Advertisement

Cellular Oncology

, Volume 36, Issue 5, pp 363–374 | Cite as

The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients

  • Jiabo Di
  • Tjitske Duiveman-de Boer
  • Petra L. M. Zusterzeel
  • Carl G. Figdor
  • Leon F. A. G Massuger
  • Ruurd Torensma
Original Paper

Abstract

Purpose

The aim of this study was to examine the expression of established stem cell markers in ascites and tumor tissue obtained from ovarian cancer patients.

Methods

Mononuclear cells present in ascites were collected by density gradient centrifugation. Intracellular flowcytometry was used to assess the putative presence of stem cell markers. RT-PCR was used to detect full length Oct4A, a splice variant Oct4B, implicated in glioma and breast cancer, Oct4 pseudogenes and c-Myc. Genes were cloned and sequenced to determine putative mutations. Confocal laser scanning microscopy was performed to localize the markers in ascites cells as well as in tumor tissue. Material from carcinomas other than epithelial ovarian carcinoma served as control.

Results

A small quantity of cells in ascites and in tumor tissue of ovarian cancer patients was detected that expresses c-Myc, Oct4A and Nanog. Besides Oct4A, present in the nucleus, also the cytoplasmic resident Oct4B splice variant was detected. Remarkably, c-Myc was found partially in the cytoplasm. Since no mutations in c-Myc were found that could explain the cytoplasmic localization, we hypothesize that this is due an IL-6 induced c-Myc shuttle factor.

Conclusions

The expression of stem cell genes was detected in a small proportion of tumor cells present in ascites as well as in tumor tissue. IL-6 plays an important role in the induction of c-Myc.

Keywords

Cancer stem cells Oct4 c-Myc Nanog Ovarian cancer 

Notes

Acknowledgments

This work was supported by a grant from the Dutch government to the Netherlands Institute for Regenerative Medicine (NIRM, grant No. FES0908).

Conflict of interest

All authors declare no financial disclosures.

References

  1. 1.
    S. Abelson, Y. Shamai, L. Berger, R. Shouval, K. Skorecki, M. Tzukerman, Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer. Stem Cells 30, 415–424 10.1002/stem.1029 (2012)
  2. 2.
    M. Al-Hajj, M.W. Becker, M. Wicha, I. Weissman, M.F. Clarke, Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14, 43–47 (2004)PubMedCrossRefGoogle Scholar
  3. 3.
    M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100, 3983–3988 (2003)PubMedCrossRefGoogle Scholar
  4. 4.
    A.B. Alvero, M.K. Montagna, J.C. Holmberg, V. Craveiro, D. Brown, G. Mor, Targeting the mitochondria activates two independent cell death pathways in ovarian cancer stem cells. Mol. Cancer Ther. 10, 1385–1393 (2011)PubMedCrossRefGoogle Scholar
  5. 5.
    F. Bahram, N. von der Lehr, C. Cetinkaya, L.G. Larsson, c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95, 2104–2110 (2000)PubMedGoogle Scholar
  6. 6.
    N.B. Berry, S.A. Bapat, Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype. J Ovarian Res 1, 8 (2008)PubMedCrossRefGoogle Scholar
  7. 7.
    D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997)PubMedCrossRefGoogle Scholar
  8. 8.
    G. Cauffman, I. Liebaers, A. Van Steirteghem, H. Van de Velde, POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 24, 2685–2691 (2006)PubMedCrossRefGoogle Scholar
  9. 9.
    B. Chang, G. Liu, F. Xue et al., ALDH1 expression correlates with favorable prognosis in ovarian cancers. Mod. Pathol. 22, 817–823 (2009)PubMedGoogle Scholar
  10. 10.
    H. Clevers, The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011)PubMedCrossRefGoogle Scholar
  11. 11.
    P. Dalerba, S.J. Dylla, I.K. Park et al., Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. U. S. A. 104, 10158–10163 (2007)PubMedCrossRefGoogle Scholar
  12. 12.
    C.V. Dang, W.M. Lee, Identification of the human c-myc protein nuclear translocation signal. Mol. Cell. Biol. 8, 4048–4054 (1988)PubMedGoogle Scholar
  13. 13.
    S. Deng, X. Yang, H. Lassus et al., Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5, e10277 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    K.M. Dhodapkar, D. Feldman, P. Matthews et al., Natural immunity to pluripotency antigen OCT4 in humans. Proc. Natl. Acad. Sci. U. S. A. 107, 8718–8723 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Di, T. Duiveman-de Boer, C.G. Figdor, R. Torensma, Eradicating cancer cells: struggle with a chameleon. Oncotarget 2, 99–101 (2011)PubMedGoogle Scholar
  16. 16.
    J. Di, L.F. Massuger, T. Duiveman-de Boer, P.L. Zusterzeel, C.G. Figdor, R. Torensma, Functional OCT4-specific CD4 and CD8 T cells in healthy controls and ovarian cancer patients. Oncoimmunology 2, e24271 (2013)Google Scholar
  17. 17.
    J. Di, R. Yigit, C.G. Figdor, T. Duiveman-de Boer, L.F.A.G. Massuger, R. Torensma, Expression compilation of several putative cancer stem cell markers by primary ovarian carcinoma. J. Cancer Ther. 1, 165–173 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Di, R. Yigit, C.G. Figdor, T. Duiveman-de Boer, L.F.A.G. Massuger, R. Torensma, Expression compilation of several putative cancer stem cell markers by primary ovarian carvinoma. J. Cancer Ther. 1, 165–173 (2010)CrossRefGoogle Scholar
  19. 19.
    S.M. Dieter, C.R. Ball, C.M. Hoffmann et al., Distinct types of tumor-initiating cells from human colon cancer tumors and metastases. Cell Stem Cell 9, 357–365 (2011)PubMedCrossRefGoogle Scholar
  20. 20.
    J. Dong, S. Sutor, G. Jiang, Y. Cao, Y.W. Asmann, D.A. Wigle, c-Myc regulates self-renewal in bronchoalveolar stem cells. PLoS One 6, e23707 (2011)PubMedCrossRefGoogle Scholar
  21. 21.
    D. Fang, T.K. Nguyen, K. Leishear et al., A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328–9337 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    G. Ferrandina, E. Martinelli, M. Petrillo et al., CD133 antigen expression in ovarian cancer. BMC Cancer 9, 221 (2009)PubMedCrossRefGoogle Scholar
  23. 23.
    M.Y. Fong, S.S. Kakar, The role of cancer stem cells and the side population in epithelial ovarian cancer. Histol. Histopathol. 25, 113–120 (2010)PubMedGoogle Scholar
  24. 24.
    S.J. Forbes, P. Vig, R. Poulsom, N.A. Wright, M.R. Alison, Adult stem cell plasticity: new pathways of tissue regeneration become visible. Clin. Sci. (Lond.) 103, 355–369 (2002)Google Scholar
  25. 25.
    N.Y. Frank, T. Schatton, M.H. Frank, The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010)PubMedCrossRefGoogle Scholar
  26. 26.
    M.Q. Gao, Y.P. Choi, S. Kang, J.H. Youn, N.H. Cho, CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29, 2672–2680 (2010)PubMedCrossRefGoogle Scholar
  27. 27.
    C. Ginestier, M.H. Hur, E. Charafe-Jauffret et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007)PubMedCrossRefGoogle Scholar
  28. 28.
    S. Han, L. Li, X. Jia et al., A molecular beacon-based method for screening cervical cancer. J. Nanosci. Nanotechnol. 12, 8282–8286 (2012)PubMedCrossRefGoogle Scholar
  29. 29.
    K. He, T. Xu, A. Goldkorn, Cancer cells cyclically lose and regain drug-resistant highly tumorigenic features characteristic of a cancer stem-like phenotype. Mol. Cancer Ther. 10, 938–948 (2011)PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Hu, L. Fu, Targeting cancer stem cells: a new therapy to cure cancer patients. Am. J. Cancer Res. 2, 340–356 (2012)PubMedGoogle Scholar
  31. 31.
    A. Jewett, H.C. Tseng, A. Arasteh, S. Saadat, R.E. Christensen, N.A. Cacalano, Natural killer cells preferentially target cancer stem cells; role of monocytes in protection against NK cell mediated lysis of cancer stem cells. Curr. Drug Deliv. 9, 5–16 (2012)PubMedCrossRefGoogle Scholar
  32. 32.
    L. Lacerda, L. Pusztai, W.A. Woodward, The role of tumor initiating cells in drug resistance of breast cancer: Implications for future therapeutic approaches. Drug Resist. Updat. 13, 99–108 (2010)PubMedCrossRefGoogle Scholar
  33. 33.
    C.N. Landen Jr., B. Goodman, A.A. Katre et al., Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol. Cancer Ther. 9, 3186–3199 (2010)PubMedCrossRefGoogle Scholar
  34. 34.
    J. Lee, H.K. Kim, J.Y. Rho, Y.M. Han, J. Kim, The human OCT-4 isoforms differ in their ability to confer self-renewal. J. Biol. Chem. 281, 33554–33565 (2006)PubMedCrossRefGoogle Scholar
  35. 35.
    S. Liedtke, M. Stephan, G. Kogler, Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol. Chem. 389, 845–850 (2008)PubMedCrossRefGoogle Scholar
  36. 36.
    L.H. Looijenga, H. Stoop, H.P. de Leeuw et al., POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 63, 2244–2250 (2003)PubMedGoogle Scholar
  37. 37.
    J.A. McCubrey, L.S. Steelman, S.L. Abrams et al., Targeting the cancer initiating cell: the ultimate target for cancer therapy. Curr. Pharm. Des. 18, 1784–1795 (2012)PubMedCrossRefGoogle Scholar
  38. 38.
    S.P. Medvedev, A.I. Shevchenko, N.A. Mazurok, S.M. Zakiian, OCT4 and NANOG are the key genes in the system of pluripotency maintenance in mammalian cells. Genetika 44, 1589–1608 (2008)PubMedGoogle Scholar
  39. 39.
    K. Mitsui, Y. Tokuzawa, H. Itoh et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003)PubMedCrossRefGoogle Scholar
  40. 40.
    M. Monk, C. Holding, Human embryonic genes re-expressed in cancer cells. Oncogene 20, 8085–8091 (2001)PubMedCrossRefGoogle Scholar
  41. 41.
    G. Mor, G. Yin, I. Chefetz, Y. Yang, A. Alvero, Ovarian cancer stem cells and inflammation. Cancer Biol. Ther. 11, 708–713 (2011)PubMedCrossRefGoogle Scholar
  42. 42.
    K.H. Noh, B.W. Kim, K.-H. Song et al., Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J. Clin. Invest. 122, 4077–4093 (2012)PubMedCrossRefGoogle Scholar
  43. 43.
    G. Pan, B. Qin, N. Liu, H.R. Scholer, D. Pei, Identification of a nuclear localization signal in OCT4 and generation of a dominant negative mutant by its ablation. J. Biol. Chem. 279, 37013–37020 (2004)PubMedCrossRefGoogle Scholar
  44. 44.
    T. Peng, M. Qinghua, T. Zhenning, W. Kaifa, J. Jun, Long-term sphere culture cannot maintain a high ratio of cancer stem cells: a mathematical model and experiment. PLoS One 6, e25518 (2011)PubMedCrossRefGoogle Scholar
  45. 45.
    E. Quintana, M. Shackleton, H.R. Foster et al., Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18, 510–523 (2010)PubMedCrossRefGoogle Scholar
  46. 46.
    Z. Rasheed, Q. Wang, W. Matsui, Isolation of stem cells from human pancreatic cancer xenografts. J. Vis. Exp. 43, 2169 (2010)PubMedGoogle Scholar
  47. 47.
    B.A. Reynolds, S. Weiss, Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13 (1996)PubMedCrossRefGoogle Scholar
  48. 48.
    A. Roesch, M. Fukunaga-Kalabis, E.C. Schmidt et al., A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010)PubMedCrossRefGoogle Scholar
  49. 49.
    P. Santangelo, N. Nitin, G. Bao, Nanostructured probes for RNA detection in living cells. Ann. Biomed. Eng. 34, 39–50 (2006)PubMedCrossRefGoogle Scholar
  50. 50.
    Y. Shi, P.J. Frost, B.Q. Hoang et al., IL-6-induced stimulation of c-myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site function and the RNA-binding protein, hnRNP A1. Cancer Res. 68, 10215–10222 (2008)PubMedCrossRefGoogle Scholar
  51. 51.
    S.V. Shmelkov, J.M. Butler, A.T. Hooper et al., CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118, 2111–2120 (2008)PubMedGoogle Scholar
  52. 52.
    I.A. Silva, S. Bai, K. McLean et al., Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71, 3991–4001 (2011)PubMedCrossRefGoogle Scholar
  53. 53.
    S.K. Singh, I.D. Clarke, M. Terasaki et al., Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003)PubMedGoogle Scholar
  54. 54.
    J.M. Stewart, P.A. Shaw, C. Gedye, M.Q. Bernardini, B.G. Neel, L.E. Ailles, Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc. Natl. Acad. Sci. U. S. A. 108, 6468–6473 (2011)PubMedCrossRefGoogle Scholar
  55. 55.
    R. Strauss, Z.Y. Li, Y. Liu et al., Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity. PLoS One 6, e16186 (2011)PubMedCrossRefGoogle Scholar
  56. 56.
    G. Suo, J. Han, X. Wang, J. Zhang, Y. Zhao, J. Dai, Oct4 pseudogenes are transcribed in cancers. Biochem. Biophys. Res. Commun. 337, 1047–1051 (2005)PubMedCrossRefGoogle Scholar
  57. 57.
    P.P. Szotek, R. Pieretti-Vanmarcke, P.T. Masiakos et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc. Natl. Acad. Sci. U. S. A. 103, 11154–11159 (2006)PubMedCrossRefGoogle Scholar
  58. 58.
    M.H. Tai, C.C. Chang, M. Kiupel, J.D. Webster, L.K. Olson, J.E. Trosko, Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26, 495–502 (2005)PubMedCrossRefGoogle Scholar
  59. 59.
    K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)PubMedCrossRefGoogle Scholar
  60. 60.
    N.V. Varlakhanova, R.F. Cotterman, W.N. deVries et al., Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 80, 9–19 (2010)PubMedCrossRefGoogle Scholar
  61. 61.
    V. Vathipadiekal, D. Saxena, S.C. Mok, P.V. Hauschka, L. Ozbun, M.J. Birrer, Identification of a Potential Ovarian Cancer Stem Cell Gene Expression Profile from Advanced Stage Papillary Serous Ovarian Cancer. PLoS One 7, e29079 (2012)PubMedCrossRefGoogle Scholar
  62. 62.
    J.E. Visvader, G.J. Lindeman, Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10, 717–728 (2012)PubMedCrossRefGoogle Scholar
  63. 63.
    J. Wang, D.N. Levasseur, S.H. Orkin, Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci. U. S. A. 105, 6326–6331 (2008)PubMedCrossRefGoogle Scholar
  64. 64.
    J. Watson, Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol. 3, 120144 (2013)PubMedCrossRefGoogle Scholar
  65. 65.
    R. Yigit, C.G. Figdor, P.L. Zusterzeel, J.M. Pots, R. Torensma, L.F. Massuger, Cytokine analysis as a tool to understand tumour-host interaction in ovarian cancer. Eur. J. Cancer 47, 1883–1889 (2011)PubMedCrossRefGoogle Scholar
  66. 66.
    S. Zhang, C. Balch, M.W. Chan et al., Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008)PubMedCrossRefGoogle Scholar
  67. 67.
    S. Zhao, Q. Yuan, H. Hao et al., Expression of OCT4 pseudogenes in human tumours: lessons from glioma and breast carcinoma. J. Pathol. 223, 672–682 (2011)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2013

Authors and Affiliations

  • Jiabo Di
    • 1
  • Tjitske Duiveman-de Boer
    • 1
  • Petra L. M. Zusterzeel
    • 2
  • Carl G. Figdor
    • 1
  • Leon F. A. G Massuger
    • 2
  • Ruurd Torensma
    • 1
  1. 1.Department of Tumor Immunology, Nijmegen Centre for Molecular Life SciencesRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Department of Obstetrics and GynecologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations