Cellular Oncology

, Volume 35, Issue 6, pp 451–460

Drug-targeting in combined cancer chemotherapy: tumor growth inhibition in mice by association of paclitaxel and etoposide with a cholesterol-rich nanoemulsion

  • Iara F. Kretzer
  • Durvanei A. Maria
  • Raul C. Maranhão
Original Paper
  • 493 Downloads

Abstract

Background

Lipid nanoemulsions (LDE) may be used as carriers of paclitaxel (PTX) and etoposide (ETP) to decrease toxicity and increase the therapeutic action of those drugs. The current study investigates the combined chemotherapy with PTX and ETP associated with LDE.

Methods

Four groups of 10–20 B16F10 melanoma-bearing mice were treated with LDE-PTX and LDE-ETP in combination (LDE-PTX + ETP), commercial PTX and ETP in combination (PTX + ETP), single LDE-PTX, and single LDE-ETP. PTX and ETX doses were 9 μmol/kg administered in three intraperitoneal injections on three alternate days. In two control groups mice were treated with saline solution or LDE alone. Tumor growth, metastasis presence, cell-cycle distribution, blood cell counts and histological data were analyzed. Toxicity of all treatments was evaluated in mice without tumors.

Results

Tumor growth inhibition was similarly strong in all treatment groups. However, there was a greater reduction in the number of animals bearing metastases in the LDE-PTX + ETP group (30 %) in comparison to the PTX + ETP group (82 %, p < 0.05). Reduction of cellular density, blood vessels and increase of collagen fibers in tumor tissues were observed in the LDE-PTX + ETP group but not in the PTX + ETP group, and in both groups reduced melanoma-related anemia and thrombocytosis were observed. Flow cytometric analysis suggested that LDE-PTX + ETP exhibited greater selectivity to neoplastic cells than PTX-ETP, showing arrest (65 %) in the G2/M phase of the cell cycle (p < 0.001). Toxicity manifested by weight loss and myelosuppression was markedly milder in the LDE-PTX + ETP than in the PTX + ETP group.

Conclusion

LDE-PTX + ETP combined drug-targeting therapy showed markedly superior anti-cancer properties and reduced toxicity compared to PTX + ETP.

Keywords

Nanoparticles Drug-targeting Emulsions Cholesterol Low-density lipoprotein (LDL) receptors Cancer treatment 

References

  1. 1.
    D. Liu, N. Zhang, Cancer chemotherapy with lipid-based nanocarriers. Crit. Rev. Ther. Drug Carr. Syst. 27, 371–417 (2010)CrossRefGoogle Scholar
  2. 2.
    R.C. Maranhão, B. Garicochea, E.L. Silva, P. Dorlhiac-Llacer, F.J.C. Pileggi, D.A.F. Chamone, Increased plasma removal of microemulsions resembling the lipid phase of low-density lipoproteins (LDL) in patients with acute myeloid leukemia: a possible new strategy for the treatment of the disease. Braz. J. Med. Biol. Res. 25, 1003–1007 (1992)PubMedGoogle Scholar
  3. 3.
    R.C. Maranhão, T.B. Cesar, M.T.B. Pedroso, M.H. Hirata, C.H. Mesquita, Metabolic behavior in rats of a non protein microemulsion resembling LDL. Lipids 28, 691–696 (1993)PubMedCrossRefGoogle Scholar
  4. 4.
    R.C. Maranhão, B. Garicochea, E.L. Silva, P. Dorlhiac-Llacer, S.M.S. Cadena, I.J.C. Coelho, J.C. Meneguetti, F.J.C. Pileggi, D.A.F. Chamone, Plasma kinetics and biodistribution of a lipid emulsion resembling low density lipoprotein in patients with acute leukemia. Cancer Res. 54, 4660–4666 (1994)PubMedGoogle Scholar
  5. 5.
    R.D. Hirata, M.H. Hirata, C.H. Mesquita, T.B. Cesar, R.C. Maranhão, Effects of apolipoprotein B-100 on the metabolism of a lipid microemulsion model in rats. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1437, 53–62 (1999)CrossRefGoogle Scholar
  6. 6.
    Y.K. Ho, R.G. Smith, M.S. Brown, J.L. Goldstein, Low-density lipoprotein (LDL) receptor activity in human acute myelogenous cells. Blood 52, 1099–1114 (1978)PubMedGoogle Scholar
  7. 7.
    H. Ginsberg, H.S. Gilbert, J.C. Gibson, N.A. Le, W.V. Brown, Increased low-density-lipoprotein catabolism in myeloproliferative disorders. Ann. Intern. Med. 96, 311–316 (1982)PubMedGoogle Scholar
  8. 8.
    P. Henriksson, S. Ericsson, R. Stege, M. Ericsson, M. Rudling, L. Berglund, B. Angelin, Hypocholesterolaemia and increased elimination of low-density lipoproteins in metastatic cancer of the prostate. Lancet 2, 1178–1180 (1989)PubMedCrossRefGoogle Scholar
  9. 9.
    S. Vitols, B. Angelin, S. Ericsson, G. Gahrton, G. Juliusson, M. Masquelier, C. Paul, C. Peterson, M. Rudling, K. Soderberg-Reid, V. Tidefelt, Uptake of low-density lipoproteins by human leukemic cells in vivo: relation to plasma lipoprotein levels and possible relevance for selective chemotherapy. Proc. Nati. Acad. Sci. USA 87, 2598–2602 (1990)CrossRefGoogle Scholar
  10. 10.
    Y. Ueyama, Y. Matsuzawa, S. Yamashita, T. Funahashi, N. Sakai, T. Nakamura, M. Kubo, S. Taru, Hypocholesterolaemic factor from gallbladder cancer cells. Lancet 336, 707–709 (1990)PubMedCrossRefGoogle Scholar
  11. 11.
    S. Vitols, C. Peterson, O. Larsson, P. Holm, B. Aberg, Elevated uptake of low density lipoproteins by human lung cancer tissue in vivo. Cancer Res. 52, 6244–6247 (1992)PubMedGoogle Scholar
  12. 12.
    T. Nakagawa, Y. Ueyama, S. Nozaki, S. Yamashita, M. Menju, T. Funahashi, K. Kameda-Takemura, M. Kubo, K. Tokunaga, T. Tanaka, Marked hypocholesterolemia in a case with adrenal adenoma-enhanced catabolism of low density lipoprotein (LDL) via the LDL receptors of tumor cells. J. Clin. Endocrinol. Metab. 80, 92–96 (1995)PubMedCrossRefGoogle Scholar
  13. 13.
    A. Stranzl, H. Schmidt, R. Winkler, G.M. Kostner, Low-density lipoprotein receptor mRNA in human breast cancer cells: influence by PKC modulators. Breast Cancer Res. Treat. 42, 195–205 (1997)PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Chen, M. Hughes-Fulford, Human prostate cancer cells lack feedback regulation of low-density lipoprotein receptor and its regulator, SREBP2. Int. J. Cancer 91, 41–45 (2001)PubMedCrossRefGoogle Scholar
  15. 15.
    R.C. Maranhão, S.R. Graziani, N. Yamaguchi, R.F. Melo, M.C. Latrilha, D.G. Rodrigues, R.D. Couto, R. Schreiber, A.C. Buzaid, Association of carmustine with a lipid emulsion: in vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother. Pharmacol. 49, 487–498 (2002). doi:10.1007/s00280-002-0437-3 PubMedCrossRefGoogle Scholar
  16. 16.
    V.T. Hungria, M.C. Latrilha, D.G. Rodrigues, S.P. Bydlowski, C.S. Chiattone, R.C. Maranhão, Metabolism of a cholesterol-rich microemulsion (LDE) in patients with multiple myeloma and a preliminary clinical study of LDE as a drug vehicle for the treatment of the disease. Cancer Chemother. Pharmacol. 53, 51–60 (2004). doi:10.1007/s00280-003-0692-y PubMedGoogle Scholar
  17. 17.
    K.V. Pinheiro, V.T. Hungria, E.S. Ficker, C.J. Valduga, C.H. Mesquita, R.C. Maranhão, Plasma kinetics of a cholesterol-rich microemulsion (LDE) in patients with Hodgkin’s and non-Hodgkin’s lymphoma and a preliminary study on the toxicity of etoposide associated with LDE. Cancer Chemother. Pharmacol. 57, 624–630 (2005). doi:10.1007/s00280-005-0090-8 PubMedCrossRefGoogle Scholar
  18. 18.
    C.J. Antalis, A. Uchida, K.K. Buhman, R.A. Siddiqui, Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clin. Exp. Metastasis 28, 733–741 (2011). doi:10.1007/s10585-011-9405-9 PubMedCrossRefGoogle Scholar
  19. 19.
    L.A. Pires, R. Hegg, E.R. Freitas, E.R. Tavares, C.P. Almeida, E.C. Baracat, R.C. Maranhão, Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer. Braz. J. Med. Biol. Res. 45, 557–564 (2012). doi:10.1590/S0100-879X2012007500068 PubMedCrossRefGoogle Scholar
  20. 20.
    C.H. Azevedo, J.P. Carvalho, C.J. Valduga, R.C. Maranhão, Plasma kinetics and uptake by the tumor of a cholesterol-rich microemulsion (LDE) associated to etoposide oleate in patients with ovarian carcinoma. Gynecol. Oncol. 97, 178–182 (2005). doi:10.1016/j.ygyno.2004.12.015 PubMedCrossRefGoogle Scholar
  21. 21.
    M.L. Dias, J.P. Carvalho, D.G. Rodrigues, S.R. Graziani, R.C. Maranhão, Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers. Cancer Chemother. Pharmacol. 59, 105–111 (2007). doi:10.1007/s00280-006-0252-3 PubMedCrossRefGoogle Scholar
  22. 22.
    L.A. Pires, R. Hegg, C.J. Valduga, S.R. Graziani, D.G. Rodrigues, R.C. Maranhão, Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: pharmacokinetics, tumor uptake and a pilot clinical study. Cancer Chemother. Pharmacol. 63, 281–287 (2009). doi:10.1007/s00280-008-0738-2 PubMedCrossRefGoogle Scholar
  23. 23.
    R.S. Teixeira, R. Curi, R.C. Maranhão, Effects on Walker 256 tumor of carmustine associated with a cholesterol-rich microemulsion (LDE). J. Pharm. Pharmacol. 56, 909–914 (2004). doi:10.1211/0022357023826 PubMedCrossRefGoogle Scholar
  24. 24.
    C.J. Valduga, D.C. Fernandes, A.C. Lo Prete, C.H.M Azevedo, D.G. Rodrigues, R.C. Maranhão, Use of a cholesterol-rich microemulsion that binds to low-density lipoprotein receptors as vehicle for etoposide. J. Pharm. Pharmacol. 55, 1615–1622 (2004). doi:10.1211/0022357022232 CrossRefGoogle Scholar
  25. 25.
    A.C. Lo Prete, D.A. Maria, D.G. Rodrigues, C.J. Valduga, O.C. Ibanez, R.C. Maranhão, Evaluation in melanoma-bearing mice of an etoposide derivative associated to a cholesterol-rich nano-emulsion. J. Pharm. Pharmacol. 58, 801–808 (2006). doi:10.1211/jpp.58.6.0010 PubMedCrossRefGoogle Scholar
  26. 26.
    D.G. Rodrigues, D.A. Maria, D.C. Fernandes, C.J. Valduga, R.D. Couto, O.C. Ibanez, R.C. Maranhão, Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: in vitro and in vivo studies. Cancer Chemother. Pharmacol. 55, 565–576 (2005). doi:10.1007/s00280-004-0930-y PubMedCrossRefGoogle Scholar
  27. 27.
    R.S. Teixeira, C.J. Valduga, L.A. Benvenutti, S. Schreier, R.C. Maranhão, Delivery of daunorubicin to cancer cells with decreased toxicity by association with a lipidic nanoemulsion that binds to LDL receptors. J. Pharm. Pharmacol. 60, 1287–1295 (2008). doi:10.1211/jpp/60.10.0004 PubMedCrossRefGoogle Scholar
  28. 28.
    K.R. Hande, Topoisomerase II inhibitors. Update on Cancer Therapeutics 1, 3–15 (2006). doi:10.1016/j.uct.2006.04.001 CrossRefGoogle Scholar
  29. 29.
    Q. Yue, X. Liu, D. Guo, Microtubule-Binding Natural Products for Cancer Therapy. Planta Med. 76, 1037–1043 (2010). doi:10.1055/s-0030-1250073 PubMedCrossRefGoogle Scholar
  30. 30.
    R.I. Geran, N.H. Greenberg, M.M. Macdonald, A.M. Schumacher, B.J. Abbott, Protocols for screening chemical agents and natural products against animal tumors and other biological systems, 3rd edn. (National Institute of Health, Bethesda, 1972), pp. 47–51Google Scholar
  31. 31.
    A.J. Versluis, P.J. van Gell, H. Oppelaar, T.J.C. van Berkel, M.K. Bijsterbosch, Receptor-mediated uptake of low-density lipoprotein by B16 melanoma cells in vitro and in vivo in mice. Br. J. Cancer 74, 525–532 (1996)PubMedCrossRefGoogle Scholar
  32. 32.
    A. Ades, J.P. Carvalho, S.R. Graziani, R.F. Amancio, J.S. Souen, J.A. Pinotti, R.C. Maranhão, Uptake of a cholesterol-rich emulsion by neoplasic ovarian tissues. Gynecol. Oncol. 82, 84–87 (2001). doi:10.1006/gyno.2001.6203 PubMedCrossRefGoogle Scholar
  33. 33.
    L.C. van Kempen, J. Rijntjes, I. Mamor-Cornelissen, S. Vincent-Naulleau, M.J. Gerritsen, D.J. Ruiter, M.C. van Dijk, C. Geffrotin, G.N. van Muijen, Type I collagen expression contributes to angiogenesis and the development of deeply invasive cutaneous melanoma. Int. J. Cancer 122, 1019–1029 (2008). doi:10.1002/ijc.23147 PubMedCrossRefGoogle Scholar
  34. 34.
    K.P. Claffey, L.F. Brown, L.F. del Aguila, K. Tognazzi, K.T. Yeo, E.J. Manseau, H.F. Dvorak, Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res. 56, 172–181 (1996)PubMedGoogle Scholar
  35. 35.
    R. Ophir, G. Moalem, M. Pecht, M. Shashoua, G. Rashid, S. Ben-Efraim, N. Trainin, Y. Burstein, Y. Keisari, THF-gamma 2-mediated reduction of pulmonary metastases and augmentation of immunocompetence in C57BL/6 mice bearing B16-melanoma. J. Immunother. 22, 103–113 (1999)PubMedCrossRefGoogle Scholar
  36. 36.
    E.A. Perez, Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther. 8, 2086–2095 (2009). doi:10.1158/1535-7163.MCT-09-0366 PubMedCrossRefGoogle Scholar
  37. 37.
    I. Schonn, J. Hennesen, D.C. Dartsch, Cellular responses to etoposide: cell death despite cell cycle arrest and repair of DNA damage. Apoptosis 15, 162–172 (2010). doi:10.1007/s10495-009-0440-9 PubMedCrossRefGoogle Scholar
  38. 38.
    F. Wei, Y. Xie, L. Tao, D. Tang, Both ERK1 and ERK2 kinases promote G2/M arrest in etoposide-treated MCF7 cells by facilitating ATM activation. Cell. Signal. 22, 1783–1789 (2010). doi:10.1016/j.cellsig.2010.07.007 PubMedCrossRefGoogle Scholar
  39. 39.
    H.L. Lin, Y.F. Chang, T.Y. Liu, C.W. Wu, C.W. Chi, Submicromolar paclitaxel induces apoptosis in human gastric cancer cells at early G1 phase. Anticancer. Res. 18, 3443–3449 (1998)PubMedGoogle Scholar
  40. 40.
    K. Torres, S.B. Horwitz, Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res. 58, 3620–3626 (1998)PubMedGoogle Scholar
  41. 41.
    P. Giannakakou, R. Robey, T. Fojo, M.V. Blagosklonny, Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene 20, 3806–3813 (2001)PubMedCrossRefGoogle Scholar
  42. 42.
    P.C. Liao, C.H. Lieu, Cell cycle specific induction of apoptosis and necrosis by paclitaxel in the leukemic U937 cells. Life Sci. 76, 1623–1639 (2005). doi:10.1016/j.lfs.2004.09.021 PubMedCrossRefGoogle Scholar
  43. 43.
    Z.N. Demidenko, S. Kalurupalle, C. Hanko, C.U. Lim, E. Broude, M.V. Blagosklonny, Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis. Oncogene 27, 4402–4410 (2008)PubMedCrossRefGoogle Scholar
  44. 44.
    B.B. Lundberg, V. Risovic, M. Ramaswamy, K.M. Wasan, A lipophilic paclitaxel derivative incorporated in a lipid emulsion for parenteral administration. J. Control. Release 86, 93–100 (2003)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2012

Authors and Affiliations

  • Iara F. Kretzer
    • 1
    • 2
  • Durvanei A. Maria
    • 3
  • Raul C. Maranhão
    • 1
    • 2
    • 4
  1. 1.Lipid Metabolism Laboratory, the Heart Institute (INCOR) of the Medical School HospitalUniversity of São PauloSão PauloBrazil
  2. 2.Faculty of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
  3. 3.Biochemistry and Biophysics LaboratoriesButantan InstituteSão PauloBrazil
  4. 4.Laboratório de Metabolismo de Lípides, Instituto do Coração (INCOR) do Hospital das Clínicas FMUSPUniversity of São PauloSão PauloBrazil

Personalised recommendations