Cellular Oncology

, Volume 37, Issue 4, pp 253–267 | Cite as

eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation

  • Rita SpilkaEmail author
  • Christina Ernst
  • Helmut Bergler
  • Johannes Rainer
  • Susanne Flechsig
  • Alexander Vogetseder
  • Eva Lederer
  • Martin Benesch
  • Andrea Brunner
  • Stephan Geley
  • Andreas Eger
  • Felix Bachmann
  • Wolfgang Doppler
  • Peter Obrist
  • Johannes HaybaeckEmail author



The eukaryotic translation initiation factor (eIF) 3a, the largest subunit of the eIF3 complex, is a key functional entity in ribosome establishment and translation initiation. In the past, aberrant eIF3a expression has been linked to the pathology of various cancer types but, so far, its expression has not been investigated in transitional cell carcinomas. Here, we investigated the impact of eIF3 expression on urinary bladder cancer (UBC) cell characteristics and UBC patient survival.

Methods and results

eIF3a expression was reduced through inducible knockdown in the UBC-derived cell lines RT112, T24, 5637 and HT1197. As a consequence of eIF3a down-regulation, UBC cell proliferation, clonogenic potential and motility were found to be decreased and, concordantly, UBC tumour cell growth rates were found to be impaired in xenotransplanted mice. Polysomal profiling revealed that reduced eIF3a levels increased the abundance of 80S ribosomes, rather than impairing translation initiation. Microarray-based gene expression and ontology analyses revealed broad effects of eIF3a knockdown on the transcriptome. Analysis of eIF3a expression in primary formalin-fixed paraffin embedded UBC samples of 198 patients revealed that eIF3a up-regulation corresponds to tumour grade and that high eIF3a expression corresponds to longer overall survival rates of patients with low grade tumours.


From our results we conclude that eIF3a expression may have a profound effect on the UBC phenotype and, in addition, may serve as a prognostic marker for low grade UBCs.


Eukaryotic translation initiation eIFs Urinary bladder cancer Tumour marker 



We thank Theresa Eder, Veronika Rauch, Gertrude Zisser and Isolde Gunsch for their excellent technical assistance. We thank Mag. Karin Osibow for critical reading of our manuscript.

Conflict of interest

The authors declare that there is no conflicts of interest.

Supplementary material

13402_2014_181_Fig8_ESM.gif (902 kb)
Supplemental Fig. 1

Heat map displaying the gene ontology analysis results for ‘cell proliferation’ genes sorted by expression (GIF 902 kb)

13402_2014_181_MOESM1_ESM.tif (337 kb)
High resolution image (TIFF 337 kb)
13402_2014_181_MOESM2_ESM.pdf (3.1 mb)
Supplemental Table 1 (PDF 3166 kb)


  1. 1.
    F. Saletta, Y. Suryo Rahmanto, D.R. Richardson, The translational regulator eIF3a: the tricky eIF3 subunit! Biochim. Biophys. Acta 1806, 275–286 (2010)PubMedGoogle Scholar
  2. 2.
    Z. Dong, Z. Liu, P. Cui, R. Pincheira, Y. Yang, J. Liu, J.T. Zhang, Role of eIF3a in regulating cell cycle progression. Exp. Cell Res. 315, 1889–1894 (2009)PubMedCrossRefGoogle Scholar
  3. 3.
    M. Ploeg, K.K.H. Abden, L.A. Kiemeney, The present and future burden of urinary bladder cancer in the world. World J. Urol. 27, 289–293 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    A. Stenzl, N.C. Cowan, M. DeSantis, G. Jakse, M.A. Kuczyk, A.S. Merseburger, M.J. Ribal, A. Sherif, J.A. Witjes, The updated EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol. 55, 815–825 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    M. Retz, J.E. Gschwend, Medikamentöse Tumortherapie in der Uroonkologie, 2nd edn. (Springer, Berlin, 2010)CrossRefGoogle Scholar
  6. 6.
    G. Johnen, K. Gawrych, H. Bontrup, B. Pesch, D. Taeger, S. Banek, M. Kluckert, H. Wellhäußer, F. Eberle, M. Nasterlack, G. Leng, A. Stenzl, T. Brüning, Performance of survivin mRNA as a biomarker for bladder cancer in the prospective study UroScreen. PLoS One 7, e35363 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    A. Datta, M.E. Adelson, Y. Mogilevkin, E. Mordechai, A.A. Sidi, J.P. Trama, Oncoprotein DEK as a tissue and urinary biomarker for bladder cancer. BMC Cancer 11, 234 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    V. Cebrian, M. Fierro, E. Orenes-Piñero, L. Grau, P. Moya, T. Ecke, M. Alvarez, M. Gil, F. Algaba, J. Bellmunt, C. Cordon-Cardo, J. Catto, A. López-Beltrán, M. Sánchez-Carbayo, KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients. Am. J. Pathol. 179, 540–546 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    L.G. Koss, E.M. Tiamson, M.A. Robbins, Mapping cancerous and precancerous bladder changes. JAMA 227, 281–286 (1974)PubMedCrossRefGoogle Scholar
  10. 10.
    P.E. Spiess, B. Czerniak, Dual-track pathway of bladder carcinogenesis: practical implications. Arch. Pathol. Lab. Med. 130, 844–852 (2006)PubMedGoogle Scholar
  11. 11.
    T.V. Pestova, J.R. Lorsch, C.U.T. Hellen, The Mechanism of Translation Initiation in Eukaryotes, in Translational Control in Biology and Medicine, ed. by M.B. Mathews, N. Sonenberg, J.W.B. Hershey (Cold Spring Harbor Laboratory Press, New York, 2007), pp. 87–128Google Scholar
  12. 12.
    A. Unbehaun, S.I. Borukhov, C.U.T. Hellen, T.V. Pestova, Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev. 18, 3078–3093 (2004)PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    T. Kouba, I. Danyi, S. Gunisova, V. Munzarova, V. Vlckova, L. Cuchalova, A. Neueder, P. Milkereit, L.S. Valasek, Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS One 7, e40464 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    R.Y. Liu, Z. Dong, J. Liu, J.Y. Yin, L. Zhou, X. Wu, Y. Yang, W. Mo, W. Huang, S.K. Khoo, J. Chen, D. Petillo, B.T. Teh, C.N. Qian, J.T. Zhang, Role of eIF3a in regulating cisplatin sensitivity and nucleotide excision repair of nasopharyngeal carcinomas. Oncogene 30, 4814–4823 (2012)CrossRefGoogle Scholar
  15. 15.
    J.Y. Yin, J. Shen, Z.Z. Dong, Q. Huang, M.Z. Zhong, D.Y. Feng, H.H. Zhou, J.T. Zhang, Z.Q. Liu, Effect of eIF3a on response of lung cancer patients to platinum-based chemotherapy by regulating DNA repair. Clin. Cancer Res. 17, 4600–4609 (2011)PubMedCrossRefGoogle Scholar
  16. 16.
    R. Spilka, K. Laimer, F. Bachmann, G. Spizzo, A. Vogetseder, M. Wieser, H. Müller, J. Haybaeck, P. Obrist, Overexpression of eIF3a in squamous cell carcinoma of the oral cavity and its putative relation to chemotherapy response. J. Oncol. 901956 (2012)Google Scholar
  17. 17.
    R. Gentleman, V. Carey, D. Bates, B. Bolstad, Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004)PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Z. Wu, R.A. Irizarry, R. Gentleman, F. Martinez Murillo, F. Spencer, A model based background adjustment for oligonucleotide expression arrays. Johns Hopkins University, Dept. of Biostatistics Working Papers. Working Paper 1 (2004)Google Scholar
  19. 19.
    G.K. Smyth, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, e29 (2004)Google Scholar
  20. 20.
    Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R Stat. Soc. Ser. B 57, 289–300 (1995)Google Scholar
  21. 21.
    S. Falcon, R. Gentleman, Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007)PubMedCrossRefGoogle Scholar
  22. 22.
    G. Spizzo, D. Fong, M. Wurm, C. Ensinger, P. Obrist, C. Hofer, G. Mazzoleni, G. Gastl, P. Went, EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis. J. Clin. Pathol. 64, 415–420 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    J. Bubeník, M. Baresová, V. Viklický, J. Jakoubková, H. Sainerová, J. Donner, Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen. Int. J. Cancer 11, 765–773 (1973)PubMedCrossRefGoogle Scholar
  24. 24.
    J. Fogh, Cultivation, characterization and identification of human tumor cells with emphasis on kidney, testis and bladder tumors. Natl. Cancer Inst. Monogr. 49, 5–9 (1978)PubMedGoogle Scholar
  25. 25.
    C.J. Marshall, L.M. Franks, A.W. Carbonell, Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas. J. Nat. Cancer Inst. 58, 1743–1751 (1977)PubMedGoogle Scholar
  26. 26.
    V. Croons, W. Martinet, A.G. Herman, G.R. De Meyer, Differential effect of the protein synthesis inhibitors puromycin and cycloheximide on vascular smooth muscle cell viability. J. Pharmacol. Exp. Ther. 325, 824–832 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    S. Pestka, Inhibitors of ribosome functions. Annu. Rev. Microbiol. 25, 487–562 (1971)PubMedCrossRefGoogle Scholar
  28. 28.
    X. Wang, C.G. Proud, The mTOR pathway in the control of protein synthesis. Physiology 21, 362–369 (2006)PubMedCrossRefGoogle Scholar
  29. 29.
    K. Inoki, H. Ouyang, Y. Li, K.L. Guan, Signaling by target of rapamycin proteins in cell growth control. Microbiol. Mol. Biol. Rev. 69, 79–100 (2005)PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    S. Khoshnevis, S. Gunisová, V. Vlcková, T. Kouba, P. Neumann, P. Beznosková, R. Ficner, L.S. Valásek, Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Res. 42, 4123–4139 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    A.G. Hinnebusch, eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 31, 553–562 (2006)PubMedCrossRefGoogle Scholar
  32. 32.
    F. Bachman, R. Baenziger, M.M. Burger, Cloning of a novel protein overexpressed in human mammary carcinoma. Cancer Res. 57, 988–994 (1997)Google Scholar
  33. 33.
    A. Dellas, J. Torhorst, F. Bachmann, R. Baenziger, E. Schultheiss, M.M. Burger, Expression of p150 in cervical neoplasia and its potential value in predicting survival. Cancer 83, 1376–1383 (1998)PubMedCrossRefGoogle Scholar
  34. 34.
    G. Chen, M.M. Burger, P150 expression and its prognostic value in squamous cell carcinoma of the esophagus. Int. J. Cancer 84, 95–100 (1999)PubMedCrossRefGoogle Scholar
  35. 35.
    R. Pincheira, Q. Chen, J.T. Zhang, Identification of a 170-kDa protein over-expressed in lung cancers. Br. J. Cancer 84, 1520–1527 (2001)PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    G. Chen, M.M. Burger, P150 Overexpression in gastric carcinoma: the association with p53, apoptosis and cell proliferation. Int. J. Cancer 112, 393–398 (2004)PubMedCrossRefGoogle Scholar
  37. 37.
    J. Haybaeck, T. O’Connor, R. Spilka, G. Spizzo, C. Ensinger, G. Mikuz, T. Brunhuber, A. Vogetseder, I. Theurl, W. Salvenmoser, H. Draxl, R. Baenziger, F. Bachmann, G. Schaefer, M.M. Burger, P. Obrist, Overexpression of p150, a part of the large subunit of the eukaryotic translation initiation factor 3, in colon cancer. Anticancer Res. 30, 1047–1056 (2010)PubMedGoogle Scholar
  38. 38.
    K.C. Halling, W. King, I.A. Sokolova, R.J. Karnes, R.G. Meyer, E.L. Powell, T.J. Sebo, J.C. Cheville, A.C. Clayton, K.L. Krajnik, T.A. Ebert, R.E. Nelson, H.M. Burkhardt, S. Ramakumar, C.S. Stewart, V.S. Pankratz, M.M. Lieber, M.L. Blute, H. Zincke, S.A. Seelig, R.B. Jenkins, D.J. O’Kane, A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J. Urol. 167, 2001–2006 (2002)PubMedCrossRefGoogle Scholar
  39. 39.
    H. Jamshidian, K. Kor, M. Djalali, Urine concentration of nuclear matrix protein 22 for diagnosis of transitional cell carcinoma of bladder. Urol. J. 5, 243–247 (2008)PubMedGoogle Scholar
  40. 40.
    L.P. Huang, D. Savoly, A.A. Sidi, M.E. Adelson, E. Mordechai, J.P. Trama, CIP2A protein expression in high-grade, high-stage bladder cancer. Cancer Med. 1, 76–81 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Y.C. Lu, C.N. Chen, B. Wang, W.M. Hsu, S.T. Chen, K.J. Chang, C.C. Chang, H. Lee, Changes in tumor growth and metastatic capacities of J82 human bladder cancer cells suppressed by down-regulation of calreticulin expression. Am. J. Pathol. 179, 1425–1433 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    M. Unoki, J.D. Kelly, D.E. Neal, B.A. Ponder, Y. Nakamura, R. Hamamoto, UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br. J. Cancer 101, 98–105 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    D. Silvera, S.C. Formenti, R.J. Schneider, Translational control in cancer. Nat. Rev. Cancer 10, 254–266 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2014

Authors and Affiliations

  • Rita Spilka
    • 1
    Email author
  • Christina Ernst
    • 2
  • Helmut Bergler
    • 3
  • Johannes Rainer
    • 4
  • Susanne Flechsig
    • 5
  • Alexander Vogetseder
    • 6
  • Eva Lederer
    • 2
  • Martin Benesch
    • 7
  • Andrea Brunner
    • 8
  • Stephan Geley
    • 4
  • Andreas Eger
    • 9
  • Felix Bachmann
    • 10
  • Wolfgang Doppler
    • 11
  • Peter Obrist
    • 1
  • Johannes Haybaeck
    • 2
    • 12
    Email author
  1. 1.Laboratory of Pathology Dr. Obrist & Dr. Brunhuber OGZamsAustria
  2. 2.Institute of PathologyMedical University of GrazGrazAustria
  3. 3.Department of MicrobiologyUniversity of GrazGrazAustria
  4. 4.Division of Molecular PathophysiologyInnsbruck Medical UniversityInnsbruckAustria
  5. 5.Experimental Pharmacology & Oncology Berlin-Buch GmbHBerlin-BuchGermany
  6. 6.Division of Clinical PathologyUniversity Hospital ZurichZurichSwitzerland
  7. 7.Department of Pediatrics and Adolescent MedicineMedical University of GrazGrazAustria
  8. 8.Department of PathologyInnsbruck Medical UniversityInnsbruckAustria
  9. 9.University of Applied Sciences, Medical and Pharmaceutical BiotechnologyIMCKremsAustria
  10. 10.Basilea Pharmaceutica International Ltd.BaselSwitzerland
  11. 11.Division of Medical BiochemistryInnsbruck Medical UniversityInnsbruckAustria
  12. 12.Institute of PathologyMedical University of GrazGrazAustria

Personalised recommendations