Physicochemical characterization of residual biomass (seed and fiber) from açaí (Euterpe oleracea) processing and assessment of the potential for energy production and bioproducts

  • Anna Cristina Pinheiro de Lima
  • Dandara Leal Ribeiro Bastos
  • Mariella Alzamora Camarena
  • Elba Pinto Silva Bon
  • Magali Christe Cammarota
  • Ricardo Sposina Sobral Teixeira
  • Melissa Limoeiro Estrada GutarraEmail author
Original Article


Açaí residual biomass can be a potential source for a wide range of applications, especially biotechnological, such as solid-state fermentation processes and production of fermentable sugars (mannose), such as raw material for food, pharmaceutical, and other industries. Fiber and seed of açaí fruit (Euterpe oleracea) were characterized, after pulp extraction, in samples collected at different maturation stages (seasonality). The seed contained a remarkable amount of mannose (75%) followed by glucose (6%) and galactose (2%), with mannan as the main polysaccharide. The fiber was a lignocellulosic biomass containing glucose (30%) and xylose (19%). Mannan and cellulose in the seed and fiber, respectively, were the polysaccharide responsible for the crystallinity of both materials, with the seed showing higher values. The period of fruit harvesting (winter or summer crops) influenced the maturity and chemical composition of the residues, which had higher crystallinity in the summer season. Hydrothermal treatment was very efficient for fiber but failed for seed, indicating a high recalcitrance of mannan in açaí seed.


Euterpe oleracea Biomass characterization Açaí seed Açaí fiber Mannan Hydrothermal treatment 



This work was supported by the Technology, Research and Projects Financing/FINEP–MCTI (grant number 01.09.0566.001421/08), in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ grant number E03/2017-233983), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant PQ2016—306473). A. C. Limais is grateful to CAPES for providing a research scholarship. The authors thank the Multi-user Laboratory of Technological Characterization—CETEM for the scanning electron microscopy; Camila C. Lopes (Fuels and Lubricants Laboratory—National Institute of Technology) for elemental analyses; and Professor Veronica Calado (Thermal Analysis and Rheology Laboratory, School of Chemistry, Federal University of Rio de Janeiro) for thermogravimetric analysis (TGA).


  1. 1.
    Yamaguchi KKDL, Pereira LFR, Lamarão CV, Lima ES, da Veiga-Junior VF (2015) Amazon acai: chemistry and biological activities: a review. Food Chem 179:137–151. CrossRefGoogle Scholar
  2. 2.
    Boeira LS, Bastos PH, Uchôa NR et al (2020) Chemical and sensorial characterization of a novel alcoholic beverage produced with native acai (Euterpe precatoria) from different regions of the Amazonas state. LWT—Food Sci Technol 117:108632. CrossRefGoogle Scholar
  3. 3.
    da Silva LB, Queiroz MB, Fadini AL et al (2016) Chewy candy as a model system to study the influence of polyols and fruit pulp (açaí) on texture and sensorial properties. LWT—Food Sci Technol 65:268–274. CrossRefGoogle Scholar
  4. 4.
    García-Tejeda YV, Barrera-Figueroa V (2019) Least squares fitting-polynomials for determining inflection points in adsorption isotherms of spray-dried açaí juice (Euterpe oleracea Mart.) and soy sauce powders. Powder Technol 342:829–839. CrossRefGoogle Scholar
  5. 5.
    Heinrich M, Dhanji T, Casselman I (2011) Açaí (Euterpe oleracea Mart.)—a phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett 4:10–21. CrossRefGoogle Scholar
  6. 6.
    SEDAP/NUPLAN (2017) Panorama agrícola do Pará 2010/2017: Açaí. Accessed 26 June 2018Google Scholar
  7. 7.
    Bichara CMG, Rogez H (2011) Açaí (Euterpe oleracea Martius). In: Yahia E M (Ed) Postharvest biology and technology of tropical and subtropical fruits, Volume 2: Açaí to citrus, 1 rd edn.Woodhead Publishing Series in Food Science, Technology and Nutrition, pp 1–27Google Scholar
  8. 8.
    Pessoa JDC, Arduin M, Martins MA, Carvalho JEU (2010) Characterization of açaí (E. oleracea) fruits and its processing residues. Braz Arch Biol Technol 53:1451–1460. CrossRefGoogle Scholar
  9. 9.
    Rambo MKD, Schmidt FL, Ferreira MMC (2015) Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 144:696–703. CrossRefGoogle Scholar
  10. 10.
    Soccol CR, da Costa ESF, Letti LAJ et al (2017) Recent developments and innovations in solid-state fermentation. Biotechnol Res Innov 1:52–71. CrossRefGoogle Scholar
  11. 11.
    Kaur A, Kuhad RC (2019) Valorization of rice straw for ethanol production and lignin recovery using combined acid-alkali pre-treatment. BioEnergy Res 12:570–582. CrossRefGoogle Scholar
  12. 12.
    Khanal A, Manandhar A, Shah A (2019) Physicochemical and structural characteristics of corn stover and cobs after physiological maturity. BioEnergy Res 12:536–545. CrossRefGoogle Scholar
  13. 13.
    Altman RFA (1956) Estudo químico de plantas amazônicas. In: Boletim Técnico do Instituto Agronômico do Norte. Belém, pp 109–111Google Scholar
  14. 14.
    Bufalino L, Guimarães AA, Silva BMDSE et al (2018) Local variability of yield and physical properties of açaí waste and improvement of its energetic attributes by separation of lignocellulosic fibers and seeds. J Renew Sustain Energy 10:053102. CrossRefGoogle Scholar
  15. 15.
    Oliveira JAR, Martins LHS, Komesu A, Maciel Filho R (2015) Evaluation of alkaline delignification (NaOH) of açaí seeds (Eutherpe oleracea) treated with H2SO4 dilute and effect on enzymatic hydrolysis. Chem Eng Trans 43:499–504. CrossRefGoogle Scholar
  16. 16.
    Rodrigues Filho JA, Camarão AP, Lourenço Júnior JB (1993) Avaliação de subprodutos agroindustriais para a alimentação de ruminantes. EMBRAPA-CPATU, Belém, p 15Google Scholar
  17. 17.
    Neto MAM, Lobato AKDS, Alves JD et al (2010) Seed and seedling anatomy in Euterpe oleracea Mart. during the germination process. J Food. Agric Environ 8:1147–1152Google Scholar
  18. 18.
    (APHA) (2005) Standard methods for the examination of water and wastewater, 21rd edn. American Public Health Association/American Water Works Association/Water Environment Federation, WashingtonGoogle Scholar
  19. 19.
    Martinez CLM, Rocha EPA, Carneiro ADCO et al (2019) Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass Bioenergy 120:68–76. CrossRefGoogle Scholar
  20. 20.
    Demirbas A, Gullu D, Çaglar A, Akdeniz F (1997) Estimation of calorific values of fuels from lignocellulosics. Energy Sources 19:765–770. CrossRefGoogle Scholar
  21. 21.
    Sluiter A, Hames B, Ruiz R, et al (2012) Determination of structural carbohydrates and lignin in biomass. Accessed 20 May 2017
  22. 22.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray Diffractometer. Text Res J 29:786–794. CrossRefGoogle Scholar
  23. 23.
    Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, First. Elsevier B.V, pp 17–39Google Scholar
  24. 24.
    Itai Y, Santos R, Branquinho M et al (2014) Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel. Renew Energy 66:662–669. CrossRefGoogle Scholar
  25. 25.
    Oliveira JAR, Komesu A, Maciel Filho R (2014) Hydrothermal pretreatment for enhancing enzymatic hydrolysis of seeds of açaí (Euterpe oleracea) and sugar recovery. Chem Eng Trans 37:787–792. CrossRefGoogle Scholar
  26. 26.
    Bruun S, Jensen JW, Magid J et al (2010) Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy. Ind Crop Prod 31:321–326. CrossRefGoogle Scholar
  27. 27.
    Iroba KL, Baik O, Tabil LG (2017) Torrefaction of biomass from municipal solid waste fractions I : Temperature profiles, moisture content, energy consumption, mass yield, and thermochemical properties. Biomass Bioenergy 105:320–330. CrossRefGoogle Scholar
  28. 28.
    Bin Y, Hongzhang C (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresour Technol 101:9114–9119. CrossRefGoogle Scholar
  29. 29.
    Shukor H, Abdeshaihian P, Al-Shorgani NKN et al (2016) Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol. Bioresour Technol 218:257–264. CrossRefGoogle Scholar
  30. 30.
    Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216. CrossRefGoogle Scholar
  31. 31.
    Virmond E, Sena RF, Albrecht W et al (2012) Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes. Waste Manag 32:1952–1961. CrossRefGoogle Scholar
  32. 32.
    Fernandes ERK, Marangoni C, Souza O, Sellin N (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag 75:603–608. CrossRefGoogle Scholar
  33. 33.
    Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sust Energ Rev 52:179–188. CrossRefGoogle Scholar
  34. 34.
    Erol M, Haykiri-Acma H, Küçükbayrak S (2010) Calorific value estimation of biomass from their proximate analyses data. Renew Energy 35:170–173. CrossRefGoogle Scholar
  35. 35.
    Everard CD, McDonnell KP, Fagan CC (2012) Prediction of biomass gross calorific values using visible and near infrared spectroscopy. Biomass Bioenergy 45:203–211. CrossRefGoogle Scholar
  36. 36.
    Godin B, Agneessens R, Gerin PA, Delcarte J (2011) Composition of structural carbohydrates in biomass: precision of a liquid chromatography method using a neutral detergent extraction and a charged aerosol detector. Talanta 85:2014–2026. CrossRefGoogle Scholar
  37. 37.
    Llano T, Quijorna N, Andrés A, Coz A (2017) Sugar, acid and furfural quantification in a sulphite pulp mill: feedstock, product and hydrolysate analysis by HPLC/RID. Biotechnol Rep 15:75–83. CrossRefGoogle Scholar
  38. 38.
    Goeij S De (2013) Quantitative analysis methods for sugars. Thesis, Universiteit Van AmsterdamGoogle Scholar
  39. 39.
    Barros L, Calhelha RC, João M et al (2015) The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Ind Crop Prod 76:318–322. CrossRefGoogle Scholar
  40. 40.
    Buratto RT, Hoyos EG, Cocero MJ, Martín Á (2019) The journal of supercritical fluids impregnation of açaí residue extracts in silica-aerogel. J Supercrit Fluids 146:120–127. CrossRefGoogle Scholar
  41. 41.
    Melo PS, de Arrivetti LOR, de Alencar SM, Skibsted LH (2016) Antioxidative and prooxidative effects in food lipids and synergism with alfa-tocopherol of açaí seed extracts and grape rachis extracts. Food Chem 213:440–449. CrossRefGoogle Scholar
  42. 42.
    Rodrigues RB, Lichtenthäler R, Zimmermann BF et al (2006) Total oxidant scavenging capacity of Euterpe oleracea Mart. (açaí) seeds and identification of their polyphenolic compounds. J Agric Food Chem 54:4162–4167. CrossRefGoogle Scholar
  43. 43.
    Costa AG, Pinheiro GC, Pinheiro FGC et al (2013) Pretreatment strategies to improve anaerobic biodegradability and methane production potential of the palm oil mesocarp fibre. Chem Eng J 230:158–165. CrossRefGoogle Scholar
  44. 44.
    Domínguez E, Romaní A, Domingues L, Garrote G (2017) Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Appl Energy 187:777–789. CrossRefGoogle Scholar
  45. 45.
    Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523. CrossRefGoogle Scholar
  46. 46.
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. CrossRefGoogle Scholar
  47. 47.
    Yui T, Miyawaki K, Yada M, Ogawa K (1997) An evaluation of crystal structure of mannan I by X-ray powder diffraction and molecular mechanics studies. Int J Biol Macromol 21:243–250. CrossRefGoogle Scholar
  48. 48.
    Hori R, Sugiyama J, Wada M (2007) The thermal expansion of mannan I obtained from ivory nuts. Carbohydr Polym 70:298–303. CrossRefGoogle Scholar
  49. 49.
    de Paula JE (1975) Anatomia de Euterpe oleracea Mart. (Palmae da Amazônia). Acta Amaz 5:265–278CrossRefGoogle Scholar
  50. 50.
    Tomczak F, Sydenstricker THD, Satyanarayana KG (2007) Studies on lignocellulosic fibers of Brazil. Part II : morphology and properties of Brazilian coconut fibers. Compos Part A 38(7):1710–1721. 1710–1721. CrossRefGoogle Scholar
  51. 51.
    Cerqueira MA, Souza BWS, Simões J et al (2011) Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydr Polym 83:179–185. CrossRefGoogle Scholar
  52. 52.
    Vendruscolo CW, Ferrero C, Pineda EAG et al (2009) Physicochemical and mechanical characterization of galactomannan from Mimosa scabrella: effect of drying method. Carbohydr Polym 76:86–93. CrossRefGoogle Scholar
  53. 53.
    Martins MA, Pessoa JDC, Gonçalves PS, Souza FI, Mattoso LHC (2008) Thermal and mechanical properties of the açaí fiber/natural rubber composites. J Mater Sci 43:6531–6538. CrossRefGoogle Scholar
  54. 54.
    de Petkowicz CLO, Reicher F, Chanzy H et al (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr Polym 44:107–112. CrossRefGoogle Scholar
  55. 55.
    Reid JSG (1985) Cell-wall storage carbohydrates in seeds—biochemistry of the seed gums and hemicelluloses. Adv Bot Res Inc Adv Plant Pathol 11:125–155. CrossRefGoogle Scholar
  56. 56.
    Aspinall GO (1959) Structural chemistry of the hemicelluloses. Adv Carbohydr Chem 14:429–468. CrossRefGoogle Scholar
  57. 57.
    Stephen AM (1983) Other plant polysaccharides. In: Aspinall GO (ed) The polysaccharides, 1st edn. Academic Press, London, p 507Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anna Cristina Pinheiro de Lima
    • 1
  • Dandara Leal Ribeiro Bastos
    • 2
  • Mariella Alzamora Camarena
    • 2
  • Elba Pinto Silva Bon
    • 3
  • Magali Christe Cammarota
    • 1
  • Ricardo Sposina Sobral Teixeira
    • 3
  • Melissa Limoeiro Estrada Gutarra
    • 1
    • 2
    Email author
  1. 1.School of ChemistryFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Campus Duque de CaxiasFederal University of Rio de JaneiroDuque de CaxiasBrazil
  3. 3.Institute of ChemistryFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations