Cellular Oncology

, Volume 35, Issue 5, pp 317–334 | Cite as

Aberrant microRNA expression and its implications in the pathogenesis of leukemias

  • Sadegh BabashahEmail author
  • Majid Sadeghizadeh
  • Mostafa Rezaei Tavirani
  • Shirin Farivar
  • Masoud SoleimaniEmail author



MicroRNAs (miRNAs) are a class of non-coding, endogenous, small RNAs that negatively regulate gene expression by inducing degradation or translational inhibition of target mRNAs. Aberrant expression of miRNAs appears to be a common characteristic of hematological malignancies including leukemias.


Here we review the available data supporting a role of aberrant expression of miRNAs in the pathogenesis of leukemias including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL).


The expression signatures of miRNAs provide exciting opportunities in the diagnosis, prognosis, and therapy of leukemia. Since miRNAs can function as either oncogenes or tumor suppressor genes in leukemogenesis, the potential of using these small RNAs as therapeutic targets opens up new opportunities for leukemia therapy by either inhibiting or augmenting their activity.


MicroRNA Expression signature Acute myeloid leukemia Acute lymphoblastic leukemia Chronic myeloid leukemia Chronic lymphocytic leukemia 





Acute myeloid leukemia


Cytogenetically normal acute myeloid leukemia


Acute lymphoblastic leukemia


Chronic lymphocytic leukemia


Chronic myeloid leukemia


Philadelphia chromosome


Bone marrow


Upstream transcription factor 2


B-cell leukemia/lymphoma-2


E2 transcription factor family-1


T-cell leukemia/lymphoma1


Myeloid cell leukemia 1


Itchy E3 ubiquitin protein ligase homolog


CCAAT/enhancer binding protein alpha


Polo-like kinase 2




Internal tandem duplication of FMS-like tyrosine kinase 3




Myeloid ecotropic viral integration site 1


v-Kit hardy-zuckerman 4 feline sarcoma viral oncogene homolog


Central nervous system


Minimally-deleted region


Deleted in leukemia


Diffuse large B-cell lymphoma


Monoclonal B-cell lymphocytosis


Immunoglobulin heavy-chain variable-region


70-kDa zeta-associated protein


Lipoprotein lipase


Quantitative real-time polymerase chain reaction


Overall survival


Treatment-free survival




Tumor suppressor



The authors wish to thank David Leif Anderson for valuable comments on the manuscript. This work was supported by a grant from Tarbiat Modares University.

Conflicts of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    X. Liu, K. Fortin, Z. Mourelatos, MicroRNAs: biogenesis and molecular functions. Brain Pathol 18, 113–121 (2008)PubMedCrossRefGoogle Scholar
  2. 2.
    S. Babashah, M. Soleimani, The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur. J. Cancer 47, 1127–1137 (2011)PubMedCrossRefGoogle Scholar
  3. 3.
    R.C. Lee, R.L. Feinbaum, V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993)PubMedCrossRefGoogle Scholar
  4. 4.
    B.J. Reinhart, F.J. Slack, M. Basson, A.E. Pasquinelli, J.C. Bettinger, A.E. Rougvie, H.R. Horvitz, G. Ruvkun, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000)PubMedCrossRefGoogle Scholar
  5. 5.
    M.J. Bueno, I. Perez de Castro, M. Malumbres, Control of cell proliferation pathways by microRNAs. Cell Cycle 7, 3143–3148 (2008)PubMedCrossRefGoogle Scholar
  6. 6.
    Y. Lee, M. Kim, J. Han, K.H. Yeom, S. Lee, S.H. Baek, V.N. Kim, MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004)PubMedCrossRefGoogle Scholar
  7. 7.
    G.M. Borchert, W. Lanier, B.L. Davidson, RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13, 1097–1101 (2006)PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Lee, K. Jeon, J.T. Lee, S. Kim, V.N. Kim, MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002)PubMedCrossRefGoogle Scholar
  9. 9.
    G. Hutvagner, P.D. Zamore, A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002)PubMedCrossRefGoogle Scholar
  10. 10.
    R. Garzon, G.A. Calin, C.M. Croce, MicroRNAs in Cancer. Annu Rev Med 60, 167–179 (2009)PubMedCrossRefGoogle Scholar
  11. 11.
    M. Garofalo, C.M. Croce, microRNAs: Master regulators as potential therapeutics in cancer. Annu. Rev. Pharmacol. Toxicol. 51, 25–43 (2011)PubMedCrossRefGoogle Scholar
  12. 12.
    O.A. Kent, J.T. Mendell, A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25, 6188–6196 (2006)PubMedCrossRefGoogle Scholar
  13. 13.
    L. Ma, R.A. Weinberg, MicroRNAs in malignant progression. Cell Cycle 7, 570–572 (2008)PubMedCrossRefGoogle Scholar
  14. 14.
    A. Esquela-Kerscher, F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006)PubMedCrossRefGoogle Scholar
  15. 15.
    G.A. Calin, C.M. Croce, MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006)PubMedCrossRefGoogle Scholar
  16. 16.
    M. Fabbri, R. Garzon, M. Andreeff, H.M. Kantarjian, G. Garcia-Manero, G.A. Calin, MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22, 1095–1105 (2008)PubMedCrossRefGoogle Scholar
  17. 17.
    S. Yendamuri, G.A. Calin, The role of microRNA in human leukemia: a review. Leukemia 23, 1257–1263 (2009)PubMedCrossRefGoogle Scholar
  18. 18.
    J. Kluiver, B.J. Kroesen, S. Poppema, A. van den Berg, The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 20, 1931–1936 (2006)PubMedCrossRefGoogle Scholar
  19. 19.
    R. Garzon, C.M. Croce, MicroRNAs in normal and malignant hematopoiesis. Curr. Opin. Hematol. 15, 352–358 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Z. Li, J. Lu, M. Sun, S. Mi, H. Zhang, R.T. Luo, P. Chen, Y. Wang, M. Yan, Z. Qian, M.B. Neilly, J. Jin, Y. Zhang, S.K. Bohlander, D.E. Zhang, R.A. Larson, M.M. Le Beau, M.J. Thirman, T.R. Golub, J.D. Rowley, J. Chen, Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc. Natl. Acad. Sci. U. S. A. 105, 15535–15540 (2008)PubMedCrossRefGoogle Scholar
  21. 21.
    H. Seca, G.M. Almeida, J.E. Guimaraes, M.H. Vasconcelos, miR signatures and the role of miRs in acute myeloid leukaemia. Eur. J. Cancer 46, 1520–1527 (2010)PubMedCrossRefGoogle Scholar
  22. 22.
    H. Zhao, D. Wang, W. Du, D. Gu, R. Yang, MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 74, 149–155 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    A. Dixon-McIver, P. East, C.A. Mein, J.B. Cazier, G. Molloy, T. Chaplin, T. Andrew Lister, B.D. Young, S. Debernardi, Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 3, e2141 (2008)PubMedCrossRefGoogle Scholar
  24. 24.
    M. Jongen-Lavrencic, S.M. Sun, M.K. Dijkstra, P.J. Valk, B. Lowenberg, MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111, 5078–5085 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    C. Nervi, F. Fazi, F. Grignani, Oncoproteins, heterochromatin silencing and microRNAs: a new link for leukemogenesis. Epigenetics 3, 1–4 (2008)PubMedCrossRefGoogle Scholar
  26. 26.
    F. Fazi, A. Rosa, A. Fatica, V. Gelmetti, M.L. De Marchis, C. Nervi, I. Bozzoni, A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123, 819–831 (2005)PubMedCrossRefGoogle Scholar
  27. 27.
    F. Fazi, S. Racanicchi, G. Zardo, L.M. Starnes, M. Mancini, L. Travaglini, D. Diverio, E. Ammatuna, G. Cimino, F. Lo-Coco, F. Grignani, C. Nervi, Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12, 457–466 (2007)PubMedCrossRefGoogle Scholar
  28. 28.
    J.B. Johnnidis, M.H. Harris, R.T. Wheeler, S. Stehling-Sun, M.H. Lam, O. Kirak, T.R. Brummelkamp, M.D. Fleming, F.D. Camargo, Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    F. Rosenbauer, S. Koschmieder, U. Steidl, D.G. Tenen, Effect of transcription-factor concentrations on leukemic stem cells. Blood 106, 1519–1524 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    M. Bousquet, C. Quelen, R. Rosati, V. Mansat-De Mas, R. La Starza, C. Bastard, E. Lippert, P. Talmant, M. Lafage-Pochitaloff, D. Leroux, C. Gervais, F. Viguie, J.L. Lai, C. Terre, B. Beverlo, C. Sambani, A. Hagemeijer, P. Marynen, G. Delsol, N. Dastugue, C. Mecucci, P. Brousset, Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205, 2499–2506 (2008)PubMedCrossRefGoogle Scholar
  31. 31.
    L. Fontana, E. Pelosi, P. Greco, S. Racanicchi, U. Testa, F. Liuzzi, C.M. Croce, E. Brunetti, F. Grignani, C. Peschle, MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9, 775–787 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    S. Mi, Z. Li, P. Chen, C. He, D. Cao, A. Elkahloun, J. Lu, L.A. Pelloso, M. Wunderlich, H. Huang, R.T. Luo, M. Sun, M. He, M.B. Neilly, N.J. Zeleznik-Le, M.J. Thirman, J.C. Mulloy, P.P. Liu, J.D. Rowley, J. Chen, Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc. Natl. Acad. Sci. U. S. A. 107, 3710–3715 (2010)PubMedCrossRefGoogle Scholar
  33. 33.
    P. Wong, M. Iwasaki, T.C. Somervaille, F. Ficara, C. Carico, C. Arnold, C.Z. Chen, M.L. Cleary, The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res. 70, 3833–3842 (2010)PubMedCrossRefGoogle Scholar
  34. 34.
    R. Garzon, S. Volinia, C.G. Liu, C. Fernandez-Cymering, T. Palumbo, F. Pichiorri, M. Fabbri, K. Coombes, H. Alder, T. Nakamura, N. Flomenberg, G. Marcucci, G.A. Calin, S.M. Kornblau, H. Kantarjian, C.D. Bloomfield, M. Andreeff, C.M. Croce, MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111, 3183–3189 (2008)PubMedCrossRefGoogle Scholar
  35. 35.
    R. Popovic, L.E. Riesbeck, C.S. Velu, A. Chaubey, J. Zhang, N.J. Achille, F.E. Erfurth, K. Eaton, J. Lu, H.L. Grimes, J. Chen, J.D. Rowley, N.J. Zeleznik-Le, Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113, 3314–3322 (2009)PubMedCrossRefGoogle Scholar
  36. 36.
    G. Marcucci, K. Maharry, M.D. Radmacher, K. Mrozek, T. Vukosavljevic, P. Paschka, S.P. Whitman, C. Langer, C.D. Baldus, C.G. Liu, A.S. Ruppert, B.L. Powell, A.J. Carroll, M.A. Caligiuri, J.E. Kolitz, R.A. Larson, C.D. Bloomfield, Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J. Clin. Oncol. 26, 5078–5087 (2008)PubMedCrossRefGoogle Scholar
  37. 37.
    M.L. Choong, H.H. Yang, I. McNiece, MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp. Hematol. 35, 551–564 (2007)PubMedCrossRefGoogle Scholar
  38. 38.
    J. Chen, O. Odenike, J.D. Rowley, Leukaemogenesis: more than mutant genes. Nat. Rev. Cancer 10, 23–36 (2010)PubMedCrossRefGoogle Scholar
  39. 39.
    G. Marcucci, M.D. Radmacher, K. Maharry, K. Mrozek, A.S. Ruppert, P. Paschka, T. Vukosavljevic, S.P. Whitman, C.D. Baldus, C. Langer, C.G. Liu, A.J. Carroll, B.L. Powell, R. Garzon, C.M. Croce, J.E. Kolitz, M.A. Caligiuri, R.A. Larson, C.D. Bloomfield, MicroRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1919–1928 (2008)PubMedCrossRefGoogle Scholar
  40. 40.
    C. Thiede, S. Koch, E. Creutzig, C. Steudel, T. Illmer, M. Schaich, G. Ehninger, Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107, 4011–4020 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    R. Garzon, M. Garofalo, M.P. Martelli, R. Briesewitz, L. Wang, C. Fernandez-Cymering, S. Volinia, C.G. Liu, S. Schnittger, T. Haferlach, A. Liso, D. Diverio, M. Mancini, G. Meloni, R. Foa, M.F. Martelli, C. Mecucci, C.M. Croce, B. Falini, Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl. Acad. Sci. U. S. A. 105, 3945–3950 (2008)PubMedCrossRefGoogle Scholar
  42. 42.
    B. Falini, I. Nicoletti, M.F. Martelli, C. Mecucci, Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc + AML): biologic and clinical features. Blood 109, 874–885 (2007)PubMedCrossRefGoogle Scholar
  43. 43.
    S. Yekta, I.H. Shih, D.P. Bartel, MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004)PubMedCrossRefGoogle Scholar
  44. 44.
    R.M. O'Connell, D.S. Rao, A.A. Chaudhuri, M.P. Boldin, K.D. Taganov, J. Nicoll, R.L. Paquette, D. Baltimore, Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205, 585–594 (2008)PubMedCrossRefGoogle Scholar
  45. 45.
    R. Crazzolara, L. Bendall, Emerging treatments in acute lymphoblastic leukemia. Curr Cancer Drug Targets 9, 19–31 (2009)PubMedCrossRefGoogle Scholar
  46. 46.
    S. Mi, J. Lu, M. Sun, Z. Li, H. Zhang, M.B. Neilly, Y. Wang, Z. Qian, J. Jin, Y. Zhang, S.K. Bohlander, M.M. Le Beau, R.A. Larson, T.R. Golub, J.D. Rowley, J. Chen, MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl. Acad. Sci. U. S. A. 104, 19971–19976 (2007)PubMedCrossRefGoogle Scholar
  47. 47.
    H. Zhang, X.Q. Luo, P. Zhang, L.B. Huang, Y.S. Zheng, J. Wu, H. Zhou, L.H. Qu, L. Xu, Y.Q. Chen, MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One 4, e7826 (2009)PubMedCrossRefGoogle Scholar
  48. 48.
    D. Schotte, J.C. Chau, G. Sylvester, G. Liu, C. Chen, V.H. van der Velden, M.J. Broekhuis, T.C. Peters, R. Pieters, M.L. den Boer, Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23, 313–322 (2009)PubMedCrossRefGoogle Scholar
  49. 49.
    D.L. Zanette, F. Rivadavia, G.A. Molfetta, F.G. Barbuzano, R. Proto-Siqueira, W.A. Silva-Jr, R.P. Falcao, M.A. Zago, miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40, 1435–1440 (2007)PubMedCrossRefGoogle Scholar
  50. 50.
    A. Ota, H. Tagawa, S. Karnan, S. Tsuzuki, A. Karpas, S. Kira, Y. Yoshida, M. Seto, Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004)PubMedCrossRefGoogle Scholar
  51. 51.
    A. Ventura, A.G. Young, M.M. Winslow, L. Lintault, A. Meissner, S.J. Erkeland, J. Newman, R.T. Bronson, D. Crowley, J.R. Stone, R. Jaenisch, P.A. Sharp, T. Jacks, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008)PubMedCrossRefGoogle Scholar
  52. 52.
    L. He, J.M. Thomson, M.T. Hemann, E. Hernando-Monge, D. Mu, S. Goodson, S. Powers, C. Cordon-Cardo, S.W. Lowe, G.J. Hannon, S.M. Hammond, A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005)PubMedCrossRefGoogle Scholar
  53. 53.
    M. Inomata, H. Tagawa, Y.M. Guo, Y. Kameoka, N. Takahashi, K. Sawada, MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113, 396–402 (2009)PubMedCrossRefGoogle Scholar
  54. 54.
    L. O'Connor, A. Strasser, L.A. O'Reilly, G. Hausmann, J.M. Adams, S. Cory, D.C. Huang, Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998)PubMedCrossRefGoogle Scholar
  55. 55.
    C. Dong, M. Ji, C. Ji, microRNAs and their potential target genes in leukemia pathogenesis. Cancer Biol Ther 8, 200–205 (2009)PubMedCrossRefGoogle Scholar
  56. 56.
    C. Xiao, L. Srinivasan, D.P. Calado, H.C. Patterson, B. Zhang, J. Wang, J.M. Henderson, J.L. Kutok, K. Rajewsky, Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008)PubMedCrossRefGoogle Scholar
  57. 57.
    P. Mu, Y.C. Han, D. Betel, E. Yao, M. Squatrito, P. Ogrodowski, E. de Stanchina, A. D'Andrea, C. Sander, A. Ventura, Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23, 2806–2811 (2009)PubMedCrossRefGoogle Scholar
  58. 58.
    V. Olive, M.J. Bennett, J.C. Walker, C. Ma, I. Jiang, C. Cordon-Cardo, Q.J. Li, S.W. Lowe, G.J. Hannon, L. He, miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 23, 2839–2849 (2009)PubMedCrossRefGoogle Scholar
  59. 59.
    C.L. Sawyers, Chronic myeloid leukemia. N. Engl. J. Med. 340, 1330–1340 (1999)PubMedCrossRefGoogle Scholar
  60. 60.
    M.W. Deininger, J.M. Goldman, J.V. Melo, The molecular biology of chronic myeloid leukemia. Blood 96, 3343–3356 (2000)PubMedGoogle Scholar
  61. 61.
    T.G. Lugo, A.M. Pendergast, A.J. Muller, O.N. Witte, Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247, 1079–1082 (1990)PubMedCrossRefGoogle Scholar
  62. 62.
    Y.A. Mian, N.J. Zeleznik-Le, MicroRNAs in leukemias: emerging diagnostic tools and therapeutic targets. Curr Drug Targets 11, 801–811 (2010)PubMedCrossRefGoogle Scholar
  63. 63.
    K. Woods, J.M. Thomson, S.M. Hammond, Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J. Biol. Chem. 282, 2130–2134 (2007)PubMedCrossRefGoogle Scholar
  64. 64.
    K.A. O'Donnell, E.A. Wentzel, K.I. Zeller, C.V. Dang, J.T. Mendell, c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005)PubMedCrossRefGoogle Scholar
  65. 65.
    Y. Sylvestre, V. De Guire, E. Querido, U.K. Mukhopadhyay, V. Bourdeau, F. Major, G. Ferbeyre, P. Chartrand, An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem. 282, 2135–2143 (2007)PubMedCrossRefGoogle Scholar
  66. 66.
    L. Venturini, K. Battmer, M. Castoldi, B. Schultheis, A. Hochhaus, M.U. Muckenthaler, A. Ganser, M. Eder, M. Scherr, Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109, 4399–4405 (2007)PubMedCrossRefGoogle Scholar
  67. 67.
    M.J. Bueno, I. Perez de Castro, M. Gomez de Cedron, J. Santos, G.A. Calin, J.C. Cigudosa, C.M. Croce, J. Fernandez-Piqueras, M. Malumbres, Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13, 496–506 (2008)PubMedCrossRefGoogle Scholar
  68. 68.
    X. Agirre, A. Jimenez-Velasco, E. San Jose-Eneriz, L. Garate, E. Bandres, L. Cordeu, O. Aparicio, B. Saez, G. Navarro, A. Vilas-Zornoza, I. Perez-Roger, J. Garcia-Foncillas, A. Torres, A. Heiniger, M.J. Calasanz, P. Fortes, J. Roman-Gomez, F. Prosper, Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res 6, 1830–1840 (2008)PubMedCrossRefGoogle Scholar
  69. 69.
    S. Flamant, W. Ritchie, J. Guilhot, J. Holst, M.L. Bonnet, J.C. Chomel, F. Guilhot, A.G. Turhan, J.E. Rasko, Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica 95, 1325–1333 (2010)PubMedCrossRefGoogle Scholar
  70. 70.
    E. San Jose-Eneriz, J. Roman-Gomez, A. Jimenez-Velasco, L. Garate, V. Martin, L. Cordeu, A. Vilas-Zornoza, P. Rodriguez-Otero, M.J. Calasanz, F. Prosper, X. Agirre, MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations. Mol Cancer 8, 69 (2009)PubMedCrossRefGoogle Scholar
  71. 71.
    G.A. Calin, M. Ferracin, A. Cimmino, G. Di Leva, M. Shimizu, S.E. Wojcik, M.V. Iorio, R. Visone, N.I. Sever, M. Fabbri, R. Iuliano, T. Palumbo, F. Pichiorri, C. Roldo, R. Garzon, C. Sevignani, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce, A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353, 1793–1801 (2005)PubMedCrossRefGoogle Scholar
  72. 72.
    G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 99, 15524–15529 (2002)PubMedCrossRefGoogle Scholar
  73. 73.
    U. Klein, M. Lia, M. Crespo, R. Siegel, Q. Shen, T. Mo, A. Ambesi-Impiombato, A. Califano, A. Migliazza, G. Bhagat, R. Dalla-Favera, The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17, 28–40 (2010)PubMedCrossRefGoogle Scholar
  74. 74.
    E.S. Raveche, E. Salerno, B.J. Scaglione, V. Manohar, F. Abbasi, Y.C. Lin, T. Fredrickson, P. Landgraf, S. Ramachandra, K. Huppi, J.R. Toro, V.E. Zenger, R.A. Metcalf, G.E. Marti, Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 109, 5079–5086 (2007)PubMedCrossRefGoogle Scholar
  75. 75.
    E. Salerno, B.J. Scaglione, F.D. Coffman, B.D. Brown, A. Baccarini, H. Fernandes, G. Marti, E.S. Raveche, Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol. Cancer Ther. 8, 2684–2692 (2009)PubMedCrossRefGoogle Scholar
  76. 76.
    U. Klein, R. Dalla-Favera, New insights into the pathogenesis of chronic lymphocytic leukemia. Semin Cancer Biol 20, 377–383 (2010)PubMedCrossRefGoogle Scholar
  77. 77.
    A. Cimmino, G.A. Calin, M. Fabbri, M.V. Iorio, M. Ferracin, M. Shimizu, S.E. Wojcik, R.I. Aqeilan, S. Zupo, M. Dono, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce, miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. U. S. A. 102, 13944–13949 (2005)PubMedCrossRefGoogle Scholar
  78. 78.
    G.A. Calin, A. Cimmino, M. Fabbri, M. Ferracin, S.E. Wojcik, M. Shimizu, C. Taccioli, N. Zanesi, R. Garzon, R.I. Aqeilan, H. Alder, S. Volinia, L. Rassenti, X. Liu, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce, MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl. Acad. Sci. U. S. A. 105, 5166–5171 (2008)PubMedCrossRefGoogle Scholar
  79. 79.
    R.W. Chen, L.T. Bemis, C.M. Amato, H. Myint, H. Tran, D.K. Birks, S.G. Eckhardt, W.A. Robinson, Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood 112, 822–829 (2008)PubMedCrossRefGoogle Scholar
  80. 80.
    P.S. Linsley, J. Schelter, J. Burchard, M. Kibukawa, M.M. Martin, S.R. Bartz, J.M. Johnson, J.M. Cummins, C.K. Raymond, H. Dai, N. Chau, M. Cleary, A.L. Jackson, M. Carleton, L. Lim, Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240–2252 (2007)PubMedCrossRefGoogle Scholar
  81. 81.
    P.S. Eis, W. Tam, L. Sun, A. Chadburn, Z. Li, M.F. Gomez, E. Lund, J.E. Dahlberg, Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 102, 3627–3632 (2005)PubMedCrossRefGoogle Scholar
  82. 82.
    V. Fulci, S. Chiaretti, M. Goldoni, G. Azzalin, N. Carucci, S. Tavolaro, L. Castellano, A. Magrelli, F. Citarella, M. Messina, R. Maggio, N. Peragine, S. Santangelo, F.R. Mauro, P. Landgraf, T. Tuschl, D.B. Weir, M. Chien, J.J. Russo, J. Ju, R. Sheridan, C. Sander, M. Zavolan, A. Guarini, R. Foa, G. Macino, Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109, 4944–4951 (2007)PubMedCrossRefGoogle Scholar
  83. 83.
    S. Costinean, N. Zanesi, Y. Pekarsky, E. Tili, S. Volinia, N. Heerema, C.M. Croce, Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 103, 7024–7029 (2006)PubMedCrossRefGoogle Scholar
  84. 84.
    C.H. Lawrie, S. Soneji, T. Marafioti, C.D. Cooper, S. Palazzo, J.C. Paterson, H. Cattan, T. Enver, R. Mager, J. Boultwood, J.S. Wainscoat, C.S. Hatton, MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int. J. Cancer 121, 1156–1161 (2007)PubMedCrossRefGoogle Scholar
  85. 85.
    T.H. Thai, D.P. Calado, S. Casola, K.M. Ansel, C. Xiao, Y. Xue, A. Murphy, D. Frendewey, D. Valenzuela, J.L. Kutok, M. Schmidt-Supprian, N. Rajewsky, G. Yancopoulos, A. Rao, K. Rajewsky, Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007)PubMedCrossRefGoogle Scholar
  86. 86.
    B.J. Scaglione, E. Salerno, M. Balan, F. Coffman, P. Landgraf, F. Abbasi, S. Kotenko, G.E. Marti, E.S. Raveche, Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model. Br. J. Haematol. 139, 645–657 (2007)PubMedCrossRefGoogle Scholar
  87. 87.
    A. Rodriguez, E. Vigorito, S. Clare, M.V. Warren, P. Couttet, D.R. Soond, S. van Dongen, R.J. Grocock, P.P. Das, E.A. Miska, D. Vetrie, K. Okkenhaug, A.J. Enright, G. Dougan, M. Turner, A. Bradley, Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007)PubMedCrossRefGoogle Scholar
  88. 88.
    G.T. Bommer, I. Gerin, Y. Feng, A.J. Kaczorowski, R. Kuick, R.E. Love, Y. Zhai, T.J. Giordano, Z.S. Qin, B.B. Moore, O.A. MacDougald, K.R. Cho, E.R. Fearon, p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17, 1298–1307 (2007)PubMedCrossRefGoogle Scholar
  89. 89.
    T.C. Chang, E.A. Wentzel, O.A. Kent, K. Ramachandran, M. Mullendore, K.H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C.J. Lowenstein, D.E. Arking, M.A. Beer, A. Maitra, J.T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26, 745–752 (2007)PubMedCrossRefGoogle Scholar
  90. 90.
    L. He, X. He, L.P. Lim, E. de Stanchina, Z. Xuan, Y. Liang, W. Xue, L. Zender, J. Magnus, D. Ridzon, A.L. Jackson, P.S. Linsley, C. Chen, S.W. Lowe, M.A. Cleary, G.J. Hannon, A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007)PubMedCrossRefGoogle Scholar
  91. 91.
    X. He, L. He, G.J. Hannon, The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 67, 11099–11101 (2007)PubMedCrossRefGoogle Scholar
  92. 92.
    L. He, X. He, S.W. Lowe, G.J. Hannon, microRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nat. Rev. Cancer 7, 819–822 (2007)PubMedCrossRefGoogle Scholar
  93. 93.
    J.S. Wei, Y.K. Song, S. Durinck, Q.R. Chen, A.T. Cheuk, P. Tsang, Q. Zhang, C.J. Thiele, A. Slack, J. Shohet, J. Khan, The MYCN oncogene is a direct target of miR-34a. Oncogene 27, 5204–5213 (2008)PubMedCrossRefGoogle Scholar
  94. 94.
    C. Welch, Y. Chen, R.L. Stallings, MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017–5022 (2007)PubMedCrossRefGoogle Scholar
  95. 95.
    D. Asslaber, J.D. Pinon, I. Seyfried, P. Desch, M. Stocher, I. Tinhofer, A. Egle, O. Merkel, R. Greil, microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood 115, 4191–4197 (2010)PubMedCrossRefGoogle Scholar
  96. 96.
    M. Yamakuchi, M. Ferlito, C.J. Lowenstein, miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. U. S. A. 105, 13421–13426 (2008)PubMedCrossRefGoogle Scholar
  97. 97.
    M.K. Dijkstra, K. van Lom, D. Tielemans, F. Elstrodt, A.W. Langerak, M.B. van 't Veer, M. Jongen-Lavrencic, 17p13/TP53 deletion in B-CLL patients is associated with microRNA-34a downregulation. Leukemia 23, 625–627 (2009)PubMedCrossRefGoogle Scholar
  98. 98.
    T. Zenz, J. Mohr, E. Eldering, A.P. Kater, A. Buhler, D. Kienle, D. Winkler, J. Durig, M.H. van Oers, D. Mertens, H. Dohner, S. Stilgenbauer, miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113, 3801–3808 (2009)PubMedCrossRefGoogle Scholar
  99. 99.
    Y. Pekarsky, U. Santanam, A. Cimmino, A. Palamarchuk, A. Efanov, V. Maximov, S. Volinia, H. Alder, C.G. Liu, L. Rassenti, G.A. Calin, J.P. Hagan, T. Kipps, C.M. Croce, Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66, 11590–11593 (2006)PubMedCrossRefGoogle Scholar
  100. 100.
    M.S. Nicoloso, T.J. Kipps, C.M. Croce, G.A. Calin, MicroRNAs in the pathogeny of chronic lymphocytic leukaemia. Br. J. Haematol. 139, 709–716 (2007)PubMedCrossRefGoogle Scholar
  101. 101.
    R. Bichi, S.A. Shinton, E.S. Martin, A. Koval, G.A. Calin, R. Cesari, G. Russo, R.R. Hardy, C.M. Croce, Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc. Natl. Acad. Sci. U. S. A. 99, 6955–6960 (2002)PubMedCrossRefGoogle Scholar
  102. 102.
    X.J. Yan, E. Albesiano, N. Zanesi, S. Yancopoulos, A. Sawyer, E. Romano, A. Petlickovski, D.G. Efremov, C.M. Croce, N. Chiorazzi, B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 103, 11713–11718 (2006)PubMedCrossRefGoogle Scholar
  103. 103.
    S. Marton, M.R. Garcia, C. Robello, H. Persson, F. Trajtenberg, O. Pritsch, C. Rovira, H. Naya, G. Dighiero, A. Cayota, Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22, 330–338 (2008)PubMedCrossRefGoogle Scholar
  104. 104.
    B. Stamatopoulos, N. Meuleman, B. Haibe-Kains, P. Saussoy, E. Van Den Neste, L. Michaux, P. Heimann, P. Martiat, D. Bron, L. Lagneaux, microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood 113, 5237–5245 (2009)PubMedCrossRefGoogle Scholar
  105. 105.
    W.C. Cho, MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol. 42, 1273–1281 (2010)PubMedCrossRefGoogle Scholar
  106. 106.
    S. Rossi, M. Shimizu, E. Barbarotto, M.S. Nicoloso, F. Dimitri, D. Sampath, M. Fabbri, S. Lerner, L.L. Barron, L.Z. Rassenti, L. Jiang, L. Xiao, J. Hu, P. Secchiero, G. Zauli, S. Volinia, M. Negrini, W. Wierda, T.J. Kipps, W. Plunkett, K.R. Coombes, L.V. Abruzzo, M.J. Keating, G.A. Calin, microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 116, 945–952 (2010)PubMedCrossRefGoogle Scholar
  107. 107.
    S. Gilad, E. Meiri, Y. Yogev, S. Benjamin, D. Lebanony, N. Yerushalmi, H. Benjamin, M. Kushnir, H. Cholakh, N. Melamed, Z. Bentwich, M. Hod, Y. Goren, A. Chajut, Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148 (2008)PubMedCrossRefGoogle Scholar
  108. 108.
    P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O'Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B. Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105, 10513–10518 (2008)PubMedCrossRefGoogle Scholar
  109. 109.
    M. Tanaka, K. Oikawa, M. Takanashi, M. Kudo, J. Ohyashiki, K. Ohyashiki, M. Kuroda, Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One 4, e5532 (2009)PubMedCrossRefGoogle Scholar
  110. 110.
    R. Hummel, D.J. Hussey, J. Haier, MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur. J. Cancer 46, 298–311 (2010)PubMedCrossRefGoogle Scholar
  111. 111.
    E. Moussay, V. Palissot, L. Vallar, H.A. Poirel, T. Wenner, V. El Khoury, N. Aouali, K. Van Moer, B. Leners, F. Bernardin, A. Muller, P. Cornillet-Lefebvre, A. Delmer, C. Duhem, F. Ries, E. van Dyck, G. Berchem, Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer 9, 115 (2010)PubMedCrossRefGoogle Scholar
  112. 112.
    F. Meng, R. Henson, M. Lang, H. Wehbe, S. Maheshwari, J.T. Mendell, J. Jiang, T.D. Schmittgen, T. Patel, Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130, 2113–2129 (2006)PubMedCrossRefGoogle Scholar
  113. 113.
    J. Krutzfeldt, N. Rajewsky, R. Braich, K.G. Rajeev, T. Tuschl, M. Manoharan, M. Stoffel, Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005)PubMedCrossRefGoogle Scholar
  114. 114.
    U.A. Orom, S. Kauppinen, A.H. Lund, LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372, 137–141 (2006)PubMedCrossRefGoogle Scholar
  115. 115.
    K.J. Mavrakis, A.L. Wolfe, E. Oricchio, T. Palomero, K. de Keersmaecker, K. McJunkin, J. Zuber, T. James, A.A. Khan, C.S. Leslie, J.S. Parker, P.J. Paddison, W. Tam, A. Ferrando, H.G. Wendel, Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 12, 372–379 (2010)PubMedCrossRefGoogle Scholar
  116. 116.
    D. Schotte, R. Pieters, M.L. Den Boer, MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 26, 1–12 (2012)PubMedCrossRefGoogle Scholar
  117. 117.
    J. Krutzfeldt, S. Kuwajima, R. Braich, K.G. Rajeev, J. Pena, T. Tuschl, M. Manoharan, M. Stoffel, Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35, 2885–2892 (2007)PubMedCrossRefGoogle Scholar
  118. 118.
    J. Elmen, M. Lindow, A. Silahtaroglu, M. Bak, M. Christensen, A. Lind-Thomsen, M. Hedtjarn, J.B. Hansen, H.F. Hansen, E.M. Straarup, K. McCullagh, P. Kearney, S. Kauppinen, Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 36, 1153–1162 (2008)PubMedCrossRefGoogle Scholar
  119. 119.
    J. Elmen, M. Lindow, S. Schutz, M. Lawrence, A. Petri, S. Obad, M. Lindholm, M. Hedtjarn, H.F. Hansen, U. Berger, S. Gullans, P. Kearney, P. Sarnow, E.M. Straarup, S. Kauppinen, LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008)PubMedCrossRefGoogle Scholar
  120. 120.
    A.W. Tong, J. Nemunaitis, Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15, 341–355 (2008)PubMedCrossRefGoogle Scholar
  121. 121.
    W. Wu, M. Sun, G.M. Zou, J. Chen, MicroRNA and cancer: Current status and prospective. Int. J. Cancer 120, 953–960 (2007)PubMedCrossRefGoogle Scholar
  122. 122.
    Y. Hayashita, H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa, S. Tomida, Y. Yatabe, K. Kawahara, Y. Sekido, T. Takahashi, A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005)PubMedCrossRefGoogle Scholar
  123. 123.
    S. Volinia, G.A. Calin, C.G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. Iorio, C. Roldo, M. Ferracin, R.L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. Vecchione, M. Negrini, C.C. Harris, C.M. Croce, A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103, 2257–2261 (2006)PubMedCrossRefGoogle Scholar
  124. 124.
    G.A. Calin, C.G. Liu, C. Sevignani, M. Ferracin, N. Felli, C.D. Dumitru, M. Shimizu, A. Cimmino, S. Zupo, M. Dono, M.L. Dell'Aquila, H. Alder, L. Rassenti, T.J. Kipps, F. Bullrich, M. Negrini, C.M. Croce, MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. U. S. A. 101, 11755–11760 (2004)PubMedCrossRefGoogle Scholar
  125. 125.
    Z. Yu, C. Wang, M. Wang, Z. Li, M.C. Casimiro, M. Liu, K. Wu, J. Whittle, X. Ju, T. Hyslop, P. McCue, R.G. Pestell, A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182, 509–517 (2008)PubMedCrossRefGoogle Scholar
  126. 126.
    H. Becker, G. Marcucci, K. Maharry, M.D. Radmacher, K. Mrozek, D. Margeson, S.P. Whitman, Y.Z. Wu, S. Schwind, P. Paschka, B.L. Powell, T.H. Carter, J.E. Kolitz, M. Wetzler, A.J. Carroll, M.R. Baer, M.A. Caligiuri, R.A. Larson, C.D. Bloomfield, Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28, 596–604 (2010)PubMedCrossRefGoogle Scholar
  127. 127.
    Y. Pekarsky, A. Koval, C. Hallas, R. Bichi, M. Tresini, S. Malstrom, G. Russo, P. Tsichlis, C.M. Croce, Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc. Natl. Acad. Sci. U. S. A. 97, 3028–3033 (2000)PubMedCrossRefGoogle Scholar
  128. 128.
    R. Garzon, F. Pichiorri, T. Palumbo, M. Visentini, R. Aqeilan, A. Cimmino, H. Wang, H. Sun, S. Volinia, H. Alder, G.A. Calin, C.G. Liu, M. Andreeff, C.M. Croce, MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26, 4148–4157 (2007)PubMedCrossRefGoogle Scholar
  129. 129.
    D. Sampath, G.A. Calin, V.K. Puduvalli, G. Gopisetty, C. Taccioli, C.G. Liu, B. Ewald, C. Liu, M.J. Keating, W. Plunkett, Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood 113, 3744–3753 (2009)PubMedCrossRefGoogle Scholar
  130. 130.
    F. Isken, B. Steffen, S. Merk, M. Dugas, B. Markus, N. Tidow, M. Zuhlsdorf, T. Illmer, C. Thiede, W.E. Berdel, H. Serve, C. Muller-Tidow, Identification of acute myeloid leukaemia associated microRNA expression patterns. Br. J. Haematol. 140, 153–161 (2008)PubMedCrossRefGoogle Scholar
  131. 131.
    C. Langer, M.D. Radmacher, A.S. Ruppert, S.P. Whitman, P. Paschka, K. Mrozek, C.D. Baldus, T. Vukosavljevic, C.G. Liu, M.E. Ross, B.L. Powell, A. de la Chapelle, J.E. Kolitz, R.A. Larson, G. Marcucci, C.D. Bloomfield, High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study. Blood 111, 5371–5379 (2008)PubMedCrossRefGoogle Scholar
  132. 132.
    C. Xiao, D.P. Calado, G. Galler, T.H. Thai, H.C. Patterson, J. Wang, N. Rajewsky, T.P. Bender, K. Rajewsky, MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007)PubMedCrossRefGoogle Scholar
  133. 133.
    K. Machova Polakova, T. Lopotova, H. Klamova, P. Burda, M. Trneny, T. Stopka, J. Moravcova, Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer 10, 41 (2011)PubMedCrossRefGoogle Scholar
  134. 134.
    R. Garzon, F. Pichiorri, T. Palumbo, R. Iuliano, A. Cimmino, R. Aqeilan, S. Volinia, D. Bhatt, H. Alder, G. Marcucci, G.A. Calin, C.G. Liu, C.D. Bloomfield, M. Andreeff, C.M. Croce, MicroRNA fingerprints during human megakaryocytopoiesis. Proc. Natl. Acad. Sci. U. S. A. 103, 5078–5083 (2006)PubMedCrossRefGoogle Scholar
  135. 135.
    H. Bruchova, D. Yoon, A.M. Agarwal, J. Mendell, J.T. Prchal, Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp. Hematol. 35, 1657–1667 (2007)PubMedCrossRefGoogle Scholar
  136. 136.
    R.W. Georgantas 3rd, R. Hildreth, S. Morisot, J. Alder, C.G. Liu, S. Heimfeld, G.A. Calin, C.M. Croce, C.I. Civin, CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc. Natl. Acad. Sci. U. S. A. 104, 2750–2755 (2007)PubMedCrossRefGoogle Scholar
  137. 137.
    G. Marcucci, K. Mrozek, M.D. Radmacher, R. Garzon, C.D. Bloomfield, The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 117, 1121–1129 (2011)PubMedCrossRefGoogle Scholar
  138. 138.
    S. Debernardi, S. Skoulakis, G. Molloy, T. Chaplin, A. Dixon-McIver, B.D. Young, MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21, 912–916 (2007)PubMedGoogle Scholar
  139. 139.
    U. Thorsteinsdottir, A. Mamo, E. Kroon, L. Jerome, J. Bijl, H.J. Lawrence, K. Humphries, G. Sauvageau, Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99, 121–129 (2002)PubMedCrossRefGoogle Scholar
  140. 140.
    N. Felli, L. Fontana, E. Pelosi, R. Botta, D. Bonci, F. Facchiano, F. Liuzzi, V. Lulli, O. Morsilli, S. Santoro, M. Valtieri, G.A. Calin, C.G. Liu, A. Sorrentino, C.M. Croce, C. Peschle, MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. U. S. A. 102, 18081–18086 (2005)PubMedCrossRefGoogle Scholar
  141. 141.
    S.M. Tanner, J.L. Austin, G. Leone, L.J. Rush, C. Plass, K. Heinonen, K. Mrozek, H. Sill, S. Knuutila, J.E. Kolitz, K.J. Archer, M.A. Caligiuri, C.D. Bloomfield, A. de La Chapelle, BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc. Natl. Acad. Sci. U. S. A. 98, 13901–13906 (2001)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2012

Authors and Affiliations

  • Sadegh Babashah
    • 1
    Email author
  • Majid Sadeghizadeh
    • 1
  • Mostafa Rezaei Tavirani
    • 2
  • Shirin Farivar
    • 3
  • Masoud Soleimani
    • 4
    Email author
  1. 1.Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  2. 2.Proteomics Research Center, Faculty of Paramedical SciencesShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Faculty of Biological SciencesShahid Beheshti University, G.C.TehranIran
  4. 4.Department of Hematology, School of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations