Cellular Oncology

, Volume 34, Issue 4, pp 297–305 | Cite as

Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells

  • Eduardo Landerer
  • Jaime Villegas
  • Veronica A. Burzio
  • Luciana Oliveira
  • Claudio Villota
  • Constanza Lopez
  • Franko Restovic
  • Ronny Martinez
  • Octavio Castillo
  • Luis O. Burzio
Original Paper



We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and −2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria.


FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse.


In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli.


The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.


Mitochondria Cancer ncRNAs Nuclear localization Retrograde signaling 



We thank Mr. Alejandro Munizaga, Pontificia Universidad Catolica de Chile, for his excellent help on the electron microscopy analysis of the samples. This work was supported by Millennium Scientific Initiative N° P-77-09 F, Grants DI-34-09/R, DI-31-09/R and DI-28-09/R4, Universidad Andrés Bello, Grant D04I1338, Fondef, Grant 1085210 and Grant 11090060, Fondecyt and the CCTE-PFB16 Program, Conicyt, Chile


  1. 1.
    O. Warburg, On respiratory impairment in cancer cells. Science 124, 269–270 (1956)PubMedGoogle Scholar
  2. 2.
    J.S. Carew, P. Huang, Mitochondrial defects in cancer. Mol Cancer 1, 1–9 (2002)CrossRefGoogle Scholar
  3. 3.
    D.C. Wallace, W.W. Fan, The pathophysiology of mitochondrial disease as modeled in the mouse. Genes Dev 23, 1714–1736 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    G. Biswas, O.A. Adebanjo, B.D. Freedman, H.K. Anandatheerthavarada, C. Vijayasarathy, M. Zaidi, M. Kotlikoff, N.G. Avadhani, Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J 18, 522–533 (1999)PubMedCrossRefGoogle Scholar
  5. 5.
    G. Biswas, H.K. Anandatheerthavarada, N.G. Avadhani, Mechanism of mitochondrial stress-induced resistance to apoptosis in mitochondrial DNA-depleted C2C12 myocytes. Cell Death Differ 12, 266–278 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    G. Amuthan, G. Biswas, S.Y. Zhang, A. Klein-Szanto, C. Vijayasarathy, N.G. Avadhani, Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 20, 1910–1920 (2001)PubMedCrossRefGoogle Scholar
  7. 7.
    G. Amuthan, G. Biswas, H.K. Ananadatheerthavarada, C. Vijayasarathy, H.M. Shephard, N.G. Avadhani, Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21, 7839–7849 (2002)PubMedCrossRefGoogle Scholar
  8. 8.
    R.A. Butow, N.G. Avadhani, Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004)PubMedCrossRefGoogle Scholar
  9. 9.
    Z. Liu, R.A. Butow, Mitochondrial retrograde signaling. Annu Rev Genet 40, 159–185 (2006)PubMedCrossRefGoogle Scholar
  10. 10.
    M.T. Ryan, N.J. Hoogenraad, Mitochondrial-nuclear communications. Ann Rev Biochem 76, 701–722 (2007)PubMedCrossRefGoogle Scholar
  11. 11.
    G. Biswas, H.K. Anandatheerthavarada, M. Zaidi, N.G. Avadhani, Mitochondria to nucleus stress signaling: a distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta. J Cell Biol 161, 507–519 (2003)PubMedCrossRefGoogle Scholar
  12. 12.
    M. Guha, S. Srinivasan, G. Biswas, N.G. Avadhani, Activation of a novel calcineurin-mediated insulin-like growth factor-1 receptor pathway, altered metabolism, and tumor cell invasion in cells subjected to mitochondrial respiratory stress. J Biol Chem 282, 14536–14546 (2007)PubMedCrossRefGoogle Scholar
  13. 13.
    S.M. Schieke, T. Finkel, Mitochondrial signaling, TOR and life span. Biol Chem 387, 1357–1361 (2006)PubMedCrossRefGoogle Scholar
  14. 14.
    G. Biswas, S. Srinivasan, H.K. Anandatheerthavarada, N.G. Avadhani, Dioxin-mediated tumor progression through activation of mitochondria-to-nucleus stress signaling. Proc Natl Acad Sci U S A 105, 186–191 (2008)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Villegas, V.A. Burzio, C. Villota, E. Landerer, R. Martinez, R. Pinto, M.I. Vera, J. Castillo, L.O. Burzio, Expression of a novel non-coding mitochondrial RNA in human proliferating cells. Nucleic Acids Res 35, 7336–7347 (2007)PubMedCrossRefGoogle Scholar
  16. 16.
    V. Burzio, C. Villota, J. Villegas, E. Landerer, E. Boccardo, L.L. Villa, R. Martinez, C. Lopez, F. Gaete, V. Toro, X. Rodriguez, L.O. Burzio, Expression of a family of noncoding mitocondrial RNAs distinguishes normal from cancer cells. Proc Natl Acad Sci, USA 106, 9430–9434 (2009)PubMedCrossRefGoogle Scholar
  17. 17.
    N.D. Bonawitz, D.A. Clayton, G.S. Shadel, Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 24, 813–825 (2006)PubMedCrossRefGoogle Scholar
  18. 18.
    M. Falkenberg, N.G. Larsson, C.M. Gustafsson, DNA replication and transcription in mammalian mitochondria. Ann Rev Biochem 76(30), 1–30 (2007)Google Scholar
  19. 19.
    B. Goic, J. Bustamante, A. Miquel, M. Alvarez, M.I. Vera, P.D. Valenzuela, L.O. Burzio, The nucleoprotein and the viral RNA of infectious salmon anemia virus (ISAV) are localized in the nucleolus of infected cells. Virology 379, 55–63 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    S. Kobayashi, R. Amikura, M. Okada, Presence of mitochondrial large ribosomal RNA outside mitochondria in germ plasm of Drosophila melanogaster. Science 260, 1521–1524 (1993)PubMedCrossRefGoogle Scholar
  21. 21.
    F.J. Iborra, D.A. Jackson, P.R. Cook, The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J Cell Sci 113, 291–302 (2000)PubMedGoogle Scholar
  22. 22.
    D. Cmarko, S.O. Bøe, C. Scassellati, A.M. Szilvay, S. Davanger, X.D. Fu, G. Haukenes, K.H. Kalland, S. Fakan, Rev inhibition strongly affects intracellular distribution of human immunodeficiency virus type 1 RNAs. J Virol 76(2002), 10473–10484 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    R. Gelfand, G. Attardi, Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable. Mol Cell Biol 1, 497–511 (1981)PubMedGoogle Scholar
  24. 24.
    R.S. Puranam, G. Attardi, The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 21, 548–561 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    G. Wang, H.W. Chen, Y. Oktay, J. Zhang, E.L. Allen, G.M. Smith, K.C. Fan, J.S. Hong, S.W. French, J.M. McCaffery, R.N. Lightowlers, H.C. Morse, C.M. Kehler, M.A. Teitell, PNPASE regulates RNA import into mitochondria. Cell 142, 456–467 (2010)PubMedCrossRefGoogle Scholar
  26. 26.
    M.P. King, G. Attardi, Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989)PubMedCrossRefGoogle Scholar
  27. 27.
    T. Hayakawa, M. Noda, K. Yasuda, H. Yorifuji, S. Taniguchi, I. Miwa, H. Sakura, Y. Terauchi, J. Hayashi, G.W. Sharp, Y. Kanazawa, Y. Akanuma, Y. Yazaki, T. Kadowaki, Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic b-cell line bHC9. J Biol Chem 273, 20300–20307 (1998)PubMedCrossRefGoogle Scholar
  28. 28.
    J.E. Sligh, S.E. Levy, K.G. Waymire, P. Allard, D.L. Dillehay, S. Nusinowitz, J.R. Heckenlively, G.R. MacGregor, D.C. Wallace, Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad, Sci USA 97, 14461–14466 (2000)CrossRefGoogle Scholar
  29. 29.
    Q. Felty, K.P. Singh, D. Roy, Estrogen-induced G1/S transition of G0 arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene 24, 4883–4893 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    A. Rego, P.B. Sinclair, W. Tao, I. Kireev, A.S. Belmont, The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J Cell Sci 121, 1119–1127 (2008)PubMedCrossRefGoogle Scholar
  31. 31.
    A. Chacinska, C.M. Koehler, D. Milenkovic, T. Lithgow, N. Pfanner, Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009)PubMedCrossRefGoogle Scholar
  32. 32.
    D.J. Pagliarini, S.E. Calvo, B. Chang, S.A. Sheth, S.B. Vafai, S.E. Ong, G.A. Walford, C. Sugiana, A. Boneh, W.K. Chen, D.E. Hill, M. Vidal, J.G. Evans, D.R. Thorburn, S.A. Carr, V.K. Mootha, A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    J.D. Alfonzo, D. Söll, Mitochondrial tRNA import–the challenge to understand has just begun. Biol Chem 390, 717–722 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    A. Smirnov, C. Comte, A.-M. Mager-Heckel, V. Addis, I.A. Krasheninnikov, R.P. Martin, E. Entelis, I. Tarassov, Mitochondrial enzyme rhodanese is essential for 5 S ribosomal RNA import into human mitochondria. J Biol Chem 285(2010), 30792–30803 (2010)PubMedCrossRefGoogle Scholar
  35. 35.
    B.T. Kren, P.Y. Wong, A. Sarver, X. Zhang, Y. Zeng, C.J. Steer, MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol 6, 65–72 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2011

Authors and Affiliations

  • Eduardo Landerer
    • 3
  • Jaime Villegas
    • 1
    • 2
  • Veronica A. Burzio
    • 1
    • 2
  • Luciana Oliveira
    • 1
  • Claudio Villota
    • 1
  • Constanza Lopez
    • 1
  • Franko Restovic
    • 1
  • Ronny Martinez
    • 1
  • Octavio Castillo
    • 3
    • 4
  • Luis O. Burzio
    • 1
    • 2
  1. 1.Andes Biotechnologies SA and Fundación Ciencia para la VidaSantiagoChile
  2. 2.Laboratorio de Biología Celular y MolecularFacultad de Ciencias Biologicas, Universidad Andrés BelloSantiagoChile
  3. 3.Facultad de MedicinaUniversidad Andrés BelloSantiagoChile
  4. 4.Clínica Indisa, VitacuraSantiagoChile

Personalised recommendations