Advertisement

A simple fractionation method and GPC analysis of organosolv extracts obtained from lignocellulosic materials

  • Pedro Andreo-MartínezEmail author
  • Víctor Manuel Ortiz-MartínezEmail author
  • Nuria García-Martínez
  • Francisco José Hernández-Fernández
  • Antonia Pérez de los Ríos
  • Joaquín Quesada-MedinaEmail author
Original Article

Abstract

The elucidation of lignin structural features is necessary for the efficient application of this polymer. Fractionation is an effective technique to achieve homogeneous lignin fractions, helping to better understand its composition and structure, and improving its use as source of phenolic compounds. This work develops a new and simple fractionation method of organosolv extracts obtained from lignocellulosic materials that enables the selective separation of lignin (from complex macromolecules to low molecular weight aromatic compounds originated from their degradation) from saccharides derived from hemicelluloses and cellulose. For this purpose, the non-catalytic organosolv extraction of lignin from almond shells was performed with dioxane/water mixtures and then the successful fractionation of the organosolv extracts with anhydrous tetrahydrofuran was achieved, resulting in the selective separation of lignin (lignin fraction) from saccharides (saccharide fraction). Gel permeation chromatography (GPC), thioacidolysis, and GC-MS were used as analytical methods to qualitatively determine the purity of both fractions. In addition, GPC was also used to quantify the content of lignin monomers and furfural in the organosolv extracts, thus allowing valuable information on the state of degradation of the lignin and hemicelluloses extracted to be obtained, respectively. The application of the GPC method also enabled the determination of the molecular weight distribution of the extracted lignin in the same analysis.

Graphical abstract

Keywords

Lignocellulosic biomass Lignin Organosolv extract Fractionation Gel permeation chromatography 

Notes

Acknowledgments

This work was supported by the funds of the Green Chemical Process Engineering research group of the University of Murcia (Spain). The authors also would like to thank Ms. Seonaid McNabb for her English revision.

Supplementary material

13399_2019_593_MOESM1_ESM.docx (386 kb)
ESM 1 (DOCX 386 kb)

References

  1. 1.
    Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7.  https://doi.org/10.1186/s40643-017-0137-9 CrossRefGoogle Scholar
  2. 2.
    Sun Y-C, Wang M, Sun R-C (2015) Toward an understanding of inhomogeneities in structure of lignin in green solvents biorefinery. Part 1: fractionation and characterization of lignin. ACS Sustain Chem Eng 3(10):2443–2451.  https://doi.org/10.1021/acssuschemeng.5b00809 CrossRefGoogle Scholar
  3. 3.
    Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci $V 62:1–190.  https://doi.org/10.1016/J.PECS.2017.05.004 CrossRefGoogle Scholar
  4. 4.
    Liu HC, Chien A-T, Newcomb BA, Liu Y, Kumar S (2015) Processing, structure, and properties of lignin- and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain Chem Eng 3(9):1943–1954.  https://doi.org/10.1021/acssuschemeng.5b00562 CrossRefGoogle Scholar
  5. 5.
    Machineni L (2019) Lignocellulosic biofuel production: review of alternatives. Biomass Convers Bior:1–13.  https://doi.org/10.1007/s13399-019-00445-x
  6. 6.
    Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3. Biotech 5(4):337–353.  https://doi.org/10.1007/s13205-014-0246-5 CrossRefGoogle Scholar
  7. 7.
    Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3(11):1227–1235.  https://doi.org/10.1002/cssc.201000157 CrossRefGoogle Scholar
  8. 8.
    Wang K, Yang H, Guo S, Yao X, Sun R-C (2014) Comparative characterization of degraded lignin polymer from the organosolv fractionation process with various catalysts and alcohols. J Appl Polym Sci 131(1).  https://doi.org/10.1002/app.39673 Google Scholar
  9. 9.
    Galkin MV, Samec JSM (2016) Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9(13):1544–1558.  https://doi.org/10.1002/cssc.201600237 CrossRefGoogle Scholar
  10. 10.
    Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part II: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102(5):4157–4164.  https://doi.org/10.1016/j.biortech.2010.11.063 CrossRefGoogle Scholar
  11. 11.
    Sebhat W, El-Roz A, Crepet A, Ladavière C, Perez DDS, Mangematin S, Almada CC, Vilcocq L, Djakovitch L, Fongarland P (2019) Comparative study of solvolysis of technical lignins in flow reactor. Biomass Convers Bior:1–16.  https://doi.org/10.1007/s13399-019-00435-z
  12. 12.
    Quesada-Medina J, Lopez-Cremades FJ, Olivares-Carrillo P (2010) Organosolv extraction of lignin from hydrolyzed almond shells and application of the delta-value theory. Bioresour Technol 101(21):8252–8260.  https://doi.org/10.1016/j.biortech.2010.06.011 CrossRefGoogle Scholar
  13. 13.
    Borand MN, Karaosmanoğlu F (2018) Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J Renew Sustain Energy 10(3):033104.  https://doi.org/10.1063/1.5025876 CrossRefGoogle Scholar
  14. 14.
    de la Torre MJ, Moral A, Dolores Hernández M, Cabeza E, Tijero A (2013) Organosolv lignin for biofuel 45. doi: https://doi.org/10.1016/j.indcrop.2012.12.002 CrossRefGoogle Scholar
  15. 15.
    Ruiz HA, Ruzene DS, Silva DP, da Silva FFM, Vicente AA, Teixeira JA (2011) Development and characterization of an environmentally friendly process sequence (autohydrolysis and Organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164(5):629–641.  https://doi.org/10.1007/s12010-011-9163-9 CrossRefGoogle Scholar
  16. 16.
    Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815.  https://doi.org/10.1007/s00253-009-1883-1 CrossRefGoogle Scholar
  17. 17.
    Passoni V, Scarica C, Levi M, Turri S, Griffini G (2016) Fractionation of industrial softwood Kraft lignin: solvent selection as a tool for tailored material properties. ACS Sustain Chem Eng 4(4):2232–2242.  https://doi.org/10.1021/acssuschemeng.5b01722 CrossRefGoogle Scholar
  18. 18.
    Kim J-Y, Johnston PA, Lee JH, Smith RG, Brown RC (2019) Improving lignin homogeneity and functionality via ethanolysis for production of antioxidants. ACS Sustain Chem Eng 7(3):3520–3526.  https://doi.org/10.1021/acssuschemeng.8b05769 CrossRefGoogle Scholar
  19. 19.
    Teramoto Y, Lee S-H, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99(18):8856–8863.  https://doi.org/10.1016/j.biortech.2008.04.049 CrossRefGoogle Scholar
  20. 20.
    Sidiras DK, Salapa IS Organosolv pretreatment as a major step of lignocellulosic biomass refining. In: Biorefinery I: chemicals and materials from thermo-chemical biomass conversion and related processes, 2015Google Scholar
  21. 21.
    Hundt M, Schnitzlein K, Schnitzlein M (2013) Alkaline polyol pulping and enzymatic hydrolysis of hardwood: effect of pulping severity and pulp composition on cellulase activity and overall sugar yield, vol 136C. doi: https://doi.org/10.1016/j.biortech.2013.02.084 CrossRefGoogle Scholar
  22. 22.
    Ligero P, Villaverde JJ, de Vega A, Bao M (2008) Delignification of Eucalyptus globulus saplings in two organosolv systems (formic and acetic acid): preliminary analysis of dissolved lignins. Ind Crop Prod 27(1):110–117.  https://doi.org/10.1016/j.indcrop.2007.08.008 CrossRefGoogle Scholar
  23. 23.
    Chen H, Zhao J, Hu T, Zhao X, Liu D (2015) A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: substrate digestibility, fermentability and structural features. Appl Energy 150:224–232.  https://doi.org/10.1016/j.apenergy.2015.04.030 CrossRefGoogle Scholar
  24. 24.
    Gong D, Holtman KM, Franqui-Espiet D, Orts WJ, Zhao R (2011) Development of an integrated pretreatment fractionation process for fermentable sugars and lignin: application to almond (Prunus dulcis) shell. Biomass Bioenergy 35(10):4435–4441.  https://doi.org/10.1016/j.biombioe.2011.08.022 CrossRefGoogle Scholar
  25. 25.
    Jiménez L, de la Torre MJ, Maestre F, Ferrer JL, Pérez I (1997) Organosolv pulping of wheat straw by use of phenol. Bioresour Technol 60(3):199–205.  https://doi.org/10.1016/S0960-8524(97)00028-X CrossRefGoogle Scholar
  26. 26.
    Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. In: Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. doi: https://doi.org/10.1002/9780470975831.ch10 CrossRefGoogle Scholar
  27. 27.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908.  https://doi.org/10.1039/c7cs00566k CrossRefGoogle Scholar
  28. 28.
    Lancefield C, Panovic I, Deuss P, Barta K, Westwood N (2016) Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem 19.  https://doi.org/10.1039/C6GC02739C CrossRefGoogle Scholar
  29. 29.
    Merklein K, Fong S, Deng Y (2016) Biomass utilization. In: Biotechnology for biofuel production and optimization, pp 291–324.  https://doi.org/10.1016/B978-0-444-63475-7.00011-X CrossRefGoogle Scholar
  30. 30.
    Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068.  https://doi.org/10.1016/j.biortech.2006.10.018 CrossRefGoogle Scholar
  31. 31.
    Rohde V, Böringer S, Tübke B, Adam C, Dahmen N, Schmiedl D (2019) Fractionation of three different lignins by thermal separation techniques—a comparative study. GCB Bioenergy 11(1):206–217.  https://doi.org/10.1111/gcbb.12546 CrossRefGoogle Scholar
  32. 32.
    Dominguez-Robles J, Tamminen T, Liitia T, Peresin MS, Rodriguez A, Jaaskelainen AS (2018) Aqueous acetone fractionation of Kraft, organosolv and soda lignins. Int J Biol Macromol 106:979–987.  https://doi.org/10.1016/j.ijbiomac.2017.08.102 CrossRefGoogle Scholar
  33. 33.
    Mörck R, Yoshida H, Kringstad KP, Hatakeyama H (1986) Fractionation of Kraft lignin by successive extraction with organic solvents. 1. Functional groups (13) C-NMR-spectra and molecular weight distributions. Holzforschung (Germany, FR)Google Scholar
  34. 34.
    Kumar N, Vijayshankar S, Pasupathi P, Nirmal Kumar S, Elangovan P, Rajesh M, Tamilarasan K (2018) Optimal extraction, sequential fractionation and structural characterization of soda lignin. Res Chem Intermed:44, 5403–5417.  https://doi.org/10.1007/s11164-018-3430-0 CrossRefGoogle Scholar
  35. 35.
    Ropponen J, Räsänen L, Rovio S, Ohra-aho T, Liitiä T, Mikkonen H, van de Pas D, Tamminen T (2011) Solvent extraction as a means of preparing homogeneous lignin fractions. Holzforschung 65(4):543–549.  https://doi.org/10.1515/HF.2011.089 CrossRefGoogle Scholar
  36. 36.
    Wang K, Xu F, Sun R (2010) Molecular characteristics of Kraft-AQ pulping lignin fractionated by sequential organic solvent extraction. Int J Mol Sci 11(8):2988–3001.  https://doi.org/10.3390/ijms11082988 CrossRefGoogle Scholar
  37. 37.
    Costa C, Pinto P, Rodrigues A (2017) Lignin fractionation from E. globulus kraft liquor by ultrafiltration in a three stage membrane sequence, vol 192. doi: https://doi.org/10.1016/j.seppur.2017.09.066 CrossRefGoogle Scholar
  38. 38.
    Liu E, Li M, Das L, Pu Y, Frazier T, Zhao B, Crocker M, Ragauskas AJ, Shi J (2018) Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid. ACS Sustain Chem Eng 6(5):6612–6623.  https://doi.org/10.1021/acssuschemeng.8b00384 CrossRefGoogle Scholar
  39. 39.
    Nanayakkara S, Patti AF, Saito K (2014) Lignin Depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sustain Chem Eng 2(9):2159–2164.  https://doi.org/10.1021/sc5003424 CrossRefGoogle Scholar
  40. 40.
    Prado R, Erdocia X, De Gregorio GF, Labidi J, Welton T (2016) Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustain Chem Eng 4(10):5277–5288.  https://doi.org/10.1021/acssuschemeng.6b00642 CrossRefGoogle Scholar
  41. 41.
    Cai C, Nagane N, Kumar R, Wyman C (2014) Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem.  https://doi.org/10.1039/C4GC00747F CrossRefGoogle Scholar
  42. 42.
    Cai C, Kumar R, Zhang T, Wyman C (2013) THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem 15:3140–3145.  https://doi.org/10.1039/C3GC41214H CrossRefGoogle Scholar
  43. 43.
    Smith M, Mostofian B, Cheng X, Petridis L, Cai C, Wyman C, Smith J (2016) Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran–water on lignin structure and dynamics. Green Chem 18.  https://doi.org/10.1039/C5GC01952D CrossRefGoogle Scholar
  44. 44.
    Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8(10):1716–1725.  https://doi.org/10.1002/cssc.201403045 CrossRefGoogle Scholar
  45. 45.
    Wang Y-Y, Li M, Wyman CE, Cai CM, Ragauskas AJ (2018) Fast fractionation of technical lignins by organic cosolvents. ACS Sustain Chem Eng 6(5):6064–6072.  https://doi.org/10.1021/acssuschemeng.7b04546 CrossRefGoogle Scholar
  46. 46.
    Singh R, Singh S, Trimukhe K, Pandare K, Bastawade K, Gokhale D, Varma A (2005) Lignin–carbohydrate complexes from sugarcane bagasse: preparation, purification, and characterization. Carbohydr Polym 62(1):57–66.  https://doi.org/10.1016/j.carbpol.2005.07.011 CrossRefGoogle Scholar
  47. 47.
    Tarasov D, Leitch M, Fatehi P (2018) Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels 11(1):269.  https://doi.org/10.1186/s13068-018-1262-1 CrossRefGoogle Scholar
  48. 48.
    Bennani A, Rigal L, Gaset A (1991) Refining of lignocellulose by organosolv processes. Part I: isolation, characterisation and utilization of hemicellulose extracted from Norway spruce. Biomass Bioenergy 1(5):289–296.  https://doi.org/10.1016/0961-9534(91)90041-A CrossRefGoogle Scholar
  49. 49.
    Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin–carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6(6):3467–3473.  https://doi.org/10.1021/bm058014q CrossRefGoogle Scholar
  50. 50.
    Guerra A, Mendonça R, Ferraz A (2003) Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzym Microb Technol 33(1):12–18.  https://doi.org/10.1016/S0141-0229(03)00099-1 CrossRefGoogle Scholar
  51. 51.
    Andrianova AA, Yeudakimenka NA, Lilak SL, Kozliak EI, Ugrinov A, Sibi MP, Kubátová A (2018) Size exclusion chromatography of lignin: the mechanistic aspects and elimination of undesired secondary interactions. J Chromatogr A 1534:101–110.  https://doi.org/10.1016/j.chroma.2017.12.051 CrossRefGoogle Scholar
  52. 52.
    Joffres B, Nguyen MT, Laurenti D, Lorentz C, Souchon V, Charon N, Daudin A, Quignard A, Geantet C (2016) Lignin hydroconversion on MoS2-based supported catalyst: comprehensive analysis of products and reaction scheme. Appl Catal B Environ 184:153–162.  https://doi.org/10.1016/j.apcatb.2015.11.005 CrossRefGoogle Scholar
  53. 53.
    Montgomery JRD, Bazley P, Lebl T, Westwood NJ (2019) Using fractionation and diffusion ordered spectroscopy to study lignin molecular weight. ChemistryOpen 8(5):601–605.  https://doi.org/10.1002/open.201900129 CrossRefGoogle Scholar
  54. 54.
    Polizzi V, Servaes K, Vandezande P, Kouris Panos D, Panaite Ana M, Jacobs G, Hensen Emiel JM, Boot Michael D, Vanbroekhoven K (2019) Molecular weight-based fractionation of lignin oils by membrane separation technology. Holzforschung.  https://doi.org/10.1515/hf-2018-0303
  55. 55.
    Yoo CG, Ragauskas AJ, Pu Y (2019) Measurement of physicochemical properties of lignin. In: Understanding lignocellulose: synergistic computational and analytic methods, vol 1338. ACS symposium series, vol 1338. American Chemical Society, pp 33-47. doi: https://doi.org/10.1021/bk-2019-1338.ch003 Google Scholar
  56. 56.
    Das P, Stoffel RB, Area MC, Ragauskas AJ (2019) Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass Bioenergy 120:350–358.  https://doi.org/10.1016/j.biombioe.2018.11.029 CrossRefGoogle Scholar
  57. 57.
    Hong S, Sun X, Lian H, Pojman JA, Mota-Morales JD (2020) Zinc chloride/acetamide deep eutectic solvent-mediated fractionation of lignin produces high- and low-molecular-weight fillers for phenol-formaldehyde resins. J Appl Polym Sci 137(7):48385.  https://doi.org/10.1002/app.48385 CrossRefGoogle Scholar
  58. 58.
    Marathe PS, Westerhof RJM, Kersten SRA (2019) Fast pyrolysis of lignins with different molecular weight: experiments and modelling. Appl Energy 236:1125–1137.  https://doi.org/10.1016/j.apenergy.2018.12.058 CrossRefGoogle Scholar
  59. 59.
    Meng X, Parikh A, Seemala B, Kumar R, Pu Y, Wyman CE, Cai CM, Ragauskas AJ (2019) Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation. Bioresour Technol 272:202–208.  https://doi.org/10.1016/j.biortech.2018.09.130 CrossRefGoogle Scholar
  60. 60.
    Liu X, Jiang Z, Feng S, Zhang H, Li J, Hu C (2019) Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel 244:247–257.  https://doi.org/10.1016/j.fuel.2019.01.117 CrossRefGoogle Scholar
  61. 61.
    Kim D-E, Pan X (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Ind Eng Chem Res 49(23):12156–12163.  https://doi.org/10.1021/ie101671r CrossRefGoogle Scholar
  62. 62.
    Lapierre C, Monties B, Rolando C (1986) Thioacidolysis of poplar lignins: identification of monomeric syringyl products and characterization of guaiacyl-syringyl lignin fractions. Holzforschung 40(2):113–118.  https://doi.org/10.1515/hfsg.1986.40.2.113 CrossRefGoogle Scholar
  63. 63.
    Sun R, Lu Q, Sun X (2001) Physico-chemical and thermal characterization of lignins from Caligonum monogoliacum and Tamarix spp. Polym Degrad Stab 72(2):229–238.  https://doi.org/10.1186/s13068-018-1262-1 CrossRefGoogle Scholar
  64. 64.
    Long J, Zhang Q, Wang T, Zhang X, Xu Y, Ma L (2014) An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresour Technol 154:10–17.  https://doi.org/10.1016/j.biortech.2013.12.020 CrossRefGoogle Scholar
  65. 65.
    Nabarlatz D, Farriol X, Montané D (2005) Autohydrolysis of almond shells for the production of xylo-oligosaccharides: product characteristics and reaction kinetics. Ind Eng Chem Res 44(20):7746–7755.  https://doi.org/10.1021/ie050664n CrossRefGoogle Scholar
  66. 66.
    Queirós CSGP, Cardoso S, Lourenço A, Ferreira J, Miranda I, Lourenço MJV, Pereira H (2019) Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers Bior:1–14.  https://doi.org/10.1007/s13399-019-00424-2
  67. 67.
    Yoshikawa H, Maruno Y (2016) Method for producing lignin degradation product. Patent EP2796561A1. Google Patents,Google Scholar
  68. 68.
    LeVan SL (1989) Thermal degradation. In: Schniewind AP (ed) Concise encyclopedia of wood & wood-based materials, 1st edn. Pergamon Press, Elmsford, pp 271–273Google Scholar
  69. 69.
    Lindner A, Wegwner G (1990) Characterization of lignins from organosolv pulping according to the organocell process. Part 3. Molecular weight determination and investigation of fractions isolated by GPC. J Wood Chem Technol 10(3):331–350CrossRefGoogle Scholar
  70. 70.
    Ucar G, Meier D, Faix O, Wegener G (2005) Analytical pyrolysis and FTIR spectroscopy of fossil Sequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof. Holz Roh Werkst (63):57–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of ChemistryUniversity of MurciaMurciaSpain
  2. 2.Department of Agricultural Chemistry, Faculty of ChemistryUniversity of MurciaMurciaSpain

Personalised recommendations