Advertisement

Cellular Oncology

, Volume 36, Issue 5, pp 385–394 | Cite as

MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma

  • Yuanyuan Wang
  • Min Li
  • Wenqiao Zang
  • Yunyun Ma
  • Na Wang
  • Ping Li
  • Tao Wang
  • Guoqiang ZhaoEmail author
Original Paper

Abstract

Purpose

MicroRNAs (miRNAs) may act as oncogenes or tumor suppressor genes and, as such, they may play a role in cancer development. We investigated miR-429 expression levels in a cohort of esophageal carcinomas (EC) to assess its impact on EC cell growth, apoptosis and invasion.

Methods

qRT-PCR assays were used to quantify miR-429 expression levels in 32 paired EC samples and adjacent non-neoplastic tissues. Assays for cell growth, apoptosis, caspase activity and trans-well invasion were used to evaluate the effects of miR-429 expression on EC cells. Luciferase reporter and Western blotting assays were used to test whether the Bcl-2 and specificity protein 1 (SP1) mRNAs serve as major targets of miR-429.

Results

The expression levels of miR-429 in EC tissues were found to be lower than those in adjacent non-neoplastic tissues (P < 0.05). This relatively low expression was found to be significantly associated with the occurrence of lymph node metastases (P < 0.05). Apoptosis and migration rates were found to be significantly higher in two EC-derived cell lines (EC9706 and KYSE30) transfected with a miR-429 agomir (P < 0.05). Subsequent Western blotting and luciferase reporter assays showed that miR-429 can bind to putative binding sites within the Bcl-2 and SP1 mRNA 3′ untranslated regions (UTRs) to reduce their expression.

Conclusions

In primary EC tissues miR-429 is expressed at low levels. Up-regulation of miR-429 inhibits invasion and promotes apoptosis in EC cells by targeting Bcl-2 and SP1. Our findings suggest that Bcl-2 and SP1 may serve as major targets of miR-429. This study paves the way for a better understanding of the mechanism underlying EC pathogenesis and the development of novel, targeted therapies.

Keywords

Esophageal cancer miR-429 Apoptosis Invasion Bcl-2 SP1 

Notes

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 81272188).

Conflict of interest

The authors have declared that no competing interest exists.

References

  1. 1.
    M. Abdelrahim, R. Smith 3rd, R. Burghardt, Safe S Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res. 64(18), 6740–6749 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    J. Brennecke, S.M. Cohen, Towards a complete description of the microRNA complement of animal genomes. Genome Biol 4(9), 228 (2003)PubMedCrossRefGoogle Scholar
  3. 3.
    G.A. Calin, C.M. Croce, MicroRNA signatures in human cancers. Nat. Rev. Cancer 6(11), 857–866 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    J.A. Chan, A.M. Krichevsky, K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65(14), 6029–6033 (2005)PubMedCrossRefGoogle Scholar
  5. 5.
    W.S. Dynan, R. Tjian, The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35(1), 79–87 (1983)PubMedCrossRefGoogle Scholar
  6. 6.
    P.C. Enzinger, R.J. Mayer, Esophageal cancer. N. Engl. J. Med. 349(23), 2241–2252 (2003)PubMedCrossRefGoogle Scholar
  7. 7.
    M. Esteller, Non coding RNAs in human disease. Nat. Rev. Genet. 12(12), 861–874 (2011)PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Gao, Z. Chen, L. Zhang, F. Zhou, S. Shi, X. Feng, B. Li, X. Meng, X. Ma, M. Luo, K. Shao, N. Li, B. Qiu, K. Mitchelson, J. Cheng, J. He, Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res. 68(1), 26–33 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Han, J. Chen, X. Zhao, C. Liang, Y. Wang, L. Sun, Z. Jiang, Z. Zhang, R. Yang, J. Chen, Z. Li, A. Tang, X. Li, J. Ye, Z. Guan, Y. Gui, Z. Cai, MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One 6(3), e18286 (2011)PubMedCrossRefGoogle Scholar
  10. 10.
    H. He, K. Jazdzewski, W. Li, S. Liyanarachchi, R. Nagy, S. Volinia, G.A. Calin, C.G. Liu, K. Franssila, S. Suster, R.T. Kloos, C.M. Croce, A. de la Chapelle, The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U. S. A. 102(52), 19075–19080 (2005)PubMedCrossRefGoogle Scholar
  11. 11.
    M.V. Iorio, M. Ferracin, C.G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, S. Ménard, J.P. Palazzo, A. Rosenberg, P. Musiani, S. Volinia, I. Nenci, G.A. Calin, P. Querzoli, M. Negrini, C.M. Croce, MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65(16), 7065–7070 (2005)PubMedCrossRefGoogle Scholar
  12. 12.
    M.V. Iorio, R. Visone, L.G. Di, V. Donati, F. Petrocca, P. Casalini, C. Taccioli, S. Volinia, C.G. Liu, H. Alder, G.A. Calin, S. Ménard, C.M. Croce, MicroRNA signatures in human ovarian cancer. Cancer Res. 67(18), 8699–8707 (2007)PubMedCrossRefGoogle Scholar
  13. 13.
    R.H. Jensen, M. Tiirikainen, L. You, D. Ginzinger, B. He, K. Uematsu, Z. Xu, P. Treseler, F. McCormick, D.M. Jablons, Genomic alterations in human mesothelioma including high resolution mapping of common regions of DNA loss in chromosome arm 6q. Anticancer Res 23(3B), 2281–2289 (2003)PubMedGoogle Scholar
  14. 14.
    I.K. Kim, Y.K. Jung, D.Y. Noh, Y.S. Song, C.H. Choi, B.H. Oh, E.S. Masuda, Y.K. Jung, Functional screening of genes suppressing TRAIL-induced apoptosis: distinct inhibitory activities of Bcl-XL and Bcl-2. Br. J. Cancer 88(6), 910–917 (2003)PubMedCrossRefGoogle Scholar
  15. 15.
    L.M. Kong, C.G. Liao, F. Fei, X. Guo, J.L. Xing, Z.N. Chen, Transcription factor Sp1 regulates expression of cancer-associated molecule CD147 in human lung cancer. Cancer Sci. 101(6), 1463–1470 (2010)PubMedCrossRefGoogle Scholar
  16. 16.
    A. Kozomara, S. Griffiths Jones, miRBase: integrating microRNA annotation and deep Sequencing data. Nucleic Acids Res. 39, D152–157 (2011)PubMedCrossRefGoogle Scholar
  17. 17.
    B.P. Lewis, C.B. Burge, D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120(1), 15–20 (2005)PubMedCrossRefGoogle Scholar
  18. 18.
    J.S. Mattick, I.V. Makunin, Small regulatory RNAs in mammals. Hum. Mol. Genet. 14(Spec No1), R121–R132 (2005)PubMedCrossRefGoogle Scholar
  19. 19.
    E.J. Nam, H. Yoon, S.W. Kim, H. Kim, Y.T. Kim, J.H. Kim, J.W. Kim, S. Kim, MicroRNA expression profiles in serous ovarian carcinoma. Clin. Cancer Res 14(9), 2690–2695 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    P.N. Kelly, A. Strasser, The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 18(9), 1414–1424 (2011)PubMedCrossRefGoogle Scholar
  21. 21.
    D.M. Parkin, F. Bray, J. Ferlay, P. Pisani, Global cancer statistics, 2002. CA Cancer J. Clin 55(2), 74–108 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    M. Sarbia, F. Bittinger, R. Porschen, P. Verreet, P. Dutkowski, R. Willers, H.E. Gabbert, bcl-2 expression and prognosis in squamous cell carcinomas of the esophagus. Int. J. Cancer 69, 324–328 (1996)PubMedCrossRefGoogle Scholar
  23. 23.
    M. Torzewski, M. Sarbia, H. Heep, P. Dutkowski, R. Willers, H.E. Gabbert, Expression of Bcl-X(L), an antiapoptotic member of the Bcl-2 family, in esophageal squamous cell carcinoma. Clin. Cancer Res 577(4), 577–583 (1998)Google Scholar
  24. 24.
    D.D. Patel, J.M. Bhatavdekar, P.R. Chikhlikar, Y.V. Patel, N.G. Shah, N. Ghosh, T.P. Suthar, D.B. Balar, Clinical significance of p53, nm23, and bcl-2 in T3-4N1M0 oesophageal carcinoma: an immunohistochemical approach. J. Surg. Oncol 65(2), 111–116 (1997)PubMedCrossRefGoogle Scholar
  25. 25.
    S. Safe, M. Abdelrahim, Sp transcription factor family and its role in cancer. Eur. J. Cancer 41(16), 2438–2448 (2005)PubMedCrossRefGoogle Scholar
  26. 26.
    A.J. Schetter, S.Y. Leung, J.J. Sohn, K.A. Zanetti, E.D. Bowman, N. Yanaihara, S.T. Yuen, T.L. Chan, D.L. Kwong, G.K. Au, C.G. Liu, G.A. Calin, C.M. Croce, C.C. Harris, MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299(4), 425–436 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    R. Schickel, B. Boyerinas, S.M. Park, M.E. Peter, MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45), 5959–5974 (2008)PubMedCrossRefGoogle Scholar
  28. 28.
    Q. Shi, X. Le, J.L. Abbruzzese, Z. Peng, C.N. Qian, H. Tang, Q. Xiong, B. Wang, X.C. Li, K. Xie, Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res. 61(10), 4143–4154 (2001)PubMedGoogle Scholar
  29. 29.
    J. Snowdon, X. Zhang, T. Childs, V.A. Tron, H. Feilotter, The microRNA-200 family is upregulated in endometrial carcinoma. PLoS One 6(8), e22828 (2011)PubMedCrossRefGoogle Scholar
  30. 30.
    U.T. Sankpal, P. Maliakal, D. Bose, O. Kayaleh, D. Buchholz, R. Basha, Expression of specificity protein transcription factors in pancreaticcancer and their association in prognosis and therapy. Curr. Med. Chem. 19(22), 3779–86 (2012)PubMedCrossRefGoogle Scholar
  31. 31.
    T. Sun, C. Wang, J. Xing, D. Wu, MiR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur. J. Cancer 47(17), 2552–2559 (2011)PubMedCrossRefGoogle Scholar
  32. 32.
    G. Suske, E. Bruford, S. Philipsen, Mammalian SP/KLF transcription factors: bring in the family. Genomic 85(5), 551–556 (2005)CrossRefGoogle Scholar
  33. 33.
    R. Nagadia, P. Pandit, W.B. Coman, J. Cooper-White, C. Punyadeera, miRNAs in head and neck cancer revisited. Cell Oncol 36(1), 1–7 (2013)CrossRefGoogle Scholar
  34. 34.
    S.F. Tavazoie, C. Alarcón, T. Oskarsson, D. Padua, Q. Wang, P.D. Bos, W.L. Gerald, J. Massagué, Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175), 147–152 (2008)PubMedCrossRefGoogle Scholar
  35. 35.
    J. Tie, D. Fan, Big roles of microRNAs in tumorigenesis and tumor development. Histol. Histopathol 26(10), 1353–1361 (2011)PubMedGoogle Scholar
  36. 36.
    S. Uhlmann, J.D. Zhang, A. Schwäger, H. Mannsperger, Y. Riazalhosseini, S. Burmester, A. Ward, U. Korf, S. Wiemann, O. Sahin, MiR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 29(30), 4297–4306 (2010)PubMedCrossRefGoogle Scholar
  37. 37.
    M. Van Kouwenhove, M. Kedde, R. Agami, MicroRNA regulation by RNA binding proteins and its implications for cancer. Nat. Rev. Cancer 11(9), 644–656 (2011)PubMedCrossRefGoogle Scholar
  38. 38.
    K. Manav, Y. Kang, The emerging role of miR-200 family of microRNAs in epithelialmesenchymal transition and cancer metastasis. RNA Biol. 5(3), 115–119 (2008)CrossRefGoogle Scholar
  39. 39.
    P. Sun-Mi, A.B. Gaur, E. Lengyel, M.E. Peter, The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008)CrossRefGoogle Scholar
  40. 40.
    L. Wang, D. Wei, S. Huang, Z. Peng, X. Le, T.T. Wu, J. Yao, J. Ajani, K. Xie, Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 9(17), 6371–6380 (2003)PubMedGoogle Scholar
  41. 41.
    B. Wightman, I. Ha, G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5), 855–862 (1993)PubMedCrossRefGoogle Scholar
  42. 42.
    N. Yanaihara, N. Caplen, E. Bowman, M. Seike, K. Kumamoto, M. Yi, R.M. Stephens, A. Okamoto, J. Yokota, T. Tanaka, G.A. Calin, C.G. Liu, C.M. Croce, C.C. Harris, Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3), 189–198 (2006)PubMedCrossRefGoogle Scholar
  43. 43.
    L.Q. Yang, D.C. Fang, R.Q. Wang, S.M. Yang, Effect of NF-κB, survivin, Bcl-2 and Caspase3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand. World J. Gastroenterol 10(1), 22–25 (2004)PubMedGoogle Scholar
  44. 44.
    J.C. Yao, L. Wang, D. Wei, W. Gong, M. Hassan, T.T. Wu, P. Mansfield, J. Ajani, K. Xie, Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res. 10(12 Pt 1), 4109–4117 (2004)PubMedCrossRefGoogle Scholar
  45. 45.
    P.D. Zamore, B. Haley, Ribo-gnome: the big world of small RNAs. Science 309(5740), 1519–1524 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2013

Authors and Affiliations

  • Yuanyuan Wang
    • 1
  • Min Li
    • 1
  • Wenqiao Zang
    • 1
  • Yunyun Ma
    • 1
  • Na Wang
    • 1
  • Ping Li
    • 2
  • Tao Wang
    • 3
  • Guoqiang Zhao
    • 1
    Email author
  1. 1.Department of Microbiology and Immunology, College of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
  2. 2.Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  3. 3.Department of Hemato-tumorThe First Affiliated Hospital of Henan University of TCMZhengzhouChina

Personalised recommendations