Cellular Oncology

, Volume 34, Issue 1, pp 55–67 | Cite as

Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors

  • Constantin Jotzu
  • Eckhard Alt
  • Gabriel Welte
  • Jie Li
  • Bryan T. Hennessy
  • Eswaran Devarajan
  • Srinivasalu Krishnappa
  • Severin Pinilla
  • Lilly Droll
  • Yao-Hua Song
Original Paper



Carcinoma-associated fibroblasts (CAF) are considered to contribute to tumor growth, invasion and metastasis. However, the cell type of origin remains unknown. Since human adipose tissue derived stem cells (hASCs) are locally adjacent to breast cancer cells and might directly interact with tumor cells, we investigated whether CAFs may originate from hASCs.


hASCs cultured under different conditions were quantified for the expression of alpha smooth muscle actin. ELISA was performed using the human TGFβ1, SDF-1α and CCL5 Quantikine Kit. The invasion potential of MDAMB231 cancer cells was evaluated using a Boyden chamber with filter inserts coated with Matrigel in 24-well dishes.


We demonstrated that a significant percentage of hASCs differentiated into a CAF-like myofibroblastic phenotype (e.g. expression of alpha smooth muscle actin and tenascin-C) when exposed to conditioned medium from the human breast cancer lines MDAMB231 and MCF7. The conditioned medium from MDAMB231 and MCF7 contains significant amounts of transforming growth factor-beta 1 (TGFβ1) and the differentiation of hASCs towards CAFs is dependent on TGFβ1 signaling via Smad3 in hASCs. The induction of CAFs can be abolished using a neutralizing antibody to TGFβ1 as well as by pretreatment of the hASCs with SB431542, a TGFβ1 receptor kinase inhibitor. Additionally, we found that these hASC-derived CAF-like cells exhibit functional properties of CAFs, including the ability to promote tumor cell invasion in an in vitro invasion assay, as well as increased expression of stromal-cell derived factor 1 (SDF-1) and CCL5.


Our data suggest that hASCs are a source of CAFs which play an important role in the tumor invasion.


Breast cancer Mesenchymal stem cells Carcinoma-associated fibroblasts Transforming growth factor-beta 1 Invasion 



This research was supported in part by the Department of Defense Breast Cancer Research Program W81XWH-08-1-0523 01 (to YHS) and by the Alliance of Cardiovascular Researchers (to EA).We thank Feras J Abdul Khalek and Christoph Beckmann for their technical assistance. The authors are also grateful to Dr. Sendurai Mani for helpful comments on this study.

Supplementary material

13402_2011_12_MOESM1_ESM.ppt (105 kb)
Supplementary Figure 1MCF7 conditioned medium stimulates the secretion of SDF-1α from hASCs. Protein levels of SDF-1α secreted from hASCs exposed to MCF7 conditioned medium over time (12–72 h) were measured by ELISA. The experiment was repeated three times. *P < 0.002 and **P < 0.0003 versus 12 h MCF7 CM. SDF-1α: stromal cell-derived factor 1 alpha; CM: conditioned medium. (PPT 105 kb)


  1. 1.
    W.O. De, P. Demetter, M. Mareel, M. Bracke, Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123, 2229–2238 (2008)CrossRefGoogle Scholar
  2. 2.
    L.A. Kunz-Schughart, R. Knuechel, Tumor-associated fibroblasts (part I): Active stromal participants in tumor development and progression? Histol. Histopathol. 17, 599–621 (2002)PubMedGoogle Scholar
  3. 3.
    A.P. Sappino, O. Skalli, B. Jackson, W. Schurch, G. Gabbiani, Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int. J. Cancer 41, 707–712 (1988)PubMedCrossRefGoogle Scholar
  4. 4.
    A. Orimo, P.B. Gupta, D.C. Sgroi, F. Renzana-Seisdedos, T. Delaunay, R. Naeem, V.J. Carey, A.L. Richardson, R.A. Weinberg, Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005)PubMedCrossRefGoogle Scholar
  5. 5.
    A. Muller, B. Homey, H. Soto, N. Ge, D. Catron, M.E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S.N. Wagner, J.L. Barrera, A. Mohar, E. Verastegui, A. Zlotnik, Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001)PubMedCrossRefGoogle Scholar
  6. 6.
    W.O. De, Q.D. Nguyen, H.L. Van, M. Bracke, E. Bruyneel, C. Gespach, M. Mareel, Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18, 1016–1018 (2004)Google Scholar
  7. 7.
    T. Tsujino, I. Seshimo, H. Yamamoto, C.Y. Ngan, K. Ezumi, I. Takemasa, M. Ikeda, M. Sekimoto, N. Matsuura, M. Monden, Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin. Cancer Res. 13, 2082–2090 (2007)PubMedCrossRefGoogle Scholar
  8. 8.
    C. Yazhou, S. Wenlv, Z. Weidong, W. Licun, Clinicopathological significance of stromal myofibroblasts in invasive ductal carcinoma of the breast. Tumour. Biol. 25, 290–295 (2004)PubMedCrossRefGoogle Scholar
  9. 9.
    I. Haviv, K. Polyak, W. Qiu, M. Hu, I. Campbell, Origin of carcinoma associated fibroblasts. Cell Cycle 8, 589–595 (2009)PubMedCrossRefGoogle Scholar
  10. 10.
    L. Ronnov-Jessen, O.W. Petersen, Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68, 696–707 (1993)PubMedGoogle Scholar
  11. 11.
    N.C. Direkze, K. Hodivala-Dilke, R. Jeffery, T. Hunt, R. Poulsom, D. Oukrif, M.R. Alison, N.A. Wright, Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492–8495 (2004)PubMedCrossRefGoogle Scholar
  12. 12.
    G. Ishii, T. Sangai, T. Oda, Y. Aoyagi, T. Hasebe, N. Kanomata, Y. Endoh, C. Okumura, Y. Okuhara, J. Magae, M. Emura, T. Ochiya, A. Ochiai, Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem. Biophys. Res. Commun. 309, 232–240 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    P.J. Mishra, P.J. Mishra, R. Humeniuk, D.J. Medina, G. Alexe, J.P. Mesirov, S. Ganesan, J.W. Glod, D. Banerjee, Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68, 4331–4339 (2008)PubMedCrossRefGoogle Scholar
  14. 14.
    J.M. Gimble, A.J. Katz, B.A. Bunnell, Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249–1260 (2007)PubMedCrossRefGoogle Scholar
  15. 15.
    P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001)PubMedCrossRefGoogle Scholar
  16. 16.
    S.Pinilla, E. Alt, F.J. Bdul Khalek, C. Jotzu, F. Muehlberg, C. Beckmann, Y.H. Song, Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett. (2009)Google Scholar
  17. 17.
    X. Bai, J. Ma, Z. Pan, Y.H. Song, S. Freyberg, Y. Yan, D. Vykoukal, E. Alt, Electrophysiological properties of human adipose tissue-derived stem cells. Am. J. Physiol Cell Physiol 293, C1539–C1550 (2007)PubMedCrossRefGoogle Scholar
  18. 18.
    X. Bai, S. Sadat, S. Gehmert, E. Alt, Y.H. Song, VEGF receptor Flk-1 plays an important role in c-kit expression in adipose tissue derived stem cells. FEBS Lett. 581, 4681–4684 (2007)PubMedCrossRefGoogle Scholar
  19. 19.
    B. Hu, Z. Wu, S.H. Phan, Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am. J. Respir. Cell Mol. Biol. 29, 397–404 (2003)PubMedCrossRefGoogle Scholar
  20. 20.
    J. Massague, TGFbeta in cancer. Cell 134, 215–230 (2008)PubMedCrossRefGoogle Scholar
  21. 21.
    E.L. Spaeth, J.L. Dembinski, A.K. Sasser, K. Watson, A. Klopp, B. Hall, M. Andreeff, F. Marini, Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS. One. 4, e4992 (2009)PubMedCrossRefGoogle Scholar
  22. 22.
    J.A. Tuxhorn, G.E. Ayala, D.R. Rowley, Reactive stroma in prostate cancer progression. J. Urol. 166, 2472–2483 (2001)PubMedCrossRefGoogle Scholar
  23. 23.
    B.A. Teicher, Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev. 20, 133–143 (2001)PubMedCrossRefGoogle Scholar
  24. 24.
    M.M. Webber, N. Trakul, P.S. Thraves, D. Bello-DeOcampo, W.W. Chu, P.D. Storto, T.K. Huard, J.S. Rhim, D.E. Williams, A human prostatic stromal myofibroblast cell line WPMY-1: a model for stromal-epithelial interactions in prostatic neoplasia. Carcinogenesis 20, 1185–1192 (1999)PubMedCrossRefGoogle Scholar
  25. 25.
    D. Wang, J.S. Park, J.S. Chu, A. Krakowski, K. Luo, D.J. Chen, S. Li, Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J. Biol. Chem. 279, 43725–43734 (2004)PubMedCrossRefGoogle Scholar
  26. 26.
    J.A. Burger, T.J. Kipps, CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107, 1761–1767 (2006)PubMedCrossRefGoogle Scholar
  27. 27.
    F.L. Muehlberg, Y.H. Song, A. Krohn, S.P. Pinilla, L.H. Droll, X. Leng, M. Seidensticker, J. Ricke, A.M. Altman, E. Devarajan, W. Liu, R.B. Arlinghaus, E.U. Alt, Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30, 589–597 (2009)PubMedCrossRefGoogle Scholar
  28. 28.
    E.S. Jeon, H.J. Moon, M.J. Lee, H.Y. Song, Y.M. Kim, M. Cho, D.S. Suh, M.S. Yoon, C.L. Chang, J.S. Jung, J.H. Kim, Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells 26, 789–797 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Allinen, R. Beroukhim, L. Cai, C. Brennan, J. Lahti-Domenici, H. Huang, D. Porter, M. Hu, L. Chin, A. Richardson, S. Schnitt, W.R. Sellers, K. Polyak, Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17–32 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    A. Orimo, R.A. Weinberg, Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2011

Authors and Affiliations

  • Constantin Jotzu
    • 1
  • Eckhard Alt
    • 1
  • Gabriel Welte
    • 1
  • Jie Li
    • 2
  • Bryan T. Hennessy
    • 2
  • Eswaran Devarajan
    • 1
  • Srinivasalu Krishnappa
    • 1
  • Severin Pinilla
    • 1
  • Lilly Droll
    • 1
  • Yao-Hua Song
    • 1
    • 3
  1. 1.Department of Molecular PathologyUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  2. 2.Department of Systems Biology and Gynecologic Medical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  3. 3.University of Texas, MD Anderson Cancer CenterHoustonUSA

Personalised recommendations