle Scholar
  95. 95.
    M. Raponi et al., Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 66(15), 7466–7472 (2006)CrossRefPubMedGoogle Scholar
  96. 96.
    M.D. Wilkerson et al., Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin. Cancer Res. 16(19), 4864–4875 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  97. 97.
    Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417), 519–525 (2012)Google Scholar
  98. 98.
    C.Q. Zhu et al., Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J. Clin. Oncol. 28(29), 4417–4424 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  99. 99.
    D.T. Chen et al., Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer. J. Natl. Cancer Inst. 103(24), 1859–1870 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  100. 100.
    Y.Y. Park et al., Development and validation of a prognostic gene-expression signature for lung adenocarcinoma. PLoS One 7(9), e44225 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  101. 101.
    H. Tang et al., A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin. Cancer Res. 19(6), 1577–1586 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  102. 102.
    J. Subramanian, R. Simon, Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J. Natl. Cancer Inst. 102(7), 464–474 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  103. 103.
    B. Vogelstein et al., Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  104. 104.
    A. Calon et al., Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5), 571–584 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  105. 105.
    U. Sack et al., S100A4-induced cell motility and metastasis is restricted by the Wnt/beta-catenin pathway inhibitor calcimycin in colon cancer cells. Mol. Biol. Cell 22(18), 3344–3354 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  106. 106.
    R. Dienstmann et al., Genomic medicine frontier in human solid tumors: prospects and challenges. J. Clin. Oncol. 31(15), 1874–1884 (2013)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2015

Authors and Affiliations

  • Cristina Santos
    • 1
  • Rebeca Sanz-Pamplona
    • 2
  • Ernest Nadal
    • 3
  • Julieta Grasselli
    • 1
  • Sonia Pernas
    • 1
  • Rodrigo Dienstmann
    • 4
  • Victor Moreno
    • 2
    • 5
  • Josep Tabernero
    • 6
  • Ramon Salazar
    • 1
    Email author
  1. 1.Department of Medical OncologyCatalan Institute of Oncology (ICO), L’Hospitalet de LlobregatBarcelonaSpain
  2. 2.Unit of Biomarkers and Susceptibility (UBS) and CIBERESPCatalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de LlobregatBarcelonaSpain
  3. 3.Thoracic Surgery Section, Department of SurgeryUniversity of Michigan Comprehensive Cancer CenterAnn ArborUSA
  4. 4.Sage Bionetworks, Fred Hutchinson Cancer Research CenterSeattleUSA
  5. 5.Department of Clinical Sciences, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
  6. 6.Department of Medical OncologyVall d’Hebron University HospitalBarcelonaSpain

Personalised recommendations