Cellular Oncology

, Volume 37, Issue 1, pp 1–8

Etiology of familial breast cancer with undetected BRCA1 and BRCA2 mutations: clinical implications




Familial breast cancer accounts for 20–30 % of all breast cancer cases. Mutations in the BRCA1 and BRCA2 genes account for the majority of high risk families with both early onset breast cancer and ovarian cancer. Most of the families with less than six breast cancer cases and no ovarian cancer do not carry BRCA1 or BRCA2 mutations that can be detected using routine sequencing protocols. Here, we aimed to review the etiology of familial breast cancer in cases without BRCA1 and BRCA2 mutations.


After excluding BRCA1 and BRCA2 mutations, factors proposed to contribute to familial breast cancer include: chance clustering of apparently sporadic cases, shared lifestyle, monogenic inheritance, i.e., dominant gene mutations associated with a high risk (TP53, PTEN, STK11), dominant gene mutations associated with a relatively low risk (ATM, BRIP1, RLB2), recessive gene mutations associated with horizontal inheritance patterns (sister-sister), and polygenic inheritance where susceptibility to familial breast cancer is thought to be conferred by a large number of low risk alleles.


Current evidence suggests that in the majority of cases with BRCA1 and BRCA2 negative familial breast cancer the etiology is due to interactions of intermediate or low risk alleles with environmental and lifestyle factors. Thus, a careful selection of patients submitted to genetic testing is needed. Clearly, further research is required to fully elucidate the etiology of non-BRCA familial breast cancer.


Familial breast cancer Hereditary breast cancer Mendelian inheritance Polygenic inheritance 


  1. 1.
    J.C. Carroll, C. Cremin, J. Allanson, S.M. Blaine, H. Dorman, C.A. Gibbons et al., Hereditary breast and ovarian cancers. Can. Fam. Physicians 54, 1691–1692 (2008)Google Scholar
  2. 2.
    S.E. Filippini, A. Vega, Breast cancer genes: beyond BRCA1 and BRCA2. Front. Biosci. (Landmark Ed). 18, 1358–1372 (2013)PubMedCrossRefGoogle Scholar
  3. 3.
    M.E. Robson, Treatment of hereditary breast cancer. Semin. Oncol. 34, 389–391 (2007)Google Scholar
  4. 4.
    T. Ripperger, D. Gadzicki, A. Meindl, B. Schlegelberger, Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur. J. Hum. Genet. 17, 722–731 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    A. Osorio, A. Barroso, B. Martínez, A. Cebrián, J.M. San Román, F. Lobo et al., Molecular analysis of the BRCA1 and BRCA2 genes in 32 breast and/or ovarian cancer Spanish families. Br. J. Cancer 82, 1266–1270 (2000)PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    R. Sabatier, J. Adélaïde, P. Finetti, A. Ferrari, L. Huiart, H. Sobol et al., BARD1 homozygous deletion, a possible alternative to BRCA1 mutation in basal breast cancer. Genes, Chromosomes Cancer 49, 1143–1151 (2010)PubMedCrossRefGoogle Scholar
  7. 7.
    M.A. Didraga, E.H. van Beers, S.A. Joosse, K.I. Brandwijk, R.A. Oldenburg, L.F. Wessels et al., A non-BRCA1/2 hereditary breast cancer sub-group defined by aCGH profiling of genetically related patients. Breast Cancer Res. Treat. 130, 425–436 (2011)PubMedCrossRefGoogle Scholar
  8. 8.
    C.I. Szabo, M.C. King, Population genetics of BRCA 1 and BRCA2. Am. J. Hum. Genet. 60, 1013–1020 (1997)PubMedCentralPubMedGoogle Scholar
  9. 9.
    D. Ford, D.F. Easton, M. Stratton, S. Narod, D. Goldgar, P. Devilee et al., Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676–689 (1998)PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    K.E. Malone, J.R. Daling, J.D. Thompson, C.A. O’Brien, L.V. Francisco, E.A. Ostrander, BRCA1 mutations and breast cancer in the general population: analyses in women before age 35 years and in women before age 45 years with first-degree family history. JAMA 279, 922–929 (1998)PubMedCrossRefGoogle Scholar
  11. 11.
    K.L. Nathanson, B.L. Weber, “Other” breast cancer susceptibility genes: searching for more holy grail. Hum. Mol. Genet. 10, 715–720 (2001)PubMedCrossRefGoogle Scholar
  12. 12.
    C. Turnbull, N. Rahman, Genetic predisposition to breast cancer: past, present, and future. Annu. Rev. Genomics Hum. Genet. 9, 321–345 (2008)PubMedCrossRefGoogle Scholar
  13. 13.
    F.P. Li, J.F. Fraumeni Jr., Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann. Intern. Med. 71, 747–752 (1969)PubMedCrossRefGoogle Scholar
  14. 14.
    J.M. Birch, Li Fraumeni Syndrome. Eur. J. Cancer 30A, 1935–1941 (1994)PubMedCrossRefGoogle Scholar
  15. 15.
    R.A. Eeles, Germline mutations in the TP53 gene. Cancer Surv. 25, 101–124 (1995)PubMedGoogle Scholar
  16. 16.
    E.I. Palmero, M.I. Achatz, P. Ashton-Prolla, M. Olivier, P. Hainaut, Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr. Opin. Oncol. 22, 64–69 (2010)PubMedCrossRefGoogle Scholar
  17. 17.
    S. Tutluer, M.D. Tanriover, G.S. Guven, Cowden syndrome: a major indication for extensive cancer surveillance. Med. Oncol. 29, 1365–1368 (2012)PubMedCrossRefGoogle Scholar
  18. 18.
    J.A. Hobert, C. Eng, PTEN hamartoma tumor syndrome: an overview. Genet. Med. 11, 687–694 (2009)PubMedCrossRefGoogle Scholar
  19. 19.
    G.M. Blumenthal, P.A. Dennis, PTEN hamartoma tumor syndromes. Eur. J. Hum. Genet. 16, 1289–1300 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    S. Gustafson, K.M. Zbuk, C. Scacheri, C. Eng, Cowden syndrome. Semin. Oncol. 34, 428–434 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    R.M. Cisco, J.M. Ford, J.A. Norton, Hereditary diffuse gastric cancer: implications of genetic testing for screening and prophylactic surgery. Cancer 113(7Suppl), 1850–1856 (2008)PubMedCrossRefGoogle Scholar
  22. 22.
    K.F. Becker, M.J. Atkinson, U. Reich, I. Becker, H. Nekarda, J.R. Siewert et al., E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 54, 3845–3852 (1994)PubMedGoogle Scholar
  23. 23.
    G. Keller, H. Vogelsang, I. Becker, J. Hutter, K. Ott, S. Candidus et al., Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation. Am. J. Pathol. 155, 337–342 (1999)PubMedCrossRefGoogle Scholar
  24. 24.
    R.C. Fitzgerald, R. Hardwick, D. Huntsman, F. Carneiro, P. Guilford, V. Blair et al., Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J. Med. Genet. 47, 436–444 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    C. Caldas, F. Carneiro, H.T. Lynch, J. Yokota, G.L. Wiesner, S.M. Powell et al., Familial gastric cancer: overview and guidelines for management. J. Med. Genet. 36, 873–880 (1999)PubMedGoogle Scholar
  26. 26.
    D. Taheri, N. Afshar-Moghadam, P. Mahzoni, A. Eftekhari, S.M. Hashemi, M.H. Emami et al., Cancer problem in Peutz-Jeghers syndrome. Adv. Biomed. Res. (2013). doi:10.4103/2277-9175.109721 PubMedCentralPubMedGoogle Scholar
  27. 27.
    L.A. Boardman, S.N. Thibodeau, D.J. Schaid, N.M. Lindor, S.K. McDonnell, L.J. Burgart et al., Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann. Intern. Med. 128, 896–899 (1998)PubMedCrossRefGoogle Scholar
  28. 28.
    S. Matsuoka, M. Huang, S.J. Elledge, Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Weischer, S.E. Bojesen, A. Tybjaerg-Hansen, C.K. Axelsson, B.G. Nordestgaard, Increased risk of breast cancer associated with CHEK2*1100delC. J. Clin. Oncol. 25, 57–63 (2007)PubMedCrossRefGoogle Scholar
  30. 30.
    C. Cybulski, D. Wokołorczyk, T. Huzarski, T. Byrski, J. Gronwald, B. Górski et al., A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast Cancer Res. Treat. 102, 119–122 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    A. Desrichard, Y. Bidet, N. Uhrhammer, Y.J. Bignon, CHEK2 contribution to hereditary breast cancer in non-BRCA families. Breast Cancer Res. 13, R119 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    S.A. Narod, Testing for CHEK2 in the cancer genetics clinic: ready for prime time? Clin. Genet. 78, 1–7 (2010)PubMedCrossRefGoogle Scholar
  33. 33.
    M. Weischer, S.E. Bojesen, C. Ellervik, A. Tybjaerg-Hansen, B.G. Nordestgaard, CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J. Clin. Oncol. 26, 542–548 (2008)PubMedCrossRefGoogle Scholar
  34. 34.
    Y. Shiloh, ATM: ready, set, go. Cell Cycle 2, 116–117 (2003)PubMedCrossRefGoogle Scholar
  35. 35.
    A. Mavrou, G.T. Tsangaris, E. Roma, A. Kolialexi, The ATM gene and ataxia telangiectasia. Anticancer Res. 28, 401–405 (2008)PubMedGoogle Scholar
  36. 36.
    S. Angèle, J. Hall, The ATM gene and breast cancer: is it really a risk factor? Mutat. Res. 462, 167–178 (2000)PubMedCrossRefGoogle Scholar
  37. 37.
    J. Hall, The Ataxia-telangiectasia mutated gene and breast cancer: gene expression profiles and sequence variants. Cancer Lett. 227, 105–114 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    A. Renwick, D. Thompson, S. Seal, P. Kelly, T. Chagtai, M. Ahmed et al., ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet. 38, 873–875 (2006)PubMedCrossRefGoogle Scholar
  39. 39.
    F. Lalloo, D.G. Evans, Familial breast cancer. Clin Genet. 82, 105–114 (2012)PubMedCrossRefGoogle Scholar
  40. 40.
    K.M. Mahdi, M.R. Nassiri, K. Nasiri, Hereditary genes and SNPs associated with breast cancer. Asian Pac. J. Cancer Prev. 14, 3403–3409 (2013)PubMedCrossRefGoogle Scholar
  41. 41.
    N. Rahman, R.H. Scott, Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Hum. Mol. Genet. 16, R60–R66 (2007)PubMedCrossRefGoogle Scholar
  42. 42.
    N. Rahman, S. Seal, D. Thompson, P. Kelly, A. Renwick, A. Elliott et al., PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 39, 165–167 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    M.F. Lavin, ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26, 7749–7758 (2007)PubMedCrossRefGoogle Scholar
  44. 44.
    J.H. Lee, T.T. Paull, ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 351–354 (2005)Google Scholar
  45. 45.
    H.M. Hsu, H.C. Wang, S.T. Chen, G.C. Hsu, C.Y. Shen, J.C. Yu, Breast cancer risk is associated with the genes encoding the DNA double-strand break repair Mre11/Rad50/Nbs1 complex. Cancer Epidemiol. Biomarkers Prev. 16, 2024–2032 (2007)PubMedCrossRefGoogle Scholar
  46. 46.
    N. Bogdanova, S. Feshchenko, P. Schürmann, R. Waltes, B. Wieland, P. Hillemanns et al., Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int. J. Cancer 122, 802–806 (2008)PubMedCrossRefGoogle Scholar
  47. 47.
    P. van der Groep, E. van der Wall, P.J. van Diest, Pathology of hereditary breast cancer. Cell Oncol. 34, 71–88 (2011)CrossRefGoogle Scholar
  48. 48.
    M.J. Ligtenberg, R.P. Kuiper, T.L. Chan, M. Goossens, K.M. Hebeda, M. Voorendt et al., Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 41, 112–117 (2009)PubMedCrossRefGoogle Scholar
  49. 49.
    A.K. Win, N.M. Lindor, I. Winship, K.M. Tucker, D.D. Buchanan, J.P. Young et al., Risks of colorectal and other cancers after endometrial cancer for women with Lynch syndrome. J. Natl. Cancer Inst. 105, 274–279 (2013)PubMedCrossRefGoogle Scholar
  50. 50.
    S. Shanley, C. Fung, J. Milliken, J. Leary, R. Barnetson, M. Schnitzler et al., Breast cancer immunohistochemistry can be useful in triage of some HNPCC families. Fam. Cancer 8, 251–255 (2009)PubMedCrossRefGoogle Scholar
  51. 51.
    Y.M. Hendriks, A. Wagner, H. Morreau, F. Menko, A. Stormorken, F. Quehenberger et al., Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127, 17–25 (2004)PubMedCrossRefGoogle Scholar
  52. 52.
    S.A. Madanikia, A. Bergner, X. Ye, J.O. Blakeley, Increased risk of breast cancer in women with NF1. Am. J. Med. Genet. A 158A, 3056–3060 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    X. Wang, A.M. Levin, S.E. Smolinski, F.D. Vigneau, N.K. Levin, M.A. Tainsky, Breast cancer and other neoplasms in women with neurofibromatosis type 1: a retrospective review of cases in the Detroit metropolitan area. Am. J. Med. Genet. A 158A, 3061–3064 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    S. Sharif, A. Moran, S.M. Huson, R. Iddenden, A. Shenton, E. Howard et al., Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J. Med. Genet. 44, 481–484 (2007)PubMedCrossRefGoogle Scholar
  55. 55.
    D. Easton, K.A. Pooley, A.M. Dunning, P.D. Pharoah, D. Thompson, D.G. Ballinger et al., Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    R. Gramling, T.L. Lash, K.J. Rothman, H.J. Cabral, R. Silliman, M. Roberts et al., Family history of later-onset breast cancer, breast healthy behavior and invasive breast cancer among postmenopausal women: a cohort study. Breast Cancer Res. 12, R82 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    C. Turnbull, S. Ahmed, J. Morrison, D. Pernet, A. Renwick, M. Maranian et al., Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    S. Wacholder, P. Hartge, R. Prentice, M. Garcia-Closas, H.S. Feigelson, W.R. Diver et al., Performance of common genetic variants in breast-cancer risk models. N. Engl. J. Med. 362, 986–993 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    D.F. Conrad, D. Pinto, R. Redon, L. Feuk, O. Gokcumen, Y. Zhang et al., Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    P. Stankiewicz, J.R. Lupski, Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010)PubMedCrossRefGoogle Scholar
  61. 61.
    A.C. Krepischi, M.I. Achatz, E.M. Santos, S.S. Costa, B.C. Lisboa, H. Brentani et al., Germline DNA copy number variation in familial and early-onset breast cancer. Breast Cancer Res. 14, R24 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    T. Kouzarides, Chromatin modifications and their function. Cell 128, 693–705 (2007)PubMedCrossRefGoogle Scholar
  63. 63.
    A.P. Feinberg, R. Ohlsson, S. Henikoff, The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006)PubMedCrossRefGoogle Scholar
  64. 64.
    A. de Bustros, B.D. Nelkin, A. Silverman, G. Ehrlich, B. Poiesz, S.B. Baylin, The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc. Natl. Acad. Sci. U. S. A. 85, 5693–5697 (1988)PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    M.J. Kempers, R.P. Kuiper, C.W. Ockeloen, P.O. Chappuis, P. Hutter, N. Rahner et al., Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol. 12, 49–55 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    T. Hansmann, G. Pliushch, M. Leubner, P. Kroll, D. Endt, A. Gehrig et al., Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancerand early-onset sporadic breast cancer. Hum. Mol. Genet. 21, 4669–4679 (2012)PubMedCrossRefGoogle Scholar
  67. 67.
    M.P. Hitchins, Inheritance of epigenetic aberrations (constitutional epimutations) in cancer susceptibility. Adv. Genet. 70, 201–243 (2010)PubMedCrossRefGoogle Scholar
  68. 68.
    J.M. Flanagan, S. Cocciardi, N. Waddell, C.N. Johnstone, A. Marsh, S. Henderson et al., DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am. J. Hum. Genet. 86, 420–433 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    M. Esteller, M.F. Fraga, M. Guo, J. Garcia-Foncillas, I. Hedenfalk, A.K. Godwin et al., DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum. Mol. Genet. 10, 3001–3007 (2001)PubMedCrossRefGoogle Scholar
  70. 70.
    N. Loman, A. Bladström, O. Johannsson, A. Borg, H. Olsson, Cancer incidence in relatives of a population-based set of cases of early-onset breast cancer with a known BRCA1 and BRCA2 mutation status. Breast Cancer Res. 5, R175–R186 (2003)PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    R. Scully, Role of BRCA gene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Res. 2, 324–330 (2000)PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    T. Tapia, S.V. Smalley, P. Kohen, A. Muñoz, L.M. Solis, A. Corvalan et al., Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors. Epigenetics 3, 157–163 (2008)PubMedCrossRefGoogle Scholar
  73. 73.
    E. Honrado, A. Osorio, R.L. Milne, M.F. Paz, L. Melchor, A. Cascón et al., Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families. Mod. Pathol. 20, 1298–1306 (2007)PubMedCrossRefGoogle Scholar
  74. 74.
    I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon et al., Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001)PubMedCrossRefGoogle Scholar
  75. 75.
    A.M. Dworkin, A.D. Spearman, S.Y. Tseng, K. Sweet, A.E. Toland, Methylation not a frequent “second hit” in tumors with germline BRCA mutations. Fam. Cancer 8, 339–346 (2009)PubMedCrossRefGoogle Scholar
  76. 76.
    K. Hemminki, B. Chen, Familial association of prostate cancer with other cancers in the Swedish Family-Cancer Database. Prostate 65, 188–194 (2005)PubMedCrossRefGoogle Scholar
  77. 77.
    M.P. Zeegers, L.J. Schouten, R.A. Goldbohm, P.A. van den Brandt, A compendium of familial relative risks of cancer among first degree relatives: a population-based study. Int. J. Cancer 123, 1664–1673 (2008)PubMedCrossRefGoogle Scholar
  78. 78.
    A. Valeri, G. Fournier, V. Morin, J.F. Morin, E. Drelon, P. Mangin et al., Early onset and familial predisposition to prostate cancer significantly enhance the probability for breast cancer in first degree relatives. Int. J. Cancer 86, 883–887 (2000)PubMedCrossRefGoogle Scholar
  79. 79.
    A. Kong, V. Steinthorsdottir, G. Masson, G. Thorleifsson, P. Sulem, S. Besenbacher et al., Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    M. Tuna, M. Smid, J.W. Martens, J.A. Foekens, Prognostic value of acquired uniparental disomy (aUPD) in primary breast cancer. Breast Cancer Res. Treat. 132, 189–196 (2012)PubMedCrossRefGoogle Scholar
  81. 81.
    C. Ellberg, G. Jönsson, H. Olsson, Can a phenotype for recessive inheritance in breast cancer be defined? Fam. Cancer 9, 525–530 (2010)PubMedCrossRefGoogle Scholar
  82. 82.
    U. Güth, D. Müller, D.J. Huang, E. Obermann, H. Müller, Strictly defined familial male breast cancer. Fam. Cancer 10, 73–77 (2011)PubMedCrossRefGoogle Scholar
  83. 83.
    G. Bostean, C.M. Crespi, W.J. McCarthy, Associations among family history of cancer, cancer screening and lifestyle behaviors: a population-based study. Cancer Causes Control 24, 1491–1503 (2013)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2013

Authors and Affiliations

  1. 1.Department of Basic Medical Lessons Faculty of Health and Caring ProfessionsTechnological Educational Institute of AthensAthensGreece

Personalised recommendations