Advertisement

Cellular Oncology

, Volume 36, Issue 1, pp 55–63 | Cite as

Expression of small nucleolar RNAs in leukemic cells

  • Kaisa J. Teittinen
  • Asta Laiho
  • Annemari Uusimäki
  • Juha-Pekka Pursiheimo
  • Attila Gyenesei
  • Olli Lohi
Original Paper

Abstract

Purpose

Small nucleolar RNAs (snoRNAs) direct sequence-specific modifications to ribosomal RNA. We hypothesized that the expression of snoRNAs may be altered in leukemic cells.

Methods

The expression of snoRNAs was analyzed in various leukemic cell lines by massive parallel sequencing (SOLiD). Quantitative real-time PCR (RT-qPCR) was used to validate the expression profiles.

Results

Our results show characteristic differences in the expression patterns of snoRNAs between cell lines representing the main subgroups of leukemia, AML, pre-B-ALL and T-ALL, respectively. In RT-qPCR analyses, several snoRNAs were found to be differentially expressed in T-ALL as compared to pre-B-ALL cell lines.

Conclusions

snoRNAs are differentially expressed in various leukemic cell lines and could, therefore, be potentially useful in the classification of leukemia subgroups.

Keywords

Leukemia snoRNA SOLiD Nucleolus 

Abbreviations

ALL

Acute lymphoblastic leukemia

AML

Acute myeloid leukemia

APL

Acute promyeloid leukemia

BLL

Burkitt’s lymphoma/leukemia

DE

Differentially expressed

FC

Fold change

miRNA

Micro-RNA

ncRNA

Non-protein-coding RNA

NSCLC

Non-small cell lung cancer

RT-qPCR

Quantitative real-time PCR

scaRNA

Cajal body-specific RNA

siRNA

Small interfering RNA

snRNA

Small nuclear RNA

snoRNA

Small nucleolar RNA

snoRNP

Small nucleolar ribonucleoprotein

Notes

Acknowledgements

We thank Mr. Jorma Kulmala for technical assistance. This work was supported by the Academy of Finland Research Council for Health (funding decision number 115260), the Foundation for Paediatric Research in Finland, the Finnish Medical Foundation, the Competitive Research Funding of Tampere University Hospital (grants 9J062, 9K073 and 9M052), the Nona and Kullervo Väre Foundation and the Päivikki and Sakari Sohlberg Foundation. The funding sources had no involvement in the study.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

13402_2012_113_MOESM1_ESM.doc (837 kb)
ESM 1 (DOC 837 kb)

References

  1. 1.
    J.S. Mattick, I.V. Makunin, Non-coding RNA. Hum Mol Genet 15, R17–29 (2006)PubMedCrossRefGoogle Scholar
  2. 2.
    R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J Pathol 220, 126–139 (2010)PubMedCrossRefGoogle Scholar
  3. 3.
    T. Kiss, Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 109, 145–148 (2002)PubMedCrossRefGoogle Scholar
  4. 4.
    B.E. Jady, T. Kiss, A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 20, 541–551 (2001)PubMedCrossRefGoogle Scholar
  5. 5.
    X. Darzacq, B.E. Jady, C. Verheggen, A.M. Kiss, E. Bertrand, T. Kiss, Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 21, 2746–2756 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    T. Kiss, E. Fayet-Lebaron, B.E. Jady, Box H/ACA small ribonucleoproteins. Mol Cell. 37, 597–606 (2010)PubMedCrossRefGoogle Scholar
  7. 7.
    R.D. Leverette, M.T. Andrews, E.S. Maxwell, Mouse U14 snRNA is a processed intron of the cognate hsc70 heat shock pre-messenger RNA. Cell. 71, 1215–1221 (1992)PubMedCrossRefGoogle Scholar
  8. 8.
    P. Fragapane, S. Prislei, A. Michienzi, E. Caffarelli, I. Bozzoni, A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA. EMBO J. 12, 2921–2928 (1993)PubMedGoogle Scholar
  9. 9.
    T. Kiss, W. Filipowicz, Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene RCC1. EMBO J 12, 2913–2920 (1993)PubMedGoogle Scholar
  10. 10.
    K.T. Tycowski, M.D. Shu, J.A. Steitz, A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes Dev. 7, 1176–1190 (1993)PubMedCrossRefGoogle Scholar
  11. 11.
    M.P. Hoeppner, S. White, D.C. Jeffares, A.M. Poole, Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome Biol Evol. 1, 420–428 (2009)PubMedCrossRefGoogle Scholar
  12. 12.
    K.T. Tycowski, M.D. Shu, J.A. Steitz, A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466 (1996)PubMedCrossRefGoogle Scholar
  13. 13.
    O. Meyuhas, Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267, 6321–6330 (2000)PubMedCrossRefGoogle Scholar
  14. 14.
    J. Cavaille, J.P. Bachellerie, Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 78, 443–456 (1996)PubMedCrossRefGoogle Scholar
  15. 15.
    N.J. Watkins, R.D. Leverette, L. Xia, M.T. Andrews, E.S. Maxwell, Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA. 2, 118–133 (1996)PubMedGoogle Scholar
  16. 16.
    S.L. Ooi, D.A. Samarsky, M.J. Fournier, J.D. Boeke, Intronic snoRNA biosynthesis in saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA. 4, 1096–1110 (1998)PubMedCrossRefGoogle Scholar
  17. 17.
    P. Pelczar, W. Filipowicz, The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol Cell Biol. 18, 4509–4518 (1998)PubMedGoogle Scholar
  18. 18.
    C.M. Smith, J.A. Steitz, Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 18, 6897–6909 (1998)PubMedGoogle Scholar
  19. 19.
    M.E. Askarian-Amiri, J. Crawford, J.D. French, C.E. Smart, M.A. Smith, M.B. Clark, K. Ru, T.R. Mercer, E.R. Thompson, S.R. Lakhani, A.C. Vargas, I.G. Campbell, M.A. Brown, M.E. Dinger, J.S. Mattick, SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 17, 878–891 (2011)PubMedCrossRefGoogle Scholar
  20. 20.
    G. Dieci, M. Preti, B. Montanini, Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 94, 83–88 (2009)PubMedCrossRefGoogle Scholar
  21. 21.
    R.J. Taft, E.A. Glazov, T. Lassmann, Y. Hayashizaki, P. Carninci, J.S. Mattick, Small RNAs derived from snoRNAs. RNA. 15, 1233–1240 (2009)PubMedCrossRefGoogle Scholar
  22. 22.
    M.S. Scott, M. Ono, From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie. 93, 1987–1992 (2011)PubMedCrossRefGoogle Scholar
  23. 23.
    M. Brameier, A. Herwig, R. Reinhardt, L. Walter, J. Gruber, Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 39, 675–686 (2011)PubMedCrossRefGoogle Scholar
  24. 24.
    S. Anders, W. Huber, Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010)PubMedCrossRefGoogle Scholar
  25. 25.
    T.D. Schmittgen, J. Jiang, Q. Liu, L. Yang, A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004)PubMedCrossRefGoogle Scholar
  26. 26.
    H.E. Gee, F.M. Buffa, C. Camps, A. Ramachandran, R. Leek, M. Taylor, M. Patil, H. Sheldon, G. Betts, J. Homer, C. West, J. Ragoussis, A.L. Harris, The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 104, 1168–1177 (2011)PubMedCrossRefGoogle Scholar
  27. 27.
    L.H. Qu, Y. Henry, M. Nicoloso, B. Michot, M.C. Azum, M.H. Renalier, M. Caizergues-Ferrer, J.P. Bachellerie, U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res. 23, 2669–2676 (1995)PubMedCrossRefGoogle Scholar
  28. 28.
    A. Rebane, A. Metspalu, U82, a novel snoRNA identified from the fifth intron of human and mouse nucleolin gene. Biochim Biophys Acta. 1446, 426–430 (1999)PubMedCrossRefGoogle Scholar
  29. 29.
    G.T. Williams, M. Mourtada-Maarabouni, F. Farzaneh, A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans. 39, 482–486 (2011)PubMedCrossRefGoogle Scholar
  30. 30.
    W. Valleron, E. Laprevotte, E.F. Gautier, C. Quelen, C. Demur, E. Delabesse, X. Agirre, F. Prósper, T. Kiss, P. Brousset, Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia (2012). doi: 10.1038/leu.2012.111
  31. 31.
    S.C. Nallar, L. Lin, V. Srivastava, P. Gade, E.R. Hofmann, H. Ahmed, S.P. Reddy, D.V. Kalvakolanu, GRIM-1, a novel growth suppressor, inhibits rRNA maturation by suppressing small nucleolar RNAs. PLoS One 6, e24082 (2011)PubMedCrossRefGoogle Scholar
  32. 32.
    X.Y. Dong, C. Rodriguez, P. Guo, X. Sun, J.T. Talbot, W. Zhou, J. Petros, Q. Li, R.L. Vessella, A.S. Kibel, V.L. Stevens, E.E. Calle, J.T. Dong, SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 17, 1031–1042 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    X.Y. Dong, P. Guo, J. Boyd, X. Sun, Q. Li, W. Zhou, J.T. Dong, Implication of snoRNA U50 in human breast cancer. J Genet Genomics. 36, 447–454 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    J. Liao, L. Yu, Y. Mei, M. Guarnera, J. Shen, R. Li, Z. Liu, F. Jiang, Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 9, 198 (2010)PubMedCrossRefGoogle Scholar
  35. 35.
    Y.P. Mei, J.P. Liao, J.P. Shen, L. Yu, B.L. Liu, L. Liu, R.Y. Li, L. Ji, S.G. Dorsey, Z.R. Jiang, R.L. Katz, J.Y. Wang, F. Jiang, Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 31, 2794–2804 (2012)PubMedCrossRefGoogle Scholar
  36. 36.
    M. Mourtada-Maarabouni, M.R. Pickard, V.L. Hedge, F. Farzaneh, G.T. Williams, GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 28, 195–208 (2009)PubMedCrossRefGoogle Scholar
  37. 37.
    C. Ender, A. Krek, M.R. Friedlander, M. Beitzinger, L. Weinmann, W. Chen, S. Pfeffer, N. Rajewsky, G. Meister, A human snoRNA with microRNA-like functions. Mol Cell. 32, 519–528 (2008)PubMedCrossRefGoogle Scholar
  38. 38.
    M. Ono, M.S. Scott, K. Yamada, F. Avolio, G.J. Barton, A.I. Lamond, Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 39, 3879–3891 (2011)PubMedCrossRefGoogle Scholar
  39. 39.
    V. Havelange, R. Garzon, MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol. 85, 935–942 (2010)PubMedCrossRefGoogle Scholar
  40. 40.
    S. Bhagavathi, M. Czader, MicroRNAs in benign and malignant hematopoiesis. Arch Pathol Lab Med. 134, 1276–1281 (2010)PubMedGoogle Scholar
  41. 41.
    P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O’Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B. Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513–10518 (2008)PubMedCrossRefGoogle Scholar
  42. 42.
    X. Chen, Y. Ba, L. Ma, X. Cai, Y. Yin, K. Wang, J. Guo, Y. Zhang, J. Chen, X. Guo, Q. Li, X. Li, W. Wang, Y. Zhang, J. Wang, X. Jiang, Y. Xiang, C. Xu, P. Zheng, J. Zhang, R. Li, H. Zhang, X. Shang, T. Gong, G. Ning, J. Wang, K. Zen, J. Zhang, C.Y. Zhang, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008)PubMedCrossRefGoogle Scholar
  43. 43.
    E.K. Ng, W.W. Chong, H. Jin, E.K. Lam, V.Y. Shin, J. Yu, T.C. Poon, S.S. Ng, J.J. Sung, Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58, 1375–1381 (2009)PubMedCrossRefGoogle Scholar
  44. 44.
    M.A. Cortez, G.A. Calin, MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther. 9, 703–711 (2009)PubMedCrossRefGoogle Scholar
  45. 45.
    M.I. Aslam, K. Taylor, J.H. Pringle, J.S. Jameson, MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg. 96, 702–710 (2009)PubMedCrossRefGoogle Scholar
  46. 46.
    M. Tsujiura, D. Ichikawa, S. Komatsu, A. Shiozaki, H. Takeshita, T. Kosuga, H. Konishi, R. Morimura, K. Deguchi, H. Fujiwara, K. Okamoto, E. Otsuji, Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 102, 1174–1179 (2010)PubMedCrossRefGoogle Scholar
  47. 47.
    Z. Hu, X. Chen, Y. Zhao, T. Tian, G. Jin, Y. Shu, Y. Chen, L. Xu, K. Zen, C. Zhang, H. Shen, Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 28, 1721–1726 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2012

Authors and Affiliations

  • Kaisa J. Teittinen
    • 1
  • Asta Laiho
    • 2
  • Annemari Uusimäki
    • 1
  • Juha-Pekka Pursiheimo
    • 2
  • Attila Gyenesei
    • 2
  • Olli Lohi
    • 1
  1. 1.Tampere Center for Child Health ResearchUniversity of Tampere School of Medicine and Tampere University HospitalTampereFinland
  2. 2.Turku Centre for Biotechnology and the Finnish Microarray and Sequencing CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland

Personalised recommendations