Skip to main content

Advertisement

Log in

Lung cancer stem cells: a biological and clinical perspective

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Introduction

Lung cancer is the most lethal form of cancer in the world and despite significant therapeutic improvements that have been made, its survival rate still remains low. The latter is mainly due to the acquisition of resistance to systemic treatment regimens which, in turn, may be due to the presence of cancer stem cells (CSCs) within the primary tumors. CSCs constitute a subpopulation of cells that are highly tumorigenic and that exhibit biological properties similar to those of normal tissue stem cells, including an unlimited self-renewal capacity, an extensive proliferative capacity and a capacity to generate differentiated progeny. A better understanding of the signaling pathways that regulate lung CSC maintenance, proliferation, and tumorigenicity could thus lead to the design of improved approaches to lung cancer treatment.

Aim

In this review we will discuss the current knowledge on lung CSCs, their biological properties and their putative clinical relevance. By employing currently available data, we will evaluate the prognostic value of several lung CSC markers. In addition, we will discuss the release of CSCs from tumor tissue into the blood circulation via epithelial-mesenchymal transition (EMT) as an important step towards acquiring a metastatic phenotype. Finally, we will provide an outlook into novel CSC-targeting approaches for achieving less invasive diagnostic procedures and improving long-term therapeutic options.

Conclusion

Lung CSC research has gained considerable momentum to both basic and clinical applications, both aiming to identify a reliable panel of markers for lung CSCs and to clarify their function, with the final goal to develop a CSC-targeted therapy that will result in the complete elimination of CSCs for achieving significantly better long-time survival of lung cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. A. Jemal, F. Bray, J. Ferlay, Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    Article  PubMed  Google Scholar 

  2. T. Cufer, T. Ovcaricek, M.E.R. O’Brien, Systemic therapy of advanced non-small cell lung cancer: major-developments of the last 5-years. Eur. J. Cancer 49, 1216–1225 (2012)

    Article  PubMed  CAS  Google Scholar 

  3. L.G. Collins, C. Haines, R. Perkel, R.E. Enck, Lung cancer: diagnosis, staging, and management. Am. Fam. Physician 75, 56–63 (2007)

    PubMed  Google Scholar 

  4. W.R. Otto, Lung epithelial stem cells. J. Pathol. 197, 527–535 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. A. Giangreco, K.R. Groot, S.M. Janes, Lung cancer and lung stem cells - Strange bedfellows? Am. J. Respir. Crit. Care Med. 175, 547–553 (2007)

    Article  PubMed  Google Scholar 

  6. T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells. Nature. 414, 105–111 (2001)

    Google Scholar 

  7. C.F.B. Kim, E.L. Jackson, A.E. Woolfenden, S. Lawrence, I. Babar, S. Vogel et al., Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. W. Liu, N. You, N. Zhang, H. Yan, T. Wang, Z. Huang et al., Interpretation of interlocking key issues of cancer stem cells in malignant solid tumors. Cell. Oncol. 35, 397–409 (2012)

    Article  Google Scholar 

  9. R. Pardal, M.F. Clarke, S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer 3, 895–902 (2003)

    Article  PubMed  CAS  Google Scholar 

  10. J.P. Sullivan, J.D. Minna, J.W. Shay, Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev. 29, 61–72 (2010)

    Article  PubMed  Google Scholar 

  11. M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58 (2002)

    Article  PubMed  CAS  Google Scholar 

  12. L. Knez, M. Košnik, T. Ovčariček, A. Sadikov, E. Sodja, I. Kern et al., Predictive value of ABCB1 polymorphisms G2677T/A, C3435T, and their haplotype in small cell lung cancer patients treated with chemotherapy. J. Cancer Res. Clin. Oncol. 138, 1551–1560 (2012)

    Article  PubMed  CAS  Google Scholar 

  13. S. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B.. Hjelmeland et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006)

    Google Scholar 

  14. J.L. Dembinski, S. Krauss, Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin. Exp. Metastasis 26, 611–623 (2009)

    Article  PubMed  CAS  Google Scholar 

  15. J.E. Visvader, G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes et al., A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 367, 645–648 (1994)

    Article  PubMed  CAS  Google Scholar 

  17. D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997)

    Article  PubMed  CAS  Google Scholar 

  18. D. Ponti, A. Costa, N. Zaffaroni, G. Pratesi, G. Petrangolini, D. Coradini et al., Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005)

    Article  PubMed  CAS  Google Scholar 

  19. S.K. Singh, I.D. Clarke, M. Terasaki, V.E. Bonn, C. Hawkins, J. Squire et al., Identification of a cancer stem cell in human brain. Cancer Res. 63, 5821–5828 (2003)

    PubMed  CAS  Google Scholar 

  20. A. Eramo, F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15, 504–514 (2008)

    Article  PubMed  CAS  Google Scholar 

  21. A.T. Collins, P.A. Berry, C. Hyde, M.J. Stower, N.J. Maitland, Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle et al., Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  PubMed  CAS  Google Scholar 

  24. C. Wu, B.A. Alman, Side population cells in human cancers. Cancer Lett. 268, 1–9 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. S. Zhou, J.D. Schuetz, K.D. Bunting, A.M. Colapietro, J. Sampath, J.J. Morris et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7, 1028–1034 (2001)

    Article  PubMed  CAS  Google Scholar 

  26. D. Mizrak, M. Brittan, M.R. Alison, CD133: molecule of the moment. J. Pathol. 214, 3–9 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. B. Jackson, C. Brocker, D.C. Thompson, W. Black, K. Vasiliou, D.W. Nebert et al., Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum. Genomics 5, 283–303 (2011)

    Article  PubMed  CAS  Google Scholar 

  28. R. Stern, Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally. Semin. Cancer Biol. 18, 238–243 (2008)

    Article  PubMed  CAS  Google Scholar 

  29. M.M. Ho, A.V. Ng, S. Lam, J.Y. Hung, Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827–4833 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. C.D. Salcido, A. Larochelle, B.J. Taylor, C.E. Dunbar, L. Varticovski, Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br. J. Cancer 102, 1636–1644 (2010)

    Article  PubMed  CAS  Google Scholar 

  31. V. Levina, A.M. Marrangoni, R. DeMarco, E. Gorelik, A.E. Lokshin, Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3, e3077 (2008)

    Article  PubMed  CAS  Google Scholar 

  32. Y.-P. Liu, C.-J. Yang, M.-S. Huang, C.-T. Yeh, A.T.H. Wu, Y.-C. Lee et al., Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res. 73, 406–416 (2013)

    Article  PubMed  CAS  Google Scholar 

  33. K. Shien, S. Toyooka, H. Yamamoto, J. Soh, M. Jida, K.L. Thu et al., Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 73, 3051–3061 (2013)

    Article  PubMed  CAS  Google Scholar 

  34. G. Bertolini, L. Roz, P. Perego, M. Tortoreto, E. Fontanella, L. Gatti et al., Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. 106, 16281–16286 (2009)

    Article  PubMed  CAS  Google Scholar 

  35. W. Hilbe, CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J. Clin. Pathol. 57, 965–969 (2004)

    Article  PubMed  CAS  Google Scholar 

  36. Y.-C. Chen, H.-S. Hsu, Y.-W. Chen, T.-H. Tsai, C.-K. How, C.-Y. Wang et al., Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3, e2637 (2008)

    Article  PubMed  CAS  Google Scholar 

  37. J.S. Moreb, J.R. Zucali, B. Ostmark, N.A. Benson, Heterogeneity of aldehyde dehydrogenase expression in lung cancer cell lines is revealed by Aldefluor flow cytometry-based assay. Cytometry B Clin. Cytom. 289, 281–289 (2007)

    Google Scholar 

  38. F. Jiang, Q. Qiu, A. Khanna, N.W. Todd, J. Deepak, L. Xing et al., Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 7, 330–338 (2009)

    Article  PubMed  CAS  Google Scholar 

  39. D. Ucar, C.R. Cogle, J.R. Zucali, B. Ostmark, E.W. Scott, R. Zori et al., Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem. Biol. Interact. 178, 48–55 (2009)

    Article  PubMed  CAS  Google Scholar 

  40. J.P. Sullivan, M. Spinola, M. Dodge, M.G. Raso, C. Behrens, B. Gao et al., Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res. 70, 9937–9948 (2010)

    Article  PubMed  CAS  Google Scholar 

  41. E.L.-H. Leung, R.R. Fiscus, J.W. Tung, V.P.-C. Tin, L.C. Cheng, A.D.-L. Sihoe et al., Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5, e14062 (2010)

    Article  PubMed  CAS  Google Scholar 

  42. S. Akunuru, Q. James Zhai, Y. Zheng, Non-small cell lung cancer stem/ progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis. 3, e352 (2012)

    Article  PubMed  CAS  Google Scholar 

  43. X. Meng, X. Wang, Y. Wang, More than 45 % of A549 and H446 cells are cancer initiating cells: evidence from cloning and tumorigenic analyses. Oncol. Rep. 21, 995–1000 (2009)

    PubMed  Google Scholar 

  44. G.P. Kalemkerian, Advances in the treatment of small-cell lung cancer. Semin. Respir. Crit. Care Med. 32, 94–101 (2011)

    Article  PubMed  Google Scholar 

  45. K. Hotta, K. Kiura, Y. Fujiwara, N. Takigawa, I. Oze, N. Ochi et al., Association between incremental gains in the objective response rate and survival improvement in phase III trials of first-line chemotherapy for extensive disease small-cell lung cancer. Ann. Oncol. 20, 829–834 (2009)

    Article  PubMed  CAS  Google Scholar 

  46. Z.A. Rasheed, J. Kowalski, B.D. Smith, W. Matsui, Concise review: emerging concepts in clinical targeting of cancer stem cells. Stem Cells 29, 883–887 (2011)

    Article  PubMed  CAS  Google Scholar 

  47. W.C.-S. Cho, Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer. Biomed. Pharmacother. 61, 515–519 (2007)

    Article  PubMed  CAS  Google Scholar 

  48. J.A. Ludwig, J.N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856 (2005)

    Article  PubMed  CAS  Google Scholar 

  49. A.V. Salnikov, J. Gladkich, G. Moldenhauer, M. Volm, J. Mattern, I. Herr, CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. Int. J. Cancer 126, 950–958 (2010)

    PubMed  CAS  Google Scholar 

  50. T. Woo, K. Okudela, H. Mitsui, T. Yazawa, N. Ogawa, M. Tajiri et al., Prognostic value of CD133 expression in stage I lung adenocarcinomas. Int. J. Clin. Exp. Pathol. 4, 32–42 (2010)

    PubMed  Google Scholar 

  51. Li, H. Zeng, K. Ying, The combination of stem cell markers CD133 and ABCG2 predicts relapse in stage I non-small cell lung carcinomas. Med. Oncol. 28, 1458–1462 (2011)

    Article  PubMed  CAS  Google Scholar 

  52. E. Herpel, K. Jensen, T. Muley, A. Warth, P.A. Schnabel, M. Meister et al., The cancer stem cell antigens CD133, BCRP1/ABCG2 and CD117/c-KIT are not associated with prognosis in resected early-stage non-small cell lung cancer. Anticancer. Res. 31, 4491–4500 (2011)

    PubMed  Google Scholar 

  53. K. Vrzalikova, J. Skarda, J. Ehrmann, P.G. Murray, E. Fridman, J. Kopolovic et al., Prognostic value of Bmi-1 oncoprotein expression in NSCLC patients: a tissue microarray study. J. Cancer Res. Clin. Oncol. 134, 1037–1042 (2008)

    Article  PubMed  CAS  Google Scholar 

  54. J. Kikuchi, I. Kinoshita, Y. Shimizu, E. Kikuchi, J. Konishi, S. Oizumi et al., Distinctive expression of the polycomb group proteins Bmi1 polycomb ring finger oncogene and enhancer of zeste homolog 2 in nonsmall cell lung cancers and their clinical and clinicopathologic significance. Cancer 116, 3015–3024 (2010)

    Article  PubMed  CAS  Google Scholar 

  55. K. Shien, S. Toyooka, K. Ichimura, J. Soh, M. Furukawa, Y. Maki et al., Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. Lung Cancer 7, 162–167 (2012)

    Article  Google Scholar 

  56. P. Micke, M. Basrai, A. Faldum, F. Bittinger, L. Rönnstrand, A. Blaukat et al., Characterization of c-kit expression in small cell lung cancer: prognostic and therapeutic implications. Clin. Cancer Res. 9, 188–194 (2003)

    PubMed  CAS  Google Scholar 

  57. X. Zhang, B. Han, J. Huang, B. Zheng, Q. Geng, F. Aziz et al., Prognostic significance of OCT4 expression in adenocarcinoma of the lung. Jpn. J. Clin. Oncol. 40, 961–966 (2010)

    Article  PubMed  Google Scholar 

  58. X. Li, J. Wang, Z. Xu, A. Ahmad, E. Li, Y. Wang et al., Expression of sox2 and oct4 and their clinical significance in human non-small-cell lung cancer. Int. J. Mol. Sci. 13, 7663–7675 (2012)

    Article  PubMed  CAS  Google Scholar 

  59. L. Cortes-Dericks, D. Galetta, L. Spaggiari, R.A. Schmid, G. Karoubi, High expression of octamer-binding transcription factor 4A, prominin-1 and aldehyde dehydrogenase strongly indicates involvement in the initiation of lung adenocarcinoma resulting in shorter disease-free intervals. Eur. J. Cardiothorac. Surg. 41, e173–e181 (2012)

    Article  PubMed  Google Scholar 

  60. F. Zeppernick, R. Ahmadi, B. Campos, C. Dictus, B.M. Helmke, N. Becker et al., Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res. 14, 123–129 (2008)

    Article  PubMed  CAS  Google Scholar 

  61. W. Song, H. Li, K. Tao, R. Li, Z. Song, Q. Zhao et al., Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int. J. Clin. Pract. 62, 1212–1218 (2008)

    Article  PubMed  CAS  Google Scholar 

  62. T. Li, Y. Su, Y. Mei, Q. Leng, B. Leng, Z. Liu et al., ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Investig. 90, 234–244 (2010)

    Article  PubMed  CAS  Google Scholar 

  63. C. Ginestier, M.H. Hur, E. Charafe-Jauffret, F. Monville, J. Dutcher, M. Brown et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007)

    Article  PubMed  CAS  Google Scholar 

  64. B. Chang, G. Liu, F. Xue, D.G. Rosen, L. Xiao, X. Wang et al., ALDH1 expression correlates with favorable prognosis in ovarian cancers. Mod. Pathol. 22, 817–823 (2009)

    PubMed  CAS  Google Scholar 

  65. C. Tempfer, A. Lösch, H. Heinzl, G. Häusler, E. Hanzal, H. Kölbl et al., Prognostic value of immunohistochemically detected CD44 isoforms CD44v5, CD44v6 and CD44v7-8 in human breast cancer. Eur. J. Cancer 32A, 2023–2025 (1996)

    Article  PubMed  CAS  Google Scholar 

  66. K.-C. Wei, C.-Y. Huang, P.-Y. Chen, L.-Y. Feng, T.-W.E. Wu, S.-M. Chen et al., Evaluation of the prognostic value of CD44 in glioblastoma multiforme. Anticancer. Res. 30, 253–259 (2010)

    PubMed  CAS  Google Scholar 

  67. J.S. Dovey, S.J. Zacharek, C.F. Kim, J.A. Lees, Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc. Natl. Acad. Sci. 105, 11857–11862 (2008)

    Article  PubMed  CAS  Google Scholar 

  68. K. Wu, Direct activation of Bmi1 by Twist1: implications in cancer stemness, epithelial-mesenchymal transition, and clinical significance. Chang Gung Med. J. 34, 229–238 (2011)

    PubMed  Google Scholar 

  69. H. Wang, K. Pan, H. Zhang, D. Weng, J. Zhou, J. Li et al., Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 134, 535–541 (2008)

    Article  PubMed  CAS  Google Scholar 

  70. J.-H. Liu, L.-B. Song, X. Zhang, B.-H. Guo, Y. Feng, X.-X. Li et al., Bmi-1 expression predicts prognosis for patients with gastric carcinoma. J. Surg. Oncol. 97, 267–272 (2008)

    Article  PubMed  CAS  Google Scholar 

  71. Y.J. Choi, Y. La Choi, E.Y. Cho, Y.K. Shin, K.W. Sung, Y.K. Hwang et al., Expression of Bmi-1 protein in tumor tissues is associated with favorable prognosis in breast cancer patients. Breast Cancer Res. Treat. 113, 83–93 (2009)

    Article  PubMed  CAS  Google Scholar 

  72. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  PubMed  CAS  Google Scholar 

  73. M. Field, A. Alvarez, S. Bushnev, K. Sugaya, Embryonic stem cell markers distinguishing cancer stem cells from normal human neuronal stem cell populations in malignant glioma patients. Clin. Neurosurg. 57, 151–159 (2010)

    PubMed  Google Scholar 

  74. S.-H. Chiou, M.-L. Wang, Y.-T. Chou, C.-J. Chen, C.-F. Hong, W.-J. Hsieh et al., Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 70, 10433–10444 (2010)

    Article  PubMed  CAS  Google Scholar 

  75. J. Taipale, P.A. Beachy, The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001)

    Article  PubMed  CAS  Google Scholar 

  76. P. Polakis, Wnt signaling and cancer Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000)

    PubMed  CAS  Google Scholar 

  77. L. Jiang, J. Li, L. Song, Bmi-1, stem cells and cancer. Acta Biochim. Biophys. Sin. (Shanghai) 41, 527–534 (2009)

    Article  CAS  Google Scholar 

  78. M.R. García Campelo, G. Alonso Curbera, G. Aparicio Gallego, E. Grande Pulido, L.M. Antón Aparicio, Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway. Clin. Transl. Oncol. 13, 77–83 (2011)

    Article  PubMed  CAS  Google Scholar 

  79. J. Vestergaard, M.W. Pedersen, N. Pedersen, C. Ensinger, Z. Tümer, N. Tommerup et al., Hedgehog signaling in small-cell lung cancer: frequent in vivo but a rare event in vitro. Lung Cancer 52, 281–290 (2006)

    Article  PubMed  Google Scholar 

  80. D.N. Watkins, D.M. Berman, S.G. Burkholder, B. Wang, P.A. Beachy, S.B. Baylin, Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317 (2003)

    Article  PubMed  CAS  Google Scholar 

  81. L. You, B. He, Z. Xu, K. Uematsu, J. Mazieres, I. Mikami et al., Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 23, 6170–6174 (2004)

    Article  PubMed  CAS  Google Scholar 

  82. V. Levina, A. Marrangoni, T. Wang, S. Parikh, Y. Su, R. Herberman et al., Elimination of human lung cancer stem cells through targeting of the stem cell factor-c-kit autocrine signaling loop. Cancer Res. 70, 338–346 (2010)

    Article  PubMed  CAS  Google Scholar 

  83. T. Hu, S. Liu, D.R. Breiter, F. Wang, Y. Tang, S. Sun, Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res. 68, 6533–6540 (2008)

    Article  PubMed  CAS  Google Scholar 

  84. A. Eramo, T.L. Haas, R. De Maria, Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene 29, 4625–4635 (2010)

    Article  PubMed  CAS  Google Scholar 

  85. R.J. Kelly, D. Draper, C.C. Chen, R.W. Robey, W.D. Figg, R.L. Piekarz et al., A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin. Cancer Res. 17, 569–580 (2011)

    Article  PubMed  CAS  Google Scholar 

  86. A. Singh, J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010)

    Article  PubMed  CAS  Google Scholar 

  87. J.P. Thiery, J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142 (2006)

    Article  PubMed  CAS  Google Scholar 

  88. M. Guarino, B. Rubino, G. Ballabio, The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39, 305–318 (2008)

    Article  CAS  Google Scholar 

  89. J.P. Thiery, H. Acloque, R.Y.J. Huang, M.A. Nieto, Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009)

    Article  PubMed  CAS  Google Scholar 

  90. J. Thiery, Epithelial–mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740–746 (2003)

    Article  PubMed  CAS  Google Scholar 

  91. S.A. Mani, W. Guo, M.-J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008)

    Article  PubMed  CAS  Google Scholar 

  92. A.-P. Morel, M. Lièvre, C. Thomas, G. Hinkal, S. Ansieau, A. Puisieux, Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3, e2888 (2008)

    Article  PubMed  CAS  Google Scholar 

  93. V.L. Battula, K.W. Evans, B.G. Hollier, Y. Shi, F.C. Marini, A. Ayyanan et al., Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28, 1435–1445 (2010)

    Article  PubMed  CAS  Google Scholar 

  94. J.K. Rho, Y.J. Choi, J.K. Lee, B.-Y. Ryoo, I. Il Na, S.H. Yang et al., Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer 63, 219–226 (2009)

    Article  PubMed  Google Scholar 

  95. K. Suda, K. Tomizawa, M. Fujii, H. Murakami, H. Osada, Y. Maehara et al., Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J. Thorac. Oncol. 6, 1152–1161 (2011)

    Article  PubMed  Google Scholar 

  96. F. Nurwidya, F. Takahashi, A. Murakami, K. Takahashi, Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res. Treat. 44, 151–156 (2012)

    Article  PubMed  Google Scholar 

  97. T. Ashworth, A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J. 14, 146–147 (1869)

    Google Scholar 

  98. W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004)

    Article  PubMed  Google Scholar 

  99. M. Alunni-Fabbroni, M.T. Sandri, Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods 50, 289–297 (2010)

    Article  PubMed  CAS  Google Scholar 

  100. B. Kubuschok, B. Passlick, J.R. Izbicki, O. Thetter, K. Pantel, Disseminated tumor cells in lymph nodes as a determinant for survival in surgically resected non-small-cell lung cancer. J. Clin. Oncol. 17, 19–24 (1999)

    PubMed  CAS  Google Scholar 

  101. T.J.N. Hiltermann, M.M. Pore, A. Van Den Berg, W. Timens, H.M. Boezen, J.J.W. Liesker et al., Circulating tumor cells in small-cell lung cancer: a predictive and prognostic factor. Ann. Oncol. 23, 2937–2942 (2012)

    Article  PubMed  CAS  Google Scholar 

  102. V. Hofman, M.I. Ilie, E. Long, E. Selva, C. Bonnetaud, T. Molina et al., Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: comparison of the efficacy of the Cell Search AssayTM and the isolation by size of epithelial tumor cell method. Int. J. Cancer 129, 1651–1660 (2011)

    Article  PubMed  CAS  Google Scholar 

  103. V. Hofman, C. Bonnetaud, M.I. Ilie, P. Vielh, J.M. Vignaud, J.F. Fléjou et al., Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin. Cancer Res. 17, 827–835 (2011)

    Article  PubMed  CAS  Google Scholar 

  104. M.G. Krebs, J.-M. Hou, R. Sloane, L. Lancashire, L. Priest, D. Nonaka et al., Analysis of circulating tumor cells in patients with non-small cell lung cancer using epithelial marker-dependent and -independent approaches. J. Thorac. Oncol. 7, 306–315 (2011)

    Article  Google Scholar 

  105. A. Rolle, R. Günzel, U. Pachmann, B. Willen, K. Höffken, K. Pachmann, Increase in number of circulating disseminated epithelial cells after surgery for non-small cell lung cancer monitored by MAINTRAC(R) is a predictor for relapse: a preliminary report. World J. Surg. Oncol. 3, 18 (2005)

    Article  PubMed  Google Scholar 

  106. Y.-F. Sun, X.-R. Yang, J. Zhou, S.-J. Qiu, J. Fan, Y. Xu, Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J. Cancer Res. Clin. Oncol. 137, 1151–1173 (2011)

    Article  PubMed  Google Scholar 

  107. M. Yu, A. Bardia, B.S. Wittner, S.L. Stott, M.E. Smas, D.T. Ting et al., Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013)

    Article  PubMed  CAS  Google Scholar 

  108. A. Gradilone, C. Raimondi, C. Nicolazzo, A. Petracca, O. Gandini, B. Vincenzi et al., Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. J. Cell Mol. Med. 15, 1066–1070 (2011)

    Article  PubMed  CAS  Google Scholar 

  109. M. Balic, H. Lin, L. Young, D. Hawes, A. Giuliano, G. McNamara et al., Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res. 12, 5615–5621 (2006)

    Article  PubMed  CAS  Google Scholar 

  110. Z.F. Yang, P. Ngai, D.W. Ho, W.C. Yu, M.N.P. Ng, C.K. Lau et al., Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47, 919–928 (2008)

    Article  PubMed  CAS  Google Scholar 

  111. P.A. Theodoropoulos, H. Polioudaki, S. Agelaki, G. Kallergi, Z. Saridaki, D. Mavroudis et al., Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett. 288, 99–106 (2010)

    Article  PubMed  CAS  Google Scholar 

  112. N. Mehra, M. Penning, J. Maas, L.V. Beerepoot, N. van Daal, C.H. van Gils et al., Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases. Clin. Cancer Res. 12, 4859–4866 (2006)

    Article  PubMed  CAS  Google Scholar 

  113. T. Brabletz, A. Jung, S. Spaderna, F. Hlubek, T. Kirchner, Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5, 744–749 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mojca Jez for assistance with the figure and Matija Rijavec for critically reviewing the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Koren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koren, A., Motaln, H. & Cufer, T. Lung cancer stem cells: a biological and clinical perspective. Cell Oncol. 36, 265–275 (2013). https://doi.org/10.1007/s13402-013-0141-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-013-0141-9

Keywords

Navigation