Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction

  • Ebru Kurtulbaş
  • Ayşe Gizem Pekel
  • Mehmet Bilgin
  • Dimitris P. Makris
  • Selin ŞahinEmail author
Original Article


In the current study, Hibiscus sabdariffa has been extracted by microwave-assisted extraction (MAEX). Citric acid-based deep eutectic solvents (DES) have been specially designed, where a hydrogen bond donor (HBD) (glycerol and ethylene glycol) and a hydrogen bond acceptor (HBA) (citric acid) with a certain molar ratio (1/4) were used. After the best DES (citric acid/ethylene glycol) has been decided to extract the bioactive ingredients, operation conditions (power of microwave, volume of solvent water and content in the DES) of the MAEX for the relevant plant material have been optimized through Box-Behnken design (BBD) of response surface approach (RSA). The maximum yields of total phenolics (TP), total anthocyanins (TAA) and antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) have been found as 31.897 mg-GAE/g-DH, 2.961 mg-C3G/g-DH and 95.887% under the optimal conditions (35 mL DES including 50% water (v/v) at 550 W power of microwave). The differences between the experimental and estimated findings were lower than 2%. Three replicate test results obtained by in vitro experiments were also statistically analysed by using one-way analysis of variance (ANOVA) test.

Graphical abstract


Deep eutectic solvent Anthocyanin Antioxidant activity Hibiscus sabdariffa Microwave-assisted extraction Box-Behnken 



The authors thank the Research Fund of Istanbul University-Cerrahpaşa for the financial support for this research project (Project No: BYP-2019-34032).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Riaz G, Chopra R (2018) A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed Pharmacother 102:575–586. CrossRefGoogle Scholar
  2. 2.
    Odigie IP, Ettarh RR, Adigun SA (2003) Chronic administration of aqueous extract of Hibiscus sabdariffa attenuates hypertension and reverses cardiac hypertrophy in 2K-1C hypertensive rats. J Ethnopharmacol 86:181–185. CrossRefGoogle Scholar
  3. 3.
    Beltrán-Debón R, Alonso-Villaverde C, Aragonès G et al (2010) The aqueous extract of Hibiscus sabdariffa calices modulates the production of monocyte chemoattractant protein-1 in humans. Phytomedicine 17:186–191. CrossRefGoogle Scholar
  4. 4.
    Yang M-Y, Peng C-H, Chan K-C, Yang YS, Huang CN, Wang CJ (2010) The hypolipidemic effect of Hibiscus sabdariffa polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance. J Agric Food Chem 58:850–859. CrossRefGoogle Scholar
  5. 5.
    Alshami I, Alharbi AE (2014) Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections. Asian Pac J Trop Biomed 4:104–108. CrossRefGoogle Scholar
  6. 6.
    Borrás-Linares I, Fernández-Arroyo S, Arráez-Roman D et al (2015) Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind Crop Prod 69:385–394. CrossRefGoogle Scholar
  7. 7.
    Tsai T-C, Huang H-P, Chang Y-C, Wang C-J (2014) An anthocyanin-rich extract from Hibiscus sabdariffa Linnaeus inhibits N -nitrosomethylurea-induced leukemia in rats. J Agric Food Chem 62:1572–1580. CrossRefGoogle Scholar
  8. 8.
    Chang YC, Huang HP, Hsu JD, Yang SF, Wang CJ (2005) Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Toxicol Appl Pharmacol 205:201–212. CrossRefGoogle Scholar
  9. 9.
    Zhen J, Villani TS, Guo Y, Qi Y, Chin K, Pan MH, Ho CT, Simon JE, Wu Q (2016) Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem 190:673–680. CrossRefGoogle Scholar
  10. 10.
    Maciel LG, do Carmo MAV, Azevedo L et al (2018) Hibiscus sabdariffa anthocyanins-rich extract: chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem Toxicol 113:187–197. CrossRefGoogle Scholar
  11. 11.
    Ochoa-Velasco CE, Ruiz-López II (2019) Mass transfer modeling of the antioxidant extraction of roselle flower (Hibiscus sabdariffa). J Food Sci Technol 56:1008–1015. CrossRefGoogle Scholar
  12. 12.
    Fernández-Arroyo S, Rodríguez-Medina IC, Beltrán-Debón R et al (2011) Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Res Int 44:1490–1495. CrossRefGoogle Scholar
  13. 13.
    Almeida PS, Nascimento CCHC, Nascimento SF, Gomes ML, De Vasconcelos SDD, Azevedo LAC, Stephens PRS, Diré GF, Barreto AS (2018) Evaluation of the antioxidant, antimicrobial, cytotoxic and genotoxic activities of the aqueous extract of chalices of Hibiscus Sabdariffa Linn. Eur J Biomed Pharm Sci 5:31–44Google Scholar
  14. 14.
    Tsai PJ, McIntosh J, Pearce P et al (2002) Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Food Res Int 35:351–356. CrossRefGoogle Scholar
  15. 15.
    Anokwuru CP, Esiaba J, Ajibaye O, Adesuyi AO (2011) Polyphenolic content and antioxidant activity of hibiscus sabdariffa calyx. Res J Med Plant 5:557–566. CrossRefGoogle Scholar
  16. 16.
    Ajiboye TO, Salawu NA, Yakubu MT et al (2011) Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract. Drug Chem Toxicol 34:109–115. CrossRefGoogle Scholar
  17. 17.
    Sindi HA, Marshall LJ, Morgan MRA (2014) Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chem 164:23–29. CrossRefGoogle Scholar
  18. 18.
    Zhang Q, De Oliveira VK, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146. CrossRefGoogle Scholar
  19. 19.
    Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38:1053–1064. CrossRefGoogle Scholar
  20. 20.
    Radošević K, Cvjetko Bubalo M, Gaurina Srček V et al (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf 112:46–53. CrossRefGoogle Scholar
  21. 21.
    Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. CrossRefGoogle Scholar
  22. 22.
    Şahin S, Samli R, Tan ASB et al (2017) Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: antioxidant and antimicrobial properties. Molecules 22:1056. CrossRefGoogle Scholar
  23. 23.
    Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal 13:105–113. CrossRefGoogle Scholar
  24. 24.
    Duan L, Dou L-L, Guo L, Li P, Liu E-H (2016) Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chem Eng 4:2405–2411CrossRefGoogle Scholar
  25. 25.
    Şahin S (2015) A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: solvent-free microwave extraction. Korean J Chem Eng 32:950–957. CrossRefGoogle Scholar
  26. 26.
    Ateş F, Şahin S, İlbay Z, Kırbaşlar Şİ (2017) A green valorisation approach using microwaves and supercritical CO2 for high-added value ingredients from mandarin (Citrus deliciosa Tenore) leaf waste. Waste and Biomass Valorization 1–14. doi: CrossRefGoogle Scholar
  27. 27.
    Malik NSA, Bradford JM (2008) Recovery and stability of oleuropein and other phenolic compounds during extraction and processing of olive (Olea europaea L.) leaves. J Food Agric Environ 6:8–13Google Scholar
  28. 28.
    Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278Google Scholar
  29. 29.
    Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr Protoc Food Anal Chem 00:F1.2.1–F1.2.13. CrossRefGoogle Scholar
  30. 30.
    Şahin S, Şamli R (2013) Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason Sonochem 20:595–602CrossRefGoogle Scholar
  31. 31.
    Kurtulbaş E, Bilgin M, Şahin S (2018) Assessment of lipid oxidation in cottonseed oil treated with phytonutrients: kinetic and thermodynamic studies. Ind Crop Prod 124:593–599. CrossRefGoogle Scholar
  32. 32.
    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. CrossRefGoogle Scholar
  33. 33.
    Kurtulbaş E, Yazar S, Makris D, Şahin S (2019) Optimization of bioactive substances in the wastes of some selective Mediterranean crops. Beverages 5:42. CrossRefGoogle Scholar
  34. 34.
    Elhussein EAA, Kurtulbaş E, Bilgin M, Birteksöz Tan AS, Hacıoğlu M, Şahin S (2018) Screening of the most consumed beverages and spices for their bioactive non-nutrient contents. J Food Meas Charact 12:2289–2301. CrossRefGoogle Scholar
  35. 35.
    Liuqing Y, Ying G, Ting Z et al (2012) Antioxidant capacity of extracts from calyx fruits of roselle (Hibiscus sabdariffa L.). Afr J Biotechnol 11:4063–4068. CrossRefGoogle Scholar
  36. 36.
    Peng X, Duan M-H, Yao X-H et al (2016) Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. Sep Purif Technol 157:249–257. CrossRefGoogle Scholar
  37. 37.
    Park HE, Tang B, Row KH (2014) Application of deep eutectic solvents as additives in ultrasonic extraction of two phenolic acids from Herba Artemisiae Scopariae. Anal Lett 47:1476–1484. CrossRefGoogle Scholar
  38. 38.
    Xia B, Yan D, Bai Y et al (2015) Determination of phenolic acids in Prunella vulgaris L.: a safe and green extraction method using alcohol-based deep eutectic solvents. Anal Methods 7:9354–9364. CrossRefGoogle Scholar
  39. 39.
    Jagadish BS, Ray A (2016) Prediction and optimization of process parameters of green composites in AWJM process using response surface methodology. Int J Adv Manuf Technol 87:1359–1370. CrossRefGoogle Scholar
  40. 40.
    Elez Garofulić I, Dragović-Uzelac V, Režek Jambrak A, Jukić M (2013) The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). J Food Eng 117:437–442. CrossRefGoogle Scholar
  41. 41.
    Zheng X, Liu B, Li L, Zhu X (2011) Microwave-assisted extraction and antioxidant activity of total phenolic compounds from pomegranate peel. J Med Plant Res 5:1004–1011Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentIstanbul University - CerrahpaşaIstanbulTurkey
  2. 2.School of Agricultural Sciences, Green Processes & Biorefinery GroupUniversity of ThessalyKarditsaGreece

Personalised recommendations